ON THE STRUCTURE OF THE ORTHOGONAL GROUP

OMA HAMARA

Let V be a vector space over a field k of characteristic $\neq 2$, let Q be a non-degenerate quadratic form on V. Let $G=O(V,Q)$ denote the group of all isometries of V. We shall place a topology on $O(V,Q)$ such that $O(V,Q)$ becomes a topological group which is discrete if and only if V is finite-dimensional. Further, the classical structure theorems for $O(V,k)$ in the finite-dimensional case carry over to the infinite-dimensional situation for the topological group $O(V,k)$ (see [1, Chapter V]).

1. Preliminaries.

Let, then, (V,Q) be an arbitrary vector space over a field of characteristic $\neq 2$ with non-degenerate quadratic form Q. Call such a space a Q-space hereafter. Let $G=O(V,Q)$ be the orthogonal group of all isometries of V. Let $\mathcal{E}_0, \mathcal{E}$ be respectively the set of all finite dimensional non-singular subspaces of V, and the set of all subspaces of V. Let \mathcal{H} be the set of all subgroups of G.

We define two maps: $\varrho: \mathcal{E} \to \mathcal{H}$, $\chi: \mathcal{H} \to \mathcal{E}$ as follows: If $E \in \mathcal{E}$, $H \in \mathcal{H}$, then

$$\varrho(E) = \{\sigma \in G \mid \sigma|_E = \text{identity on } E\}$$

and

$$\chi(H) = \{x \in V \mid \sigma(x) = x \text{ for all } \sigma \in H\}.$$

Some of the properties of these two maps are:

(i) If $E_1 \subseteq E_2$, $H_1 \subseteq H_2$, $E_i \in \mathcal{E}$, $H_i \in \mathcal{H}$, then $\varrho(E_1) \supseteq \varrho(E_2)$, $\chi(H_1) \supseteq \chi(H_2)$, that is, ϱ, χ are order reversing.

(ii) If $E \in \mathcal{E}$, $H \in \mathcal{H}$, then $\chi \circ \varrho(E) \supseteq E$ and $\varrho \circ \chi(H) \supseteq H$.

(iii) If $E_1 \in \mathcal{E}_0$, $E_2 \in \mathcal{E}$, $E_1 \subset E_2$, then $\varrho(E_1) \supseteq \varrho(E_2)$.

(iv) If $E \in \mathcal{E}$, $H \in \mathcal{H}$, then $\varrho \circ \chi \circ \varrho(E) = \varrho(E)$ and $\chi \circ \varrho \circ \chi(H) = \chi(H)$.

(v) If $E \in \mathcal{E}_0$, then $\chi \circ \varrho(E) = E$, so $\chi \circ \varrho|_{\mathcal{E}_0} = 1_{\mathcal{E}_0}$.

(vi) Let $\sigma \in G$, $E \in \mathcal{E}$, then $\varrho(\sigma(E)) = \sigma \varrho(E) \sigma^{-1}$.

Proof. We shall prove only (iii) and (v); all the others are more or less obvious.

Received June 10, 1966,
(iii): Let \(V = E_1 \perp E_1^\ast \), where \(E_1^\ast \) denotes the space \(\{ y \in V \mid y \perp E \} \) for any space \(E \in \mathcal{E} \), so that \(E_2 \supset E_1 \) implies the existence of an \(x \in E_2 \) such that \(x \in E_1^\ast \). Let \(\sigma = 1_{E_1} \perp (-1_{E_1^\ast}) \), then \(\sigma \in G \) and \(\sigma(x) = -x \). Also \(\sigma|_{E_1} = \text{identity on } E_1 \), so \(\sigma \circ \varrho(E) \).

(v): Now \(\chi \circ \varrho(E) \supseteq E \) for all \(E \in \mathcal{E} \) and \(\varrho \circ \chi \circ \varrho(E) = \varrho(E) \) by (iv). Hence, if \(\chi \circ \varrho(E) \supseteq E \in \mathcal{E}_0 \), then \(\varrho(\varrho(E)) \subseteq \varrho(E) \) contradicting (iv).

2. The Topology on \(O(V) = G \).

Let \(\mathcal{U} = \{ U \mid U = \varrho(E), E \in \mathcal{E}_0 \} = \varrho(\mathcal{E}_0) \). Then we have:

(i) If \(U_1, U_2 \in \mathcal{U} \), there is a \(U \in \mathcal{U} \) such that \(U \subseteq U_1 \cap U_2 \).

(ii) If \(U \in \mathcal{U} \), then \(U = U, U^{-1} = U \).

(iii) If \(U \in \mathcal{U} \), \(\sigma \in G \), then there is a \(U' \in \mathcal{U} \) such that \(\sigma U' \subseteq U \).

(iv) \(\bigcap_{U \in \mathcal{U}} U = \{ 1_V \} \).

Proof.

(i) Let \(U_i = \varrho(E_i), E_i \in \mathcal{E}_0 \), then

\[
U_1 \cap U_2 = \varrho(E_1) \cap \varrho(E_2) = \{ \sigma \in G \mid \sigma(x) = x \text{ for } x \in E_1 \cup E_2 \}.
\]

Let \(E \in \mathcal{E}_0 \) be such that \(E \supseteq E_1 \cup E_2 \). Then

\[
U = \varrho(E) \subseteq \varrho(E_1) \cap \varrho(E_2) = U_1 \cap U_2.
\]

(ii) This is obvious.

(iii) Let \(U = \varrho(E), E' = \sigma^{-1}(E), U' = \varrho(E') \), then \(E' \in \mathcal{E}_0 \) as \(E \in \mathcal{E}_0 \). But then

\[
\varrho(\sigma(E')) = \varrho(E) = U = \sigma(\varrho(E'))\sigma^{-1} = \sigma U' \sigma^{-1}.
\]

(iv) Let \(\sigma \in \bigcap_{U \in \mathcal{U}} U \), then \(\sigma \in \varrho(E) \), for all \(E \in \mathcal{E}_0 \), hence \(\sigma(x) = x \) for all \(x \in E \), for all \(E \in \mathcal{E}_0 \). But \(\bigcup_{E \in \mathcal{E}_0} E = V \). Hence \(\sigma = 1_V \).

These facts imply that \(\mathcal{U} \) may be taken as a fundamental system of neighborhoods of the identity for a Hausdorff topology on \(G = O(V, Q) \). We shall call this the finite topology (see [3]).

Theorem 1. \(G = O(V, Q) \) with the finite topology, is discrete if, and only if, \(V \) is finite-dimensional.

Proof. If \(V \) is finite-dimensional, then clearly \(G \) is discrete, \(\{ 1_V \} \) is open and, hence, there is a \(U \in \mathcal{U} \) such that \(U \subseteq \{ 1_V \} \), so

\[
U = \varrho(E) = \{ 1_V \} \quad \text{for some } E \in \mathcal{E}_0.
\]

Let \(x \in V \) and \(E_x \in \mathcal{E}_0 \) be such that \(E_x \supseteq \{ x \} \cup E \). Then
\[\varrho(E_x) \subseteq \varrho(E) = \{1_E\}, \]
so \(E_x = E \) by (iii) of section 1. As \(x \) was arbitrary, \(E = V \). This completes the proof.

If \(E \in \mathcal{E}_0 \), then \(\varrho(E) \) is, of course, an open subgroup and, consequently, closed. But we have more generally

Proposition 1. Let \(E \in \mathcal{E} \), and let \(G = O(V) \) have the finite topology, then \(H = \varrho(E) \) is closed and for any \(H \in \mathcal{H} \), \(\varrho(H) \subseteq \overline{H} \). Hence \(\varrho \) maps \(\mathcal{E} \) onto the set \(\mathcal{H} \) of all closed subgroups of \(G \).

Proof. Let \(\sigma \in \overline{H} \), \(H \in \mathcal{H} \). Then for any \(E_0 \in \mathcal{E}_0 \), we must have \(\varrho(E_0) \sigma \cap H \neq \emptyset \). If \(x \in E \subseteq \chi(H), x \neq 0 \), let \(E_x \in \mathcal{E}_0 \) be such that \(x \in E_x \).

Then there is an \(\eta_x \in \varrho(E_x) \) such that \(\eta_x^{-1} \sigma \in H \), so that \(\eta_x^{-1} \sigma |_E = 1_E \).

In particular, \(\sigma(x) = \eta_x(x) = x \), as \(\eta_x \in \varrho(E_x) \). Thus \(\sigma(x) = x \), for all \(x \in E \); hence \(\sigma \in H \). So \(H = \overline{H} \), the closure of \(H \). Next, since \(H \subseteq \varrho(\chi(H)) \) is closed, \(\overline{H} \subseteq \varrho(\chi(H)) \). This completes the proof.

Notice that if \(A = \{ \pm 1_v \} \), then \(A = \overline{A} \subset O(V) = \varrho(\chi(A)) \).

Proposition 2. If \((V,Q) \) is infinite dimensional, then \(O(V,Q) \) is a totally disconnected non-locally compact group.

Proof. Let \(E_1 \in \mathcal{E}_0 \) be such that \(\dim E_1 \geq 2 \), then \(V = E_1 \perp E_1^* \), \(\varrho(E_1) \) is an open subgroup of \(G \) and, hence, is closed. Further, \(\bigcap_{E \in \mathcal{E}_0} \varrho(E) = \{1_E\} \), so \(O(V) = G \) is totally disconnected.

In order to prove that \(G \) is not locally compact, it suffices to show that \(G \) itself is non-compact since \(\varrho(E') = G' \) compact would imply that \(O(E'^*, Q|_{E'^*}) \), the finite topology of which is the inherited topology from \(O(E, Q) \), would be compact. So we let \(G_1 = \varrho(E_1), \dim E_1 \geq 2 \), \(E_1 \in \mathcal{E}_0 \) and consider the left coset space \(O(V,Q)/G_1 = G/G_1 \). Suppose that \(G \) is compact, then the natural map \(\pi: G \to G/G_1 \) shows that \(G/G_1 \) is compact. But \(G_1 = \varrho(E_1) \) is open and, hence, \(G_1 = \sigma \in G/G_1 \) is also open. Thus \(G/G_1 \) is discrete and, therefore, finite. Consider next two cases:

(i) \(k \) infinite. The elements of \(O(E_1) \) may be identified with the elements of the subgroup \(O(E_1) \perp 1_{E_1^*} \) of \(G \). Denote this group by \(G_2 \).

Then \(\tau, \tau' \in G_2, \tau \equiv \tau \mod G_1 \) if, and only if, \(\tau^{-1} \tau \in G_1 \). But \(G_2 \cap \varrho(E_1) = \{1_E\} \), so \(\tau = \tau' \). Therefore, since \(G_2 \) is infinite, \(G/G_1 \) is an infinite set. This contradicts compactness; hence \(G \) is not compact.

(ii) If \(k \) is finite, then we use lemma 1, proved in the next section, to provide us with a sequence of subspaces \(F_1, F_2, \ldots \), such that \(F_i \perp F_j, j \neq i \), and \(F_i \) are hyperbolic planes. Then construct the following maps \(\sigma_i \) such that \(\sigma_i: F_i \to F_i \) isometrically, and extend \(\sigma_i \) to \(V \) (see [4]). Choose \(E_1 \) to equal \(F_1 \). Then \(\pi: \sigma_i \to \overline{\sigma_i} \), and
\[\bar{\sigma}_i = \bar{\sigma}_j \iff \sigma_j^{-1} \sigma_i \in G_1 = \varrho(E_1). \]

For if \(i \neq j \),
\[
\sigma_j^{-1} \sigma_i : E_1 \overset{\varrho}{\rightarrow} F_\iota \overset{\sigma_j^{-1}(F_\iota)}{\rightarrow} E_1,
\]
hence \(\sigma_j^{-1} \sigma_i \notin G_1 \). Thus again we have an infinite set \(G/G_1 \) which contradicts compactness.

Let \(G_F = \{ \sigma \in G = O(V) \mid \sigma \in \varrho(E^*), E \in \varepsilon_0 \} = \) group generated by all \(\sigma \in G \) such that \(\sigma \) leaves \(E^* \) elementwise fixed, where \(E \in \varepsilon_0 \), \(V = E \perp E^* \). We have

Theorem 2. Using the finite topology on \(O(V) \), we find that the group \(G_F \) is dense in \(O(V) \), that is, \(\bar{G}_F = O(V) \).

Proof. Let \(\sigma \in G = O(V) \). We have to show that \(\sigma \in \bar{G}_F \), that is, for all \(E \in \varepsilon_0 \), there is a \(\eta \in \varrho(E) \) such that \(\sigma \eta \in G_F \), or that there is a \(\tau \in G_F \) such that \(\sigma^{-1} \tau = \eta \in \varrho(E) \). Let \(E^\sigma = \sigma(E) \), then let \(E_1 \) be a finite dimensional semi-simple subspace of \(V \) such that \(E_1 \cong E + E^\sigma \). Now \(V = E_1 \perp E_1^* \) and \(\sigma : E \rightarrow E^\sigma \), with \(E, E^\sigma \) both contained in \(E_1 \); hence, by Witt's Theorem, we can extend \(\sigma \) to \(\sigma' \) in \(O(E_1) \). Let \(\tau = \sigma' \perp 1_{E_1^*} \), then clearly \(\tau \in G \) and \(\tau \in G_F \). Further, \(\sigma^{-1} \tau|_E = \sigma^{-1} \sigma|_E = 1_E \); hence \(\sigma^{-1} \tau \in \varrho(E) \). This proves the theorem.

3. The structure of \(O(V, Q) \).

In this section we wish to generalize, to infinite dimensional \(Q \)-spaces, a number of results which will aid us in considering further the structure of the orthogonal group \(O(V) \). Some we state without proof. Many times we will use the notation: \(f_Q(x, y) = x \cdot y \), for \(x, y \in V, f_Q \) the associated bilinear form.

Lemma 1. Let \((V, Q) \) be a semi-simple \(Q \)-space over \(k \). If \(\dim V \geq 2 \) and \(k \) is finite, then for any \(a \in k \) there is a \(x \in V \) such that \(f_Q(x, x) = a \). If \(\dim V \geq 1 \) and \(V \) has isotropic vectors, then when \(k \) is any field and for any \(a \in k \) we can find \(x \in V \) so that \(f_Q(x, x) = a \).

Proof. For infinite dimensional \(V \) the proof is as in the finite case (see e.g. [1]).

Corollary. If \((V, Q) \) is as in the lemma with \(\dim V \geq 3 \), then \(V \) contains isotropic vectors if \(k \) is finite.

Let \(Z(V, Q) \) denote the center of \(O(V, Q) = G \) and \(O(V, Q)' \) the group theoretic commutator subgroup of \(O(V, Q) \). Let \(\Omega_F(V, Q) = (G_F)' \), where \(G_F \) was defined in section 2. Let \(\Omega(V, Q) = O(V, Q)' \), the closure of the group generated by the commutators.
Lemma 2. Let (V, Q) be a semi-simple Q-space, S a two dimensional non-singular (semi-simple) subspace. Unless S is a hyperbolic plane and $k = GF(3)$, there is a map $\sigma \in \Omega_F(V, Q)$ such that $S^* = \{x \in V \mid \sigma(x) = x\}$.

Proof. It is well known that there is a $\sigma' \in \Omega(S, Q)$ such that $\sigma'(x) + x$ for all $0 \pm x \in S$. Define σ as: $\sigma = \sigma' \perp 1_{S^*}$. $(V = S \perp S^*)$, then $\sigma: V \to V$ and is clearly in $\Omega_F(V, Q)$. This σ is the element that works.

Lemma 3. If (V, Q) is a semi-simple Q-space with dimension ≥ 3, let $\sigma \in O(V, Q)$ be such that $\sigma \tau = \tau \sigma$ for all $\tau \in \Omega_F(V, Q)$.

Then $\sigma = \pm 1_V$.

Proof. First we show that if $f_Q(x, x) \not= 0$, then $\sigma(x) = ax$, $a \in k$, $a = \pm 1$.

a) Assume $k = GF(3)$. Let x be such that $f_Q(x, x) \not= 0$, let $S(x)$ be the space of x. So $V = S(x) \perp S^*(x)$ and dim $S(x^*) \geq 2$, so that there is an element $y \in S(x^*)$ such that $f_Q(y, y) \not= 0$, $x \perp y$. Let $S = S(x, y)$ be the span of x and y, S is then semi-simple. Lemma 2 implies the existence of $\varphi \in \Omega_F(V, Q)$ such that $S^* = \{z \in V \mid \varphi(z) = z\}$. Let $z \in S^*$,

$$\varphi(\sigma(z)) = \sigma \varphi(z) = \sigma(z),$$

hence $\sigma(z) \in S^*$ for any $z \in S^*$; so that $\sigma(S^*) \subseteq S^*$. Similarly, since $\sigma^{-1} = \varphi^{-1} \sigma^{-1}$ for all $\varphi \in \Omega_F(V, Q)$, we get that $\sigma^{-1}(S^*) \subseteq S^*$, and hence $\sigma(S^*) = S^*$. Consequently $\sigma(S) = S$. Now dim $S^* \geq 1$ and is semi-simple; so that there is a $y' \in S^*$ such that $f_Q(y', y') \not= 0$. Apply the same argument above to $S' = S(x, y')$ and get that $\sigma(S') = S'$. Hence

$$\sigma(S \cap S') = S \cap S' = S(x);$$

so that $\sigma(x) = ax$ ($a = \pm 1$).

b) Let $k = GF(3)$, hence $k^* = \pm 1$. By lemma 1, since dim $V \geq 2$, for any $a \in k$ there is a vector $x \in V$ such that $f_Q(x, x) = a \in k^*$. So $V = S(x) \perp S(x^*)$, dim $S(x^*) \geq 2$, and hence, again there is a $y \in S(x^*)$ such that $f(y, y) = a$. Put $S = S(x, y)$. If $z = ax + \beta y$, then

$$z \cdot z = \alpha^2 a + \beta^2 a = a(\alpha^2 + \beta^2),$$

so

$$f(z, z) = 0 \iff \alpha = 0 \text{ and } \beta = 0 \text{ or } z = 0.$$

Hence S is anisotropic and not a hyperbolic plane, so that, by lemma 2, there is a $\varphi \in \Omega_F(V, Q)$ such that $S^* = \{z \mid \varphi(z) = z\}$. Then we get as before $\sigma(S) = S$.

i) If dim $V \geq 4$, then dim $S^* \geq 2$. The same method as in a) yields $\sigma(x) = c \cdot x$.
ii) If \(\dim V = 3 \), then \(\dim S^* = 1 \). Take \(y' \in S^*, y' \neq 0 \); semi-simplicity of \(S^* \) implies that \(f(y', y') \neq 0 \). Hence \(f_Q(y', y') = \frac{\pm a}{a} \in k^* \). If \(f_Q(y', y') = +a \), apply a previous argument to get that \(\sigma(x) = c \cdot x \). If \(f_Q(y', y') = -a \), then \(V = S(x, y, y') \). The vectors \(x \pm y, y' \) are orthogonal,

\[
f_Q(x, x) = f_Q(y, y) = a = -f_Q(y', y'),
\]

and with \(\varepsilon = \pm 1 \)

\[
f_Q(x + \varepsilon y, x + \varepsilon y) = f_Q(x, x) + f_Q(y, y) = 2a = -a = f_Q(y', y').
\]

Therefore \(S(x \pm y, y') \) is anisotropic, and by the previous argument we get

\[
\sigma(S(x \pm y, y')) = S(x \pm y, y').
\]

Hence

\[
\sigma(S(x, y) \cap S(x \pm y, y')) = S(x, y) \cap S(x \pm y, y') = S(x \pm y);
\]

so we get \(\sigma(x + \varepsilon y) = c_i(x + \varepsilon y) \), \(i = 1, 2 \). But \((x + y) \perp (x - y) \), and \(x \pm y, y' \)

is an orthogonal basis of \(V \); so that \(\sigma(y') = cy' \), hence \(\sigma(x) = c \cdot x \).

Take now any finite dimensional subspace \(S \) of \(V \). Let \(S' \) be a finite dimensional semi-simple subspace of \(V \) containing \(S \). Let \(x_1, \ldots, x_n \) be an orthogonal basis of \(S' \), then \(\sigma(x_i) = c_i x_i \).

So: a) If \(f_Q(x_1 + x_2, x_1 + x_2) \neq 0 \), then

\[
\sigma(x_1 + x_2) = c(x_1 + x_2) = c_1 x_1 + c_2 x_2;
\]

so that \(c = c_1 = c_2 \).

b) If \(f_Q(x_1 + x_2, x_1 + x_2) = 0 \), then

\[
Q(x_1 + x_2 + x_3) = Q(x_1 + x_2) + Q(x_3) = Q(x_3) \neq 0 \quad \dim V \geq 3.
\]

So that

\[
\sigma(x_1 + x_2 + x_3) = c(x_1 + x_2 + x_3) = \sum_{i=1}^{3} c_i x_i,
\]

and hence \(c = c_i, i = 1, 2, 3 \).

Thus we get \(c_1 = c_2 = \ldots = c_n = \pm 1 \). Then clearly from this we get that \(\sigma = \pm 1_V \). This completes the proof.

Corollary. \(Z(V, Q) = \{ \pm 1_V \} \), when \((V, Q) \) is a semi-simple \(Q \)-space of \(\dim \geq 3 \).

For every finite dimensional semi-simple \(Q \)-space \((W, Q) \) with associated bilinear form \(g_Q \) we have from the finite dimensional theory a homomorphism \(\theta_w \) called the spinorial norm, \(\theta_w : O^+(W) \to k^* / k^{*2} \), where \(O^+(W) \) is the group of rotations in \(O(W) \). This map is defined as follows: if \(\sigma = \tau_{x_1} \tau_{x_2} \ldots \tau_{x_r} \), where \(\tau_x \) is the symmetry defined by \(x \), that is, if

\[
\tau_x(y) = y - 2 \frac{x \cdot y}{x \cdot x} x,
\]
then
\[\theta_w(\sigma) = x_1^2 x_2^2 \ldots x_r^2 \text{ for } x_i = g_Q(x, x). \]

Some of the properties of the spinorial norm for \((W, g)\) are as follows:

i) \(\Omega(W, g_Q) \subseteq \ker \theta_w\),

ii) \(\theta_w\) maps \(O^+(W)\) onto \(k^*/k^{*2}\), when \((W, g_Q)_Q\) has isotropic vectors.

iii) If \(W\) contains non-zero isotropic vectors, then \(\Omega(W, g) = \ker \theta_w\).

iv) If \(W = U \perp V\), then \(\ker \theta_U = O^+(U) \cap \ker \theta_w\).

v) Suppose \(\sigma = \tau_x \cdot \tau_y\),

\[\tau_x(u) = u - 2 \frac{u \cdot x}{x \cdot x} x. \]

\(\sigma \in \ker \theta_w\), then \(\sigma \in \Omega(W, g_Q)\). If \(\dim W = 2\), then \(\ker \theta_w = \Omega(W, g_Q)\) and each element of \(\Omega(W)\) is a square of a rotation. If \(\dim W = 3\), then \(\ker \theta_w = \Omega(W)\) and each element of \(\Omega(W)\) is the square of a rotation with the same axis.

We set down the following notation: If \(U\) is a finite dimensional semi-simple subspace of \((V, Q)\) and \(\tau \in O(U)\) we shall hereafter identify \(\tau\) with \((\tau \perp 1_{U\perp}) \in O(V)\).

Lemma 4. Let \((V, f)\) be any \(Q\)-space. Suppose that \(k\) is a finite field and \(\tau\) is an isometry of a subspace \(U_1\) of \(V\) onto a finite dimensional subspace \(U_2\) of \(V\). If \(U_2\) is contained in a finite dimensional semi-simple \(Q\)-space \(W\) of \(V\) with \(\text{codim} W \geq 2\), then we can extend \(\tau\) to an element \(\varphi \in \Omega_F(V, Q)\).

Proof. Let \(W_2\) be a finite dimensional semi-simple \(Q\)-subspace of \(V\) containing \(U_1, U_2\) and \(W\) such that \(\dim (W_2/W) \geq 2\). Then we can extend \(\tau\) to a rotation \(\sigma\) of \(W_2\), since we can always multiply by a reflection of \(W^\perp \cap W_2\). Now if \(\varphi_1\) is a rotation of \(W^\perp \cap W_2\), then \(\varphi_1 \cdot \sigma\) also extends \(\tau\). But, since \(\dim (W^\perp \cap W_2) \geq 2\) and \(k\) is finite, we know \(W^\perp \cap W_2\) contains elements with arbitrary squares. Hence there is a rotation \(\varphi_1 \in O(W^\perp \cap W_2)\) such that \(\theta_{w_2}(\varphi_1) = \theta_{w_2}(\sigma)\), thus \(\theta_{w_2}(\varphi_1 \cdot \sigma) = 1\), and hence \(\varphi_1 \cdot \sigma \in \Omega(W_2, Q|W_2)\). Since \(\dim W_2 \geq 3\), then \(W_2\) contains non-zero isotropic vectors; so that \(\Omega(W_2, Q|W_2') = \ker \theta_{w_2}\). Let \(\varphi = \varphi_1 \cdot \sigma \perp 1_{w_2'}\), then \(\varphi \in \Omega_F(V, Q)\).

Corollary. If \(k\) is finite, \(\dim V \geq 4\), and \(x, y\) are non-zero isotropic vectors, then there is a \(\lambda \in \Omega_F(V, Q)\) such that \(\lambda x = y\).

Proof. \(x\) is in some hyperbolic plane, as is \(y\). Let \(\tau\) map the first hyperbolic plane onto the other isometrically and such that \(\tau x = y\). Then extend \(\tau\) by the lemma.
Lemma 5. Let U_1, U_2 be semi-simple isometric subspaces of (V,Q), (V,Q) a semi-simple Q-space. Suppose that U_2 is finite dimensional and contains isotropic lines. Then there is a $\lambda \in \Omega_F(V,Q)$ such that $U_2 = \lambda(U_1)$.

Proof. Let W_1 be a semi-simple finite dimensional subspace containing U_1 and U_2. By multiplying by an appropriate symmetry, we can find a rotation σ of W_1, such that $\sigma U_1 = U_2$. Again, we can follow this by any rotation φ of U_2. By Lemma 1, we can achieve: $\theta_{w_1}(\varphi) = \theta_{w_1}(\sigma)$, since U_2 has isotropic lines. Hence $\lambda_1 = \varphi \cdot \sigma$ is such that $\theta_{w_1}(\lambda_1) = 1$, so that $\lambda_1 \in \Omega(W_1)$ and $U_2 = \lambda(U_1)$. Then $\lambda = \lambda_1 \perp 1_{w_1 \star}$ is the desired map.

Corollary. If $\dim V \geq 3$ and x, y are non-zero isotropic vectors, then there is an element $\beta \in k^*$ such that for any $\alpha \in k^*$, there is an element $\lambda \in \Omega_F(V,Q)$ such that $\lambda(x) = \beta \alpha^2 y$.

Proof. Let y, y' be a hyperbolic pair, and let W be a semi-simple subspace of finite dimension, such that x, y, y' are in W. Choose a rotation $\sigma \in O(W)$ such that $\sigma x = y$ (possible since $\dim V \geq 3$). Let $\theta_w(\sigma) = \beta k^{\star2}$, and let φ be a rotation of $S(y, y')$ such that $\varphi(y) = \beta \alpha^2 y$. Then $\theta_w(\varphi) = \theta_w(\sigma)$ and $\lambda = \varphi \sigma$ is the desired element of $\Omega_F(V,Q)$ (identified with $1_{w_1 \star \perp \lambda}$).

Lemma 6. Let (V,f) be a semi-simple Q-space with $\dim V \geq 5$. Let $P = S(x, y)$ be a singular plane (that is, $\text{rad } P \neq \{0\}$) where $x^2 = y^2 = 0$. Then there is $\lambda \in \Omega_F(V,Q)$ such that $\lambda y = y$, $\lambda x = z$, where $S(x, z)$ is semi-simple.

Proof. Let $S(u)$ be the radical of P, then $P = S(y, u)$ and $x = ax + \beta u$, $\beta \neq 0$. But $x^2 = y^2$, hence

$$x^2 = ax^2 + 2\beta xy + \beta^2 u^2 = ax^2 y^2.$$

So that $a = \pm 1$, and we can replace xy by y, βu by u, to obtain $x = y + u$. Let $H = S(y)^*$ be the hyperplane orthogonal to y, since $u \in H$, there is an isotropic vector $v \in H$, such that $u \cdot v = -x^2$. Then we have two cases:

a) k is a finite field: $\dim H \geq 4$, so that there is a $\lambda_1 \in \Omega_F(H)$ such that

$$\lambda_1 u = v, \quad \lambda = 1_H \perp \lambda_1 \in \Omega_F(V,Q).$$

Hence

$$\lambda(y) = y, \quad \lambda x = \lambda(y + u) = y + v = z,$$

and

$$x \cdot z = (y + u) \cdot (y + v) = y^2 + y \cdot v + y \cdot u + u \cdot v = 0,$$

$$z \cdot z = x^2 = y^2 \neq 0.$$

Therefore $S(x, z)$ is semi-simple.
b) k is an infinite field; thus there is a $\lambda \in \Omega_F(H, f|H)$ such that

$$\lambda u = \alpha \beta^2 v, \; \lambda y = y,$$

α, β chosen as follows:

$$\lambda x = \lambda(y + u) = y + \alpha \beta^2 v = z.$$

Then

$$z^2 = y^2 = x^2,$$

$$x \cdot z = x \cdot y + \alpha \beta^2 x \cdot v = (y + u) \cdot y + \alpha \beta^2 (y + u) v = y^2 - \alpha \beta^2 x^2.$$

Then $S(x, z)$ is non-singular when we can choose β such that

$$x \cdot z = y^2 - \alpha \beta^2 x^2 \pm x^2.$$

Since k is infinite, one can clearly find an appropriate β and α.

Lemma 7. Let (V, Q) be a semi-simple Q-space, $x \in V$ such that $f_Q(x, x) \neq 0$. Suppose σ is an isometry of V which keeps fixed every line L generated by a vector y such that

$$y^2 = f_Q(y, y) = x^2.$$

Then $\sigma = \pm 1_V$ if $\dim V \geq 4$ for any k.

Proof. Since $f_Q(\sigma x, \sigma x) = f_Q(z, x) \neq 0$, we may assume that $\sigma x = x$ by replacing σ by $-\sigma$ if necessary. Let $H = S(x)^*$. We have two cases:

a) H contains non-zero isotropic vectors: Let $u \in H$ be such that $u^2 = 0, \; u \neq 0$. Since $(x + u)^2 = x^2$, it follows that $\sigma(x + u) = \varepsilon(x + u)$ where $\varepsilon = \pm 1$. But

$$\sigma(u) = \sigma(x + u - x) = \varepsilon(x + u) - x$$

is isotropic, hence $\varepsilon = +1$. So

$$\sigma(u) = (x + u) - x = u.$$

Let $y \in H$. Then y is in some hyperbolic plane of H. But σ equals the identity on any hyperbolic plane of H so that $\sigma(y) = y, \; \sigma(x) = x$ implies that $\sigma = 1_V$, hence the original $\sigma = \pm 1_V$.

b) H is anisotropic. Let $z \neq 0, \; z \in H$. If there are at least six rotations of the plane $P = S(x, z)$, then they carry $S(x)$ into three distinct lines which are kept fixed by σ, which gives us, by use of the properties of σ and $\sigma x = x$, that $\sigma z = z$. But if k is finite, then since $\dim H \geq 3$, by the corollary to lemma 1, H has non-zero isotropic vectors, so that we are in case a). And if k is infinite, then it is known that there are more than six rotations of the plane P when P is either hyperbolic or anisotropic. Of course, P is semi-simple.

This completes the proof.
Now we generalize to infinite dimensions a proposition which is practically the result we want (see [1]).

Proposition 3. Suppose \((V,Q)\) is a semi-simple \(Q\)-space with \(\dim V \geq 5\). Let \(H\) be a subgroup of \(O(V)=G\) which enjoys the following properties:

a) \(H\) is invariant under transformation by elements of \(\Omega_{F}(V,Q)\); that is, if \(\sigma \in \Omega_{F}(V,Q)\), then \(\sigma H \sigma^{-1} \subseteq H\).

b) \(H\) is not contained in the center of \(G=O(V)\).

Then \(H\) will contain an element \(\sigma \pm 1_{V}\) which is the square of a three dimensional rotation; that is, it is the square of a rotation arising from a three-dimensional space.

Proof. Pick \(\sigma \in H\) such that \(\sigma \pm 1_{V}\) (corollary to lemma 3). Then \(\sigma\) must move some non-isotropic line \(S(x)\), otherwise \(\sigma = \pm 1_{V}\), by lemma 7. Now we can choose this \(\sigma\) such that the plane \(P=S(x,\sigma(x))\) is semi-simple, as follows: Suppose \(P\) is singular. Using \(\sigma(x)^{2}=x^{2}\), it follows by lemma 6 that, there is a \(\lambda \in \Omega_{F}(V)\) such that \(\lambda(\sigma(x))=\sigma(x), \lambda x=zx\), with \(S(x,z)\) semi-simple. Take \(\varrho=\lambda \sigma^{-1} \lambda^{-1} \sigma\). This is in \(H\), by hypothesis a), and \(\varrho(x)=z\), hence \(S(x,\varrho(x))\) is semi-simple. Let \(\sigma\) be this \(\varrho\). So we may assume that \(P=S(x,\sigma(x))\) is a semi-simple plane. Using this \(\sigma\) we claim that there is a \(\varrho \pm 1_{V}\) of \(H\) which keeps some non-isotropic line fixed. To see this we may assume that \(\sigma\) moves every non-isotropic line, otherwise take \(\varrho=\sigma\). Suppose there were a \(\lambda \in \Omega_{F}(V,Q)\) such that it keeps every vector of \(P\) fixed and does not commute with \(\sigma\), then \(\varrho=\lambda^{-1} \sigma^{-1} \lambda\).

\(\sigma \in H\), by hypothesis a) and \(\varrho(x)=\lambda^{-1}(x)=x\). Thus \(\varrho \pm 1_{V}\), and \(\lambda \sigma \varrho \sigma\lambda\) implies that \(\varrho \pm 1_{V}\). Thus we would have the desired \(\varrho\). To prove the existence of the above \(\lambda\) consider the cases:

i) \(\sigma P \neq P\). Let \(u \in P\) such that \(\sigma u \notin P\), so that \(\sigma u = v + w, \ v \in P, \ w \in P^{*}\), with \(w \neq 0\). But the \(\dim P^{*} \geq 3\). Then one can pick a three dimensional semi-simple subspace of \(P^{*}\) containing \(w\), say \(W\), and then find \(\lambda \in \Omega(W)\) which moves \(w\) (see [1, p. 105]). Extend \(\lambda\) to \(V\), and get

\[\lambda \sigma(u) = \lambda(v+w) = v + \lambda(w) \pm v + w = \sigma u = \sigma \lambda(u),\]

hence \(\lambda \sigma \pm \lambda \lambda \in \Omega_{F}(V)\).

ii) \(\sigma P = P\). Then \(\sigma P^{*} = P^{*}\). Let \(\tau = \sigma|_{P^{*}}\). Suppose \(\varrho = \varrho \tau\) for all \(\varrho \in \Omega_{F}(P^{*})\), then by lemma 3 we know that \(\tau = \pm 1_{P^{*}}\). But this contradicts the assumption that \(\sigma\) moves the non-isotropic lines. Hence there is a \(\varrho' \in \Omega_{F}(P^{*})\) such that \(\varrho \varrho' \neq \varrho' \tau\). Extending \(\varrho'\) to \(V\), by \(\varrho = 1_{P} \perp \varrho'\), we have that \(\varrho \varrho' = \varrho \sigma, \ \varrho|_{P} = 1_{P}\).

Thus we have an element \(\sigma \pm 1_{V}\) in \(H\) such that \(\sigma\) keeps a certain non-isotropic line \(S(x)\) fixed. Then, by lemma 7, we have again that
there must be a vector \(y \) such that \(y^2 = x^2 \), but \(S(y) \) is moved by \(\sigma \). Let \(\sigma y = z \), then \(S(y) \neq S(z) \). Let \(\tau_x \) be the symmetry defined by the hyperplane \(S(x)^* \), that is

\[
\tau_x(u) = u - 2 \frac{x \cdot u}{x \cdot x} x.
\]

Let \(W \) be a semi-simple subspace of finite dimension containing \(x \) and \(y \). Then Witt’s theorem says that there is an element \(\mu \in O(W) \) and hence an element \(\mu \in O_F(V) = G_F \), such that \(\mu(x) = y \). Now \(\mu \tau_x \mu^{-1} = \tau_{\mu(x)} = \tau_y \), therefore

\[
\lambda = \tau_y \tau_x = \mu \tau_x \mu^{-1} \tau_x^{-1} \in \Omega_F(V, Q).
\]

Again, \(\sigma \tau_x \sigma^{-1} = \tau_{\sigma x} = \tau_{\pm x} = \tau_x \), and \(\sigma \tau_y \sigma^{-1} = \tau_{\sigma y} = \tau_z \). Therefore

\[
\sigma \lambda \sigma^{-1} = \sigma \tau_y \tau_x \sigma^{-1} = \sigma \tau_y \sigma^{-1} \sigma \tau_x \sigma^{-1} = \tau_z \tau_x.
\]

Hence \(\varrho = \sigma \lambda \sigma^{-1} \lambda^{-1} = \tau_z \tau_x \tau_x \tau_y = \tau_z \tau_y \). But \(\varrho \in H \), and \(\varrho \neq 1_V \), since \(S(z) \neq S(y) \). Further \(\varrho \in \Omega_F(V, Q) \), (ref. \(V \)) on the spinorial norm. Finally, let \(P = S(y, z) \), then \(\text{rad } P = P^* \cap P = \text{rad } P^* \). Since \(y^2 \neq 0 \), \(\text{dim } \text{rad } P \leq 1 \), let \(W \) be any finite dimensional semi-simple subspace of \(\text{dim } n_w \geq 5 \) containing \(P \). Then \(P^* \cap W \) contains a semi-simple subspace \(W_1 \) of dimension \(n_w - 3 \). Let \(U \) be a three-dimensional semi-simple subspace orthogonal to \(W_1 \) in \(W \). So that \(\varrho \) is a rotation of \(U \), since \(\varrho = \tau_z \tau_y \) leaves each element of \(P^* \), and hence those of \(W_1 \), fixed. But \(\varrho \in \Omega(W) \subseteq \ker \theta_u \), and by properties iv) and v) of \(\theta_u \), we get

\[
\varrho \in \ker \theta_u = O^+(U) \cap \ker \theta_u, \quad \ker \theta_u = \Omega(U).
\]

So that \(\varrho \in \Omega(U) \) and \(\varrho \) is a square of a rotation of \(U \).

This completes the proof, since \(\varrho \neq 1_V \), \(\varrho \in H \), and \(\varrho \) is the square of a rotation of \(U \) a three-dimensional semi-simple subspace of \(V \); hence \(\varrho \in \Omega_F(V, Q) \).

Suppose now that \((V, Q)\) contains isotropic vectors. Let \(U \) be a three-dimensional semi-simple subspace of \(V \), and \(\varrho \) the square of a rotation of \(U \). Suppose \(U \) is anisotropic. Then the axis of rotation of \(\varrho \) is not isotropic and thus \(\varrho \) is the square of a rotation of an anisotropic plane \(P \).

We prove that any anisotropic plane \(P \) can be imbedded in a three-dimensional semi-simple subspace \(U' \) of \(V \) containing isotropic vectors, as follows: Select \(u \neq 0 \), such that \(u^2 = 0 \) and \(u \) is not orthogonal to \(P \). This is possible as follows: Let \(S(u, v) \) be a hyperbolic plane, \(P = S(y, z) \). Then

\[
(u + \frac{1}{2} y^2 v)^2 = 2 \frac{1}{2} y^2 (u \cdot v) = y^2.
\]
Let $\tau: u + \frac{1}{2}y^2v \rightarrow y$, extend τ to V. Then $\tau: S(u,v) \rightarrow S(t,s)$ a hyperbolic plane containing y, so that

$$\tau: u + \frac{1}{2}y^2v \rightarrow t + \frac{1}{2}y^2s = y, \quad t(t + \frac{1}{2}y^2s) = \frac{1}{2}y^2 \neq 0.$$

Hence this t works. Let u then be such that $u^2 = 0$ and not $u \perp P$, set $U' = S(y,z,u)$. If U' were singular, and $S(v)$ its radical, then $S(v)$ would be the only isotropic line of U', since P is anisotropic. So that $S(v) = S(u)$ and this implies that $u \in P^*$, contradicting the fact that not $u \perp P$. Hence U' is semi-simple. This proves our assertion, so that we may assume that ϱ is the square of rotation of U which contains isotropic vectors in the first place. This also proves that the generators (see [1, p. 135]) $(\tau_x \tau_y)^2$ of $\Omega_F(V)$ are squares of rotations of three-dimensional subspaces U which contain isotropic lines. We will use this remark below.

Now let (V,Q) be a semi-simple Q-space of dimension ≥ 5, containing isotropic vectors and H a subgroup of $O(V)$ as in the proposition above. Let $\varrho \in H \cap \Omega_F(V)$, $\varrho \neq 1_V$,

and such that ϱ is the square of a rotation of a three-dimensional semi-simple subspace U containing isotropic vectors.

i) Suppose k contains more than three elements. Then from the finite dimensional theory we know that $\Omega(U) \approx PSL_2(k)$, the projective special linear group, is simple. $H \cap \Omega(U)$ contains ϱ and is an invariant subgroup of $\Omega(U)$, hence $\Omega(U) \subseteq H$, by simplicity of $\Omega(U)$. The subspace U contains a hyperbolic plane P and therefore H contains $\Omega(P)$. Let U' be a subspace, such as U, $P' \subset U'$ a hyperbolic plane of U'. By lemma 5, there is a $\lambda \in \Omega_F(V)$ such that $P' = \lambda P$. So that $\Omega(P') = \lambda \Omega(P) \lambda^{-1}$, hence $\Omega(P') \subseteq H$. The group $\Omega(U')$ is simple and $\Omega(U') \cap H \subseteq \Omega(P')$, a non-trivial group. But $\Omega(U') \cap H$ is invariant in $\Omega(U')$, hence $\Omega(U') \subseteq H$. This implies that H contains all generators of $\Omega_F(V)$, and hence H contains $\Omega_F(V,Q)$.

ii) Suppose $k = GF(3)$. We use the fact that a finite dimensional Q-space over a finite field contains a proper subspace of arbitrary prescribed geometry (by use of lemma 1 repeatedly). Since dim $V \geq 5$, we can find a semi-simple subspace V'_0 of dimension 4 which is of index 1. Then the subspace V'_0 contains a three-dimensional subspace U' isometric to U, by use of the same fact. So by extending this isometry of U' with U to V, U is contained in a 4-dimensional semi-simple subspace V'_0 of V with index 1. And again by the finite dimensional theory the group $\Omega(V'_0)$ ($\approx PSL_2(kd^4)$) is simple. Further $\Omega(V'_0) \cap H$ contains ϱ. Hence $\Omega(V'_0) \subseteq H$. Then, as before, with V_1 any 4-dimensional semi-simple subspace of index 1, we have again $\Omega(V_1) \subseteq H$. If U' is any sub-
space such as U we can imbed it in such a space V_1. Thus we can get $\Omega(U') \subseteq H$. And, as in i) we thus have $\Omega_F(V) \subseteq H$. We have proved

Theorem 3. Suppose (V,Q) is a semi-simple quadratic space of dimension ≥ 5, and that V contains isotropic vectors. Let H be a subgroup of $O(V)$ having the following properties:

i) H is invariant under transformation by $\Omega_F(V,Q)$; that is to say, if $\tau \in \Omega_F(V,Q)$, then $\tau H \tau^{-1} \subseteq H$.

ii) H is not contained in $Z(V,Q)$.

Then $\Omega_F(V,Q) \subseteq H$.

Corollary. Let (V,Q) be a semi-simple quadratic Q-space of dimension ≥ 5, containing isotropic vectors. Let H be a closed normal subgroup of $O(V,Q)$, provided with the finite topology, such that $H \not\subseteq Z(V,Q)$. Then H contains the closure of $\Omega_F(V,Q)$.

If H is also in $\overline{\Omega_F(V)}$, then $H = \overline{\Omega_F(V)}$.

Now since G_F is dense in $G = O(V)$, then by continuity of multiplication $\Omega_F(V,Q)\overline{\Omega_F(V)} = \overline{\Omega(V,Q)} = \Omega(V,Q)$, the commutator subgroup of $O(V)$. Hence we have

Theorem 4. Let (V,Q) be a semi-simple quadratic space of dimension ≥ 5 containing isotropic vectors. Then the group $\Omega(V,Q)/Z(V,Q) \cap \Omega(V,Q)$, where $\Omega(V,Q) =$ closure of the group of commutators of $O(V,Q)$, and $Z(V,Q) =$ center of $O(V,Q)$, is a simple topological group.

Remark 1. If we provide the general linear group of an infinite dimensional linearly topologized vector space with the finite topology, we get a topological group. Using the same type of definitions and analysis with the aid of the problems in Bourbaki [2, pp. 97–99], we can prove easily a similar theory for the projective special linear group of the general linear group.

Remark 2. For the spaces of the type considered in theorem 4 we have a new way to prove that $O(V,Q)$ is not compact; namely, if $O(V,Q)$ is compact, then, since it is also totally disconnected, there exist arbitrarily small open normal subgroups. But this contradicts theorem 3, and hence $O(V,Q)$ could not be compact.

Finally, let us consider when $\Omega(V,Q) = \Omega(V,Q)'$. Since $\overline{\Omega_F(V,Q)} = \Omega(V,Q)$, it suffices to know when $\Omega_F(V,Q)$ is dense in $O(V,Q)$. Again, since $\overline{O(V,Q)} = \overline{G_F}$, it suffices to ask when $\overline{\Omega_F(V,Q)} \supseteq \overline{G_F}$. That is, for any $\sigma \in G_F$, and any $E \in \mathcal{E}_0$ does there exist an $\eta \in \mathcal{E}(E)$ such that $\sigma \cdot \eta \in \Omega_F$. It is clear that such η must exist in order that $\Omega(V,Q) = O(V,Q)$; also if
it does exist, then $\eta \in G_F \cap G(E)$. Hence, it has a norm, $\theta_{w}(\eta) = \theta(\eta)$, for some $W \in E_{0}$. Further, we have $\theta(\sigma \eta) = \theta(\tau) = 1$, since $\sigma \eta = \tau \in \Omega_F(V, Q)$; so that $\theta(\sigma) = \theta(\eta)$. Now $\eta \in O(E^*) \cap G_F$ and we may always pick η such that $\theta(\sigma) = \theta(\eta)$ if E^* has isotropic vectors (if it does not, we may not be able to find η such that $\theta(\eta) = \theta(\sigma)$). Thus we have

Theorem 5. Let (V, Q) be a semi-simple quadratic space of dimension ≥ 5 containing infinitely many linearly independent isotropic vectors. Then we have the diagram

$$\{1_{V}\} \subseteq Z_{V} \cap \Omega(V, Q) \subseteq \Omega(V, Q) = O(V, Q).$$

A group of order 1 or 2. logical group.

Bibliography

University of Arizona, Tucson, Ariz., U.S.A.