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ANGLE SUMS OF CONVEX POLYTOPES

M. A. PERLES and G. C. SHEPHARD

1. Introduction.

Let P be a d-dimensional convex polytope in d-dimensional Euclidean
space E¢, and, for 0<j<d—1,let FJ, i=1,...,f;(P), denote its j-faces.
Associated with each face FJ is a well-defined real number called the
interior angle of P at the face F;/, and we write @,(P) for the sum of the
interior angles at all the j-faces of P. The purpose of this paper is to
investigate the properties of these angle-sums g,(P), j=0,...,d—1.

We begin by recalling the classical Gram—Euler Theorem:

(1) THEOREM. For every convex d-polytope P,

d—1

(2) S (—1igP) = (=1L

=0

This theorem was first stated and proved for d=3 by J. P. Gram [1]
in 1874. D.M. Y. Sommerville [4] gave an invalid proof for general d
which was later corrected by B. Griinbaum and appears in [2, § 14.1].
For a detailed history of the theorem and related results the reader is
referred to [2, § 14.4].

Griinbaum’s proof, although elementary in concept, is complicated in
detail. Here, in § 2, we present a new proof of the theorem which has the °
merit of brevity and simplicity. It is based on proofs which were dis-
covered independently by the two authors, and in combining these,
further simplification has been possible. The only theorem on polytopes
that we shall need to quote is the well-known Euler relation connecting
the numbers f;(P) of j-faces of a convex d-polytope P:

a1

(3) S (—Dif(P) = 14(=1)-1.

7=0
For a proof of this relation, see [2, §§ 8.1-8.2].
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In § 3 we shall prove furtber theorems about angle-sums of polytopes
by modifying the methods of § 2. In § 4 these theorems will be applied
to finding some additional linear relations (analogous to the Dehn-—
Sommerville relations [2, § 9.2]) that hold when the faces of the polytope
are of certain prescribed combinatorial types.

In § 5, many of the results of the previous sections will be extended to
convex polytopes lying in spherical space 8¢, and, in particular, we will
give a new proof of Sommerville’s Theorem [4] [5, p. 157] concerning the
angle-sums and volume of a convex spherical d-polytope. We conclude,
in § 6, with some general remarks concerning extensions, generalisations
and applications of our theorems.

2. Proof of the Gram-Euler Theorem.

Let S%-1 be the unit (d—1)-sphere with centre at the origin o € E9,
and z € S¢-1 be any unit vector. Let z be a relative interior point of
the j-face F7 of the convex d-polytope P. Write y(P,Fi,z)=1 if the half-
line z+4 Az, A>0, intersects P, and y(P,F%,x)=0 otherwise. It is clear
that the value of y(P,F/,x) depends only on P, F7 and z, and nof on the
choice of the point z. The interior angle o(P,F?) of the polytope P at
the face F7 may be defined by

. 1 ;
() PP = gy | 2®.F ) duie),

d—1

where u is the Lebesgue measure on the sphere §%-1. Geometrically
this means that if B is a d-dimensional ball centred at z with radius so
small that the only faces of P which intersect B are those which include F7,
then (P, F7) is the ratio of the volume of BNP to the volume of B. In

particular
p(P,F*) = %

for every facet (face of dimension d—1) Fé-! of P. Using this notation,
the angle-sums @;(P), 0=<j<d—1, are defined by

JiP)
(5) PAP) = 3 ¢(P,FJ) .
Hence, by (4),
-1 ) -1 P ‘ 1
© 3 (-WeP) = 3 (<1 SolP.F) = =y df_ 9(e) dute),

where
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d-1 Fi®

(7) g(x) = z ("l)j E%(P,Fi",x) .

J=0 =1

Let T'=8%-1 be the set of all unit vectors x € S%-! which are parallel to
a proper face of P. Then 7' is of measure zero on S¢-! and so may be
neglected in the integrations of (4) and (6). For each xz ¢ T, let H, be
the hyperplane through o with normal z, and let P, be the (d— 1)-poly-
tope that arises by orthogonal projection of P on to H,. (Such a projec-
tion with « ¢ 7T will be called a regular projection.) Since x ¢ T, each
j-face F7 of P projects orthogonally in a (1,1) manner onto a j-polytope
Fj7in H,, and F J will be a proper face of P, if and only if there exists a
line I parallel to 2 which contains a relative interior point z of F7, but
contains no interior point of P. This last assertion is true for the follow-
ing reason. Firstly, if I contains an interior point of P, then F,J will
contain an interior point of P,, and so will not be a proper face of P,.
Secondly, if I contains no interior point of P, it will be possible to find a
hyperplane H which supports P, contains [, and is such that HnP = Fi.
But then HnH, supports P, in H,, and F/ projects onto the complete
intersection HnH NP, This is a face of P, which must therefore coin-
cide with F J. Every j-face G/ of P,, 0<j<d—2, arises in this way
from some j-face F7 of P by projection, and, in fact, from a unique such
Fi, namely the inverse image of G’ under the projection.

From these facts we deduce that every j-face FJ of P, 0<j<d-1,
must satisfy precisely one of the following three conditions. As above,
z denotes a relative interior point of F9.

(i) The half-line z+Ax, A>0, contains an interior point of P. In this
case y(P,Fi,x)=1, and the number of faces satisfying this condition is

i)
ZX(P>Fijax) .
i=1

(ii) The half-line z+ Ax, 1< 0, contains an interior point of P. In this
case y(P,F7, —x)=1, and the number of j-faces satisfying this condition is

JiP
‘zlx(P,Fij, —x).

(ili) The line z+Ax, —oo <A< oo, contains no interior point of P, and
in fact, intersects P at just one point z. Then F7 projects on to a j-face
of P, and the number of j-faces satisfying this condition is f;(P,) for
0<j=<d—2. This will also be true for j=d — 1 if we conventionally define
Ja1(P,) to be zero.

Since the total number of j-faces of P is f;(P), we deduce that for each j,
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=1 =

By Euler’s Theorem (3),

d-1 .
9) ZO(— 1Jfi(Py) = 1+ (—1)2-2
j=

and
d—1

20(“1)%(1’) =1+ (1)1
j=

Hence, from (7), (8), and the above equalities,
d-1 d-1

g(@) +9(—=) = Z(—l ZxPF“x)+Z—-1 Zx(PFf—x)
J=

= Z (= 1)fP) - _ZO(—I)"fJ-(Px)
J=

Jj=0
= (1+(=1)31) — (14 (—1)3-?)
= 2(—1)a-1,

This relation and (6) imply

S 1) (P ! d
jgo(_ Y @i(P) = ) Sd;[\T g(x) dpu(zx)
1
= i (9(=) +9(—2)) du()
2u(8%7) p
1
=—— (— 1)1 du(x)
©(8%1) Sd_fw
= (-— l)d—l ’

and Theorem (1) is proved.

As remarked in the introduction, in the above proof we have only
made use of the most elementary properties of polytopes. If, on the
other hand, we use the properties of cell-complexes, then an even shorter
proof of the theorem can be constructed in the following manner: Define

={OYu{Fj: 05j=d—1, y(P,Fi,x)=0},
so that
= U{Fj: 05j=d-1, y(P,Fj,x)=0}.

Then L, is a cell-complex and |L,| is mapped in a 1-1 manner onto P,
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by orthogonal projection on to H,. Therefore, by [3, Theorem 2.3],
for all z,

M?“

—1)’f1 L)=1,

J=0
and the function g(z), defined by (7), is given by

d-1

g(x) = Z(-l 7 (fi(P) —fi( L))

J=

d—l . d—1 .
= 2 (=1)f(P) = 3 (= 1)fi(L,)
J=0 J=0
=1—(=1)-1
= (-1

Substituting this value of g(x) in (6) yields (1).

3. Further theorems on angle-sums.
In this section we shall prove more general theorems on angle-sums,
using the methods of § 2, and in § 4 give applications of these results.
We begin by introducing some notation. For any convex d-polytope
P, define two d-vectors ¢(P) and f(P) by

‘p(P) = ( (P)? . ,(Pd—1(P))
F@) = (fo(P),- .., faa(P)) -

These will be referred to as the g-vector and f-vector of P, respectively.
Also, if P, is a (d—1)-polytope that arises by regular projection of P,
write

f(Pz) = (fO(Px)7 .. '!fd—z(P:v)70) .

Since the number of vertices of P, cannot exceed the number of vertices
of the given polytope P, the polytopes P, are of a finite number of differ-
ent combinatorial types. Hence there exists only a finite number n of
distinet vectors f(P,). It will be convenient to represent these by
(P, . f(P,). (Py...,P, may be regarded as convex (d — 1)-polytopes
combinatorially equivalent to some of the polytopes P, that arise by
regular projection of P.)

(10) THEOREM. For each convex d-polytope P, the vector f(P)—2¢(P)
18 a positive convex combination of the vectors f(P;), i=1,...,n, defined
above, that is to say,
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(11) f(P) — 2¢(P) =.Zlm-f(Pi),
where Ju;=1 and p;> 0 for each 1.

Proor. Let FJ be any j-face of P and z a relative interior point of F7.
Then, by (i) and (ii) of § 2, a necessary and sufficient condition that F/
does not project into a j-face of P,, x € S¢-1\ T, is that the line z+ Az,
—oco< A< o0, does not intersect the interior of the polytope P. Writing
cone, P for the cone spanned by P at z, we see that this condition is
satisfied if and only if the line 2+ Az, — oo <1< o0, lies in

cone, P U cone, (22— P) .
Hence F7 does not project into a face of P,, x € §-1\ 7, if and only if
xz € (8-1\T) n (cone, (P —z) U cone,(z—P)) .

Writing H,,...,H,, for the hyperplanes through o parallel to the facets
that are incident with 2, cone, (P —z) will be the intersection of m closed
half-spaces bounded by H,,...,H,. Since the combinatorial type of P,
is determined completely by its lattice of faces, and hence by the faces of
P that project into proper faces of P, we deduce the following: The set
of hyperplanes through o parallel to those determined by the facets of P
divides S?-1 into a finite number of open convex spherical polytopes.
For all « lying in one of these polytopes, the P, are of the same combina-
torial type. Further, the union of these spherical polytopes covers the
whole of §¢-1 except for a set of measure zero which can easily be identi-
fied with the set 7'.

Let P, be one of the (d— 1)-polytopes defined earlier, and let J, be
the union of the open spherical polytopes consisting of those € S¢-I1\ T
such that f(P,)=f(P;). Then the above reasoning shows that

(12) 2wy = p(S8%)
=1
and, since each J; is open and non-empty,

u(Jy) > 0, r=1,...,n.

(Notice that each region J; is centrally symmetric in o, since P,=P__.)
Because f;(P,) is constant in each J;, we deduce

(13 [ 5P dute) = SugofPy,  0sjsa-1.
S4INT =1
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Hence, if we integrate (8) over §4-1\ 7', and divide by u(8%-!) we obtain,
using (4) and (5),

20P) + e I)ZuJ)f,(P = /i(P).

This may be written in the form

f(P) - 2¢](P) z:u'l,f](Pl) )

where u;=u(J;)/u(8%1)>0, and Ju;=1 by (12). Since this is true for
each value of j, 0<j<d -1, we deduce that (11) holds and so Theorem

(10) is proved.
From (11) it follows that

A4 9lP) = H(IP) - 3w (PY) = 4 3 e (F2) - S(PD)

with Yp,=1 and p;>0, +=1,...,n. Writing relintX for the relative
interior of a convex set X, and convY for the convex hull of a set Y,
we obtain the following alternative equivalent formulation of (10):

(15) With the above motation,
@(P) € relint conv {}(f(P)—f(P;): 1=1,...,n}
Jor any convex d-polytope P.

Now let 2 be any set of convex d-polytopes, and write ¢(Z) for the set

of vectors
¢(?) = {@(P): PeP}.

Of particular interest will be the case where & consists of a polytope P
and all its non-singular affine transforms. This set will be denoted by
&/ (P). Since orthogonal projections are singular affine transformations,
and the product of any two affine transformations is also an affine trans-
formation, we deduce that if @ € &/(P), then each regular projection @,
of @ must be affinely equivalent to some P_, and so its f-vector must
equal one of f(P,),...,f(P,). Hence (15) can be restated in the form:

(16) With the above notation
(& (P)) < relint conv{3(f(P)—f(P;): i=1,...,n}
for any d-polytope P.

The next theorem shows that (16) is, in a certain sense, the strongest
possible assertion of this type.
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(17) TeEOREM. For any convex d-polytope P,
conv ¢(Z(P)) = relint conv {}(f(P)—f(Py)): s=1,...,n}
or, equivalently,
cl conv (& (P)) = conv{}(f(P)—f(P;)): t=1,...,n},
where cl X denotes the closure of the set X.

Because of (16), in order to prove this theorem it will suffice to show
that for each ¢, 1 <¢=<n, there exists a d-polytope @ € o/(P) such that
®(Q) is arbitrarily close to }(f(P)—f(P;)). Choose any x € S¢-1\ T such
that f(P,)=f(P;). Each point of E¢ can be expressed uniquely in the
form

Yy + Az, yeH, —oc<i<oo,

and so, for any ¢> 0, the equation
T(y+iz) = y+ erx

defines a unique non-singular linear transformation 7',, We shall show
that, by taking ¢ sufficiently small, ¢(7,(P)) can be made arbitrarily
close to §(f(P)—f(Py)).

As ¢ — 0, each of the f;_;(P) hyperplanes including the facets of T',(P)
approaches H,. Denote by J, the set of all € 8¢-1 such that

F(T(P),) = f(Py).

From the arguments used in the proof of (10), we deduce that as ¢ - 0,
the set J, tends to a set which includes the pair of open hemispheres
Se-1\ H,. Thus u;=pu(J,)/u(S%1) may be made arbitrarily close to 1 by
taking ¢ sufficiently small. Then (14) shows that ¢(7,(P)) can be made
arbitrarily close to 4(f(P)—f(P,)), and so (17) is proved.

Theorem (17) admits the following generalisation, which may be
proved in a similar manner.

(18) Let &P be any set of convex d-polytopes with the property that if
PeP, then T(P)e P for every non-singular affine transformation T.
Then
(19) cl conve(P) = clconv{}(f(P)—f(P;)) :9€lp, PP},

where the f(P,), ¢ € Ip, are the f-vectors of the polytopes obtained by regular
projection of each P e P.

In this case the set {}(f(P)—f(P,)): i€ lp, P e P} may be finite or
enumerable, according to the nature of the set #. It will be finite if,
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for example & consists of all the projective images of a given convex
d-polytope P, or of all the polytopes combinatorially equivalent to P.
It will be enumerable if, for example, d = 2 and £ consists of all convex
simplicial d-polytopes (polytopes whose proper faces are simplexes) or of
all convex cubical d-polytopes (polytopes whose proper faces are com-
binatorially equivalent to cubes). These two latter cases will be discussed
in detail in § 4, where we shall need the following corollary of (18):

(20) Let P be any set of convex d-polytopes with the property that if
PeP, then T(P)e P for every mon-singular affine transformation T.
Then a linear relation of the type

d-1

(21) Zvj(fj(P)—Z(pj(P)) =c

7=0
holds for all P € 2 if and only if the corresponding relation

d—2
(22) Z ”jfj(Pi) =cC
=0

holds for all P;, where {f(P;): ¢ € Ip, P € P} is the set of f-vectors defined
in (18).

We notice that, since »;_; does not occur in (22), its value is irrelevant.
This is an immediate consequence of the identity ¢, (P)=3f;_1(P).
Further, if we define f_(P)=f_(P;)=1, ¢=1,...,n, and ¢_;(P)=0,
then (21) and (22) can be written in the homogeneous forms

d—-1 -2
.Elv,.(f,.(P)—z%.(P)) =0 and jzlvjf,.(Pi) =0
G =
respectively, where »_, = —c.

To prove (20) we have only to observe that

(a) for each P e &, the vector f(P)—2¢(P) is a convex combination
of the vectors f(P,), 1 € Ip, by (10), and

(b) if ¢ e I, then by (17) the vector f(P,;) can be approximated as
closely as we wish by vectors of the form f(7'(P))—2¢(T(P)), where T'
is a non-singular affine transformation. (Notice that &Z/(P)<=Z by as-
sumption.)

Hence the vectors {f(P)—2¢(P): P e %} belong to, and span, the
minimal affine subspace of £¢ containing all the vectors {f(P;): ¢ € Ip,
P e 2}, and (20) follows immediately.

Statement (15) also leads to a system of inequalities for the angle-
sums, as follows:
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(23) Let P be a given d-polytope and j be any integer sabisfying
0=<j=<d—2. Then, with the vectors f(P;) defined above,

3(f(P) —max, i, fi(Py)) < @(P) < 3(f;(P)—miny g, fi(Py))
of ming_;_, f;(P;) < max,_;, fi(P;), and
‘Pj(P) = %(fj(P) _fj(Pi))
iof all the fy(P;), i=1,...,n, are equal.

The proof follows from (17), since these equalities and inequalities are
satisfied by the components of the vectors belonging to the set

relint conv {}(f(P)—f(Py)): i=1,...,n}.

Certain polytopes (for example, the d-cubes) have the property that
for z € 841\ T, the vectors f(P,) are all equal, so that n=1. Such
polytopes may be called equiprojective and (23) enables us to calculate
their p-vectors explicitly:

9(P) = 3(f(P)—f(Py)) .

From (16), the angle-sums ¢;(P), 0sj=<d—1, of equiprojective poly-
topes are invariant under non-singular affine transformations of P.
Further properties of equiprojective polytopes will be given in a forth-
coming paper.

Let us now consider the special case of the d-dimensional simplex
P=7T4¢ The (d—1)-polytopes that are obtained by regular projection
of T% are simplicial and have d or d+1 vertices. The combinatorial
types of these polytopes are well-known (see [2, § 6.1]): there is one type
with d vertices, namely the (d—1)-simplex 7¢-1=72-1, and [$(d—1)]
types with d+1 vertices, namely 7,21, 1<k=<[}(d—1)]. Further, the
corresponding [4(d+1)] vectors f(P;) are affinely independent (see
[2, Exercise 9.7.1]), and so by (17), conve(s/(7'%) has dimension
[#(d—1)]. Substituting the known values of f;(P,) [2, Theorems 6.1.2
and 6.1.3] and using (23) we obtain the following:

(24) The angle-sums @;(T?) of a d-simplex T? satisfy the inequalities
m(j,d) < @i(T% < M(j,d) for 0sj=d-2,
where
m(j,d) = ‘}(fj(Td) —fj(T([i}_(tli—l)])
lO Jor 0=5j<[¥d-3)],

[3@d+1)])  ([3(d+2)] _
’}<< d—j )+( d—j )) for [}(d-1)]sj<d-2,
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and
M(,d) = H(f(T9 —F,(Te) = l(‘;’) for 0<jsd—2.

Also,
Pa1(T% = $(d+1).

From the above discussion and the proof of (17), a slightly stronger
statement is possible: for suitable choice of the simplex 7'¢, the numbers
@;(T'?) can simultaneously (that is, for all j satisfying 0 <j <d —2) be made
arbitrarily close to the upper bounds M(j,d), or, alternatively, be made
arbitrarily close to the lower bounds m(j,d), defined in (24).

When P is equiprojective, the set

conv {}(f(P)—f(Py): i=1,...,n}

has dimension zero. If this set has dimension one, then not only is
conve(s/(P)) an open line segment by (17), but a simple continuity
argument shows that (<7 (P)) is also an open line segment. For example,
if P=T4, then the regular projections of P are simplicial 3-polytopes
with 4 or 5 vertices. In this case @(s&7(7%)) is the open line segment
in E* with end points (0, },2,5) and (},2,3,3).

If dim conv {3(f(P)—f(P;)): ¢=1,...,n}22, then the nature of the
set p(Z(P)) is more difficult to determine and we have only been able
to obtain partial results in this direction. In the case of a d-simplex, we
can show that ¢(2/(7'9)) is dense in the [§(d — 1)]-simplex

conv {}(f(P)~f(Py)) : i=1,....[4d+1)]},

and suspect that, in fact, ¢(2/(7'%)) is equal to the relative interior of
this set. To establish this assertion it would suffice to show that if
M5+ - - M@y WeTe any preassigned positive numbers with sum 1, then a
non-degenerate simplex 7'¢ could be found with the property that

wJ)[u(8%1) = p; for i=1,...,[}d+1)]

(see (11) and the proof of (10)). What we have proved is that u(J;)/u(S%-1)
can be made arbitrarily close to the given numbers u,, for each 4, but
we cannot establish equality.

In the case of a general polytope P it is trivial to show that
(. (P)) is arcwise connected, but whether it is convex, or even simply
connected, are open questions.
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4. Linear relations between the angle-sums of simplicial and cubical
polytopes.

A quasi-simplicial d-polytope P is defined to be any convex d-polytope
whose j-faces are simplexes for 0<j<d—2. Since, for 0<j<d—2, the
j-faces of a regular projection P, of P are the projections of j-faces of
P, we deduce that for each x e S-1\7, all the proper faces of the
(d—1)-polytope P, are simplexes, and so P, is a simplicial polytope.
It is known that the f-vectors of simplicial (d— 1)-polytopes span an
affine subspace of dimension [}(d—1)], namely that defined by the
Dehn-Sommerville relations [2, § 9.2]

(25 k) z bk:)f] a:) = O

J=-1
where k is any integer satisfying —1k=<d—1, f_,(P,)=1, and
(=1)f— (-1 if k=j,
j+1 . .
(26) by = -1 (15]) k<,
0 if k>j.

Note that, by definition, f; ;(P,)=0 and that for the value k= —1
equation (25k) is the same as (9). Regarded as equations in the variables
FoPg)s- « s fi-1(Py), (0rin f_4(Py),. . ., f3-1(Py)), only [4(d + 2)] of these are
linearly independent for example (25k) with —1<k<d—1and k=d—1
(mod 2) (see [2, § 9.2]). Using (20) we obtain the relations

(27 k) Z b (f5(P)—2¢;(P)) = 0,

=
where we define f_;(P)=1 and ¢_,(P)=0, or, equivalently:

(28) For every quasi-simplicial d-polytope P, the angle-sums @;(P) satisfy
the relations
(29k) Z bk](Py P)"’ % z bk]fJ(P)’
j=-1 J=—1
where —1=2k<d—1, and the coefficients b,; are defined by (26). Of these

equations, only [3(d+2)] are linearly independent, for example those with
—12k=sd-1 and k=d—1 (mod2).

The value k= —1 leads again to the relation (2).
Thus all the g-vectors of quasi-simplicial polytopes P with a given
f-vector lie in an affine subspace of dimension [}(d—1)] defined by
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(29k), —~1=k=<d-1. We do not, of course, assert that they span this
space, but they will do so if, for example, P is a simplex (see § 3). Using
the known results [2, § 9.5] on the solvability of the Dehn-Sommerville
relations, we obtain:

(30) For quasi-simplicial d-polytopes P, the angle sums

Pyl - - Paa(P)
are linear functions of

(31) faP)=1, fo(P), ..., faua(P), @o(P), ..., ¢{§(d—3)](P) .

To obtain these linear relations explicitly, we use the method devised
by B. Griinbaum for solving the Dehn-Sommerville equations. Solving
equations (27k), —1=k=d-3, for the variables (f;(P)—2¢,(P)),
j=[3d-1)],...,d—2, is identical with the procedure described in the
proof of [2, Theorem 9.5.1]. The linear relations obtained are those
stated in that theorem with

d—1 substituted for d,
[3(d—1)] substituted for =,
fi(P)—2¢;(P) substituted for fi(P), ~1=j=d-2,

and, in addition, the relation g;_,(P)=4f;_1(P).

If P is simplicial (instead of quasi-simplicial), then the assertions
(28) and (30) still hold, but in this case (29k) may be simplified since,
again by the Dehn-Sommerville relations, the right side is equal to

(= 1)31fi(P).

(32) For every simplicial d-polytope P, the angle-sums @;(P) satisfy the

relations

d-1
(33 k) .Zlbk,%(P ) = (=) (P),

e
where —15ksd—1, p_;(P)=0, and the coefficients b,; are defined by (26).
Of these equations [3(d + 2)] are linearly independent, for example those with
k=d—1 (mod?2).

When k= —1, equation (33k) coincides with (2).

Statement (30) also holds for simplicial polytopes, but in this case the
numbers fi;;(P),. . .,fq-1(P) can be expressed as linear functions of
f-l(P)= l,fo(P),. . -,f[g(d—z)](P)-

Analogous results can be obtained in a similar manner when P is a
quasi-cubical d-polytope, that is, a convex d-polytope whose j-faces are
combinatorially equivalent to j-cubes for 0<j<d—2. The polytopes P,
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are cubical, that is, all their proper faces are combinatorially equivalent
to cubes, and the numbers f;(P,) are known to satisfy relations (25k)
with —1k=<d—1 and coefficients by; defined by

l(—l)k—(-l)"’ it k=j

vioiek(Jd . .

(34) by = (=1)727 (k) if 0=k<j
(=1) if —-1=k<j
0 if k>j
(see [2, § 9.4]). Hence we obtain analogues of (28) and (32):

(35) For every quasi-cubical d-polytope P, the angle-sums @;(P) satisfy
relations (29 k) where —1<k=d—1 and the coefficients b;; are defined by
(34). Of these equations, only [}(d + 2)] are linearly independent, for example
those with k=d—1 (mod2).

When k= —1, equation (29 k) coincides with (2).

(86) For every cubical d-polytope P, the angle sums ,(P) satisfy relations
(33 k) where —1<k=d—1 and the coefficients by; are defined by (34).
Of these equations, only [4(d+2)] are linearly independent, for example
those with k=d—1 (mod2).

When k= —1, equation (33 k) coincides with (2).

The analogue of (30) holds for quasi-cubical and cubical polytopes.
In the latter case, we can also deduce from the proof of [2, Theorem 9.4.1]
that the numbers f,4,...,f3_1(P) are linear functions of f_,(P)=1,

fO(P)" .. ’f[i(d—Z)](P)°

5. Spherical polytopes.

We begin this section with a proof of Sommerville’s Theorem concern-
ing the angle-sums and volume of a spherical polytope, and then extend
some of the results of § 3 and § 4 to spherical polytopes.

Let C < B4+ be a pointed (d + 1)-dimensional convex polyhedral cone
with vertex C° at the origin. Thus: C is the intersection of a finite num-
ber of closed half-spaces; Ax € C for all e C and all 120; and C pos-
sesses a supporting hyperplane H such that HAnC=C°% For 1=j=d,
the j-faces of C will be denoted by CJ, i=1,...,f;(C). A convex spherical
d-polytope P is defined as the intersection C'n 8¢ of such a convex cone C
with the unit d-sphere S¢ centred at the origin o. For 0=<j<d-—1, the
jfaces of P are defined as the intersections of the (j+1)-faces of C
with 8¢, and we write

F,ij b O,ij+1 n Sd, 'i=1’ LIS 7fj(P)=f]+1(0) .
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The functions y(C, (7, x), ¢(C,C7%) and ¢;(C) are defined as at the beginning
of § 2, with d — 1 replaced by d. No modifications of these definitions are
required because C is an unbounded polyhedral set instead of a poly-
tope. The intertor angle ¢(P, F79) of the spherical polytope P at the face
Fi is defined to be equal to the angle ¢(C,C+), where FJ=(i+1n 82,
Geometrically, ¢(P,F7) has an analogous interpretation to that in the
Euclidean case mentioned at the beginning of § 2. If Bis a (d + 1)-dimen-
sional ball centred at an interior point of FJ, with radius so small that
the only faces of P which intersect B are those which include F, then
@(P, FJ) is the ratio of the d-volume of BnP to the d-volume of BnS4.
The angle-sums @;(P) of P are defined by (5), so that, for 0<j<d—1,

#i(P) = ;1(C)  with  @3(P) = §f41(P) = $f4(0) .
We also define

?1(P) = @o(C) = ¢(C,C%) = u(P)[u(SY) ,

where p is the d-dimensional Lebesgue measure on S¢. It is convenient
also to put @,(P)=1, which is in accordance with our definition of ¢;(P)
for j <d, since

®a(P) = 9341(C) = ¢(C,C) = u(SH[u(S% = 1.

(37) THEOREM. For any convex spherical d-polytope P,
d

(38) Zo(—l)j 9i(P) = (1+(—1)%)p_(P) .
=

This is Sommerville’s Theorem. When d is even it gives an expression
for p_,(P) (and therefore for the volume u(P) of P) in terms of the angle-
sums of P.

Proor. For —1=5j=sd—1, from the definitions,

B (P = 90,00 = o [ 1(0,071,2) duto)
Sd

w(8%)
where Fi=8¢n(Citl,

Let T'< 82 be the set of all unit vectors x € 8¢ which are parallel to a
proper face of C. Then 7' is of measure zero on 8¢, and so may be ignored
in the integration of (39). For any ze 8¢\ 7, let H, be the hyperplane
through o with normal z, and let C, be the set obtained by projecting C
orthogonally on to H,. (As before, such a projection will be called
regular.) Two cases arise:

Casg I: x € relint P U relint — P, or, equivalently,

(40) X(C: Cﬂ’x) + X(O:(}o’ _x) =1 .

Math. Scand. 21 — 14
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If z is any relative interior point of a j-face C7 of C, then it is easy to see
that one of the two open half-lines z+ Az, 1>0, and 2+ Az, 1 <0, lies in
the interior of C, and the other does not intersect C. We deduce that,
for15j=d,
2C,0hx) + 4(C,0%, —z) =1,

and so

fi©

12:1(1(0’ Oij’x) + X(C’Oij7 —x)) = fg(o) .
Further, the regular projection C,, in this case, is the whole hyperplane
H,, so that f;(C,)=0,j=0,...,d, and the above relation may be written,
for 1<j=d,

i

(41) Z (X(O$ Oij’x) + X(C>Czjr —x)) + f)(Cz) = f;(O) .

=1

Casg II: z € Se\ (TUPu - P), or, equivalently,
(42) X(C,Co,x) + 1(0900’ _x) =0.

In this case C, is a pointed convex (d— 1)-cone in H,, since any support-
ing hyperplane H of C that contains # and intersects C in C° projects
into a supporting hyperplane of C, intersecting C, only in C°. Let H’
be a hyperplane parallel to H which intersects the interior of C. Then
H'nC is a convex d-polytope @, and H'nC,=@, is a regular projection
of @ on to H'nH,. For 0sj=d—1, G?=Ci*'nH’ is a j-face of @, and
the faces of @, are precisely the intersections of H’ with the faces of C,.
We deduce that

f](Q) = fj+1(0)’ fJ(Qz) = fj+1(0z) 5

and since, for j> 0, the points z used in defining the function y may be
chosen as points of H’,
2(Q,6¢,x) = 2(C,C7,2) .

From these facts, and (8) applied to @, we deduce that for 1<j=d,
equation (41) holds in this case also.

Relation (41) is the analogue of (8) and we shall use it in a similar

manner.
By Euler’s Theorem applied to the cone C and the regular projection
C,, we deduce

d
(43) 2 (=1Y7f(C) = 1+ (-1)%1,
j=1

and
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d 0 if x € relint P U relint — P
— j-1 . = ’
PARR R CE {1+(—1)d if z e SIN(TUPU-P),

or, using (40) and (42),
d
(44) '21(— l)j—lfj(ox) = (1 +(_ l)d) (1 _X(O»Co:x) - X(O:OO’ “x)) .
j=

Taking the alternating sum of (41), and using (43) and (44), we obtain

G . .
(=1Y1 3 (2(C,04, )+ 2(C,C, —x)) +

t=1

+ (14 (= 1)9)(1-x(C,C%2) = 4(C,C° —x)) = 1+(=1)%1.

IMa

<

Integrating over 8¢\ 7, dividing by u(S%) and using (39) and (5), we
obtain

1(—1)"‘1(2%(0)) +(1+ (=D (1-2¢y(0)) = 1+ (~1)¢1,

which, by the definition of ¢,(P) is identical with (38) and Theorem (37)
is proved.

M=

For a given convex spherical d-polytope P, and z e S2\ T, define
(d +1)-vectors as follows:

f(P) = (l’fo(P)w . -=fd—1(P)) = (fo(o):~ . ':fd(C)) ’
¢(P) = ((P_I(P),QPO(P),. . -:‘Pd—l(P)) = (‘Po(o):- . "pd(o)) )

f(Oz) = (fo(oa:)’ v ’fd—l(Ca:)’O) .

As in § 3, the number of combinatorial types of the regular projections
C, is finite, and so there are only a finite number of distinct vectors
f(C,). 1t will be convenient to represent these by f(C,), f(C,),...,.f(C,),
choosing f(Cy)=o0, which is the f-vector f(C,) when =z erelintPu
relint — P (see Case I above). With this notation, we can now prove the
analogue of (10) for spherical polytopes.

(45)

and

(46) For each convex spherical d-polytope P, the vector f(P)—2¢(P) is a
positive convex combination of the vectors f(C,), 1=0,...,n, that is to say,

(47) 1(P)~29(P) = 3 w10,
where Yu;=1 and u;>0 for each i. Further,

(48) to = 2¢4(P) = 2u(P)[u(S%) .
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Proor. For 0=<¢=<n, let J,=8% be the set of all x € S¢\ 7T such that
f(C)=f(C;). Then, as in § 3, for each ¢, u(J;) >0, Iu(J,;)=u(S%, and
from (40) and (42),

(49)
#(Jo) 1 0 _ _ .
5 = S si (0% +2(€,€%, =) ) = 2(€) = 2(P).
Also
f fi(Cr) du(x) = Zu
SA\T =0

(compare (13)). Integrating (41) over 8¢\ 7 and dividing by u(S?) we
obtain

< M) B
2¢5(C) + go/T(S"’) ) = fi0),
or, writing u;=pu(J;)/u(8%), ¢,(C)=;_1(P), f(C)=f;1(P),
(50) f] 1(P)— 294 (P) = me,(C’)

This holds for j=1,...,d, and also trivially for j=0 since ¢_,(P)=}u,
by (49), f_1(P)=1, fo(C,)=1for i=1,...,n, f(Cy)=0, and

Sup = 2u(J)u(8% = 1.
But (50) clearly implies (47), and Theorem (46) is established.

The next assertion will enable us to deduce homogeneous linear rela-
tions between the components of the vector f(P)— 2¢(P) that hold when
the faces of P are of some prescribed type (compare (20)).

(51) Let P=Cn_S? be a given convex spherical d-polytope. If a homo-
geneous linear relation
a1

(52) ~21{,,-fj+1(0,-) =0, ¢=1,...,n,

J=-1
holds for all the regular projections C; of C, then
a1

(53) > v(fi(P)—2¢4P)) = 0.
=
It should be noticed that the value of »;_; is arbitrary since f;(C,)=0
for all 4, and therefore »;_; does not enter relation (52). Also, relation
(52) is trivially satisfied for =0, since f;,,(Cy)=0 for all j= —1. Hence
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it is sufficient to require that (52) holds only for the pointed regular
projections.

To prove (51), we multiply (50) by »;_; and sum from j=0 to d. Using
(52) we obtain (53) and the assertion is proved.

If P is quasi-simplicial, that is, every (d—2)-face of P is a spherical
(d— 2)-simplex, then each (d—1)-face of C has exactly d—1 edges, or,
equivalently, every bounded cross-section @ of C is a quasi-simplicial
convex d-polytope. From the discussion of Case II on p. 214, we see
that each pointed regular projection C,, x € 8¢-1\(TUPuU—P), is the
join of C°® to a regular projection @, of some @, and @, is a simplicial
(d—1)-polytope. Hence,

1

- d-1
2 bk fi:a(Cr) = 2 by fi(Qr) = 0,
J=-1 Jj=-1

where k is any integer satisfying —1<k<d—1 and the coefficients b,;
are defined in (26). (When k=d—1 we obtain f;(C,;)=0.) From (51),
with b;; written in place of v;, we deduce

(54) For every quasi-simplicial spherical d-polytope P, the angle-sums
@;(P) satisfy relations (29 k) where —1<k=<d—1 and the coefficients b;;
are defined by (26).

This is the analogue of (28), and similar assertions regarding the
linear independence of these equations hold. When k= —1, with ¢_,(P)=
w(P)[u(8%) and f_,(P)=1, (29 k) is identical with Sommerville’s relation
(38).

In a similar manner, statements (30), (32), (35) and (36) have exact
analogues for spherical polytopes. The same assertions hold, and the
proofs are identical except that we make use of (51) in place of (20).

6. Remarks.

The results of this paper may be generalised in the following manner.
In the proofs we have never used the fact that the measure x4 used in the
definition of ¢(P,F’) (see (4)) is the Lebesgue measure on S?-1. Let
&¢-1 be the Boolean algebra of subsets of S?-! generated by the hemi-
spheres, and let » be a finitely additive real or complex valued set func-
tion defined on #2-1, that satisfies

(a) » is invariant under reflection in the origin o, so that »(4)=»(—A4)
for each set 4 € 41,
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(b) if H is any hyperplane of E? through o, and A e &1, AcH,
then »(4)=0, and
(c) v(S4-1) 0.

Then all the results of § 2 and § 4, as well as the sufficiency part of
statement (20), remain true with angles ¢(P,F?) defined by (4) with u
replaced by ». In fact, more generally, using the fact proved at the end
of § 2, that for all € S, g(x)=(—1)%1, it can be shown that the
Gram-Euler relation (2) holds even if the set function » used in defining
the angles of the polytope satisfies only (¢) and not (a) and (b) above.
In § 3 we require the further condition that » is real-valued, and

(d) if 4 =821 is a non-empty open set, 4 € F¢-1, then »(4)> 0.

This is needed to ensure the positivity of the coefficients g, in (11).
For Theorems (17), (18) and the necessity statement in (20), we must
also assume that » is countably additive. The results of § 5 admit a
similar generalisation. From a geometrical point of view, of course, the
case where the angles are defined in terms of the Lebesgue measure is
the most interesting.

Theorems (10) and (46) admit an obvious generalisation to arbitrary
polyhedral sets, and many of our other assertions can be extended in a
similar manner.

Finally we remark that although the results of this paper are all of a
metrical character, they have applications of a purely combinatorial-
geometric type. Theorem (10), for example, can be used to give informa-
tion about the possible combinatorial types of (d — 1)-polytopes that can
occur as facets of a d-dimensional convex polytope. Details appear in
the authors’ paper Facets and nonfacets of convex polytopes, Acta Math.
119 (1967), 113-145.
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