THE OBLIQUITY-TYPE OF A SET OF VECTORS

ANDREW SOBCZYK

We shall classify Euclidean congruence types of \(n \)-tuples of vectors \(\{\beta_1, \ldots, \beta_n\} = \{\beta_i\} \), according to the following scheme. In Euclidean space of \(2n \) dimensions \(E_{2n} \), suppose there are \(n \) vectors \(\gamma_1, \ldots, \gamma_n \) from an \(n \)-dimensional subspace \(E_n \), and let \(\varphi_1, \ldots, \varphi_n \) be orthonormal basis vectors for an orthogonal complement \(E_{n-1} \) in \(E_{2n} \) of \(E_n \), such that the vectors \(\beta_i \) may be expressed (to within Euclidean congruence of the \(n \)-tuple) in the form

\[
\beta_i = \gamma_i + a_i \varphi_i, \quad i = 1, \ldots, n.
\]

The congruence type of \(\{\beta_i\} \) of course is uniquely determined by the values of the inner products \((\beta_i, \beta_j) \). Since \(E_n \) is \(n \)-dimensional, for any \(\{\beta_i\} \) a congruent \(n \)-tuple is expressible in the form (1), at least with all \(a_i \)'s equal to zero. For any expression (1), we have \((\beta_i, \beta_j) = (\gamma_i, \gamma_j) \) for \(i \neq j \), and

\[
||\beta_i||^2 = (\beta_i, \beta_i) = ||\gamma_i||^2 + a_i^2.
\]

Thus if the off-diagonal values of the inner product matrix \(\{(\beta_i, \beta_j)\} \) are realized by any set of vectors \(\{\gamma_i\} \), we may represent the \(n \)-tuple \(\{\beta_i\} \) in the desired form provided that \(||\beta_i|| \geq ||\gamma_i|| \) for \(i = 1, \ldots, n \). Accordingly we define the (oblivity) type of \(\{\beta_i\} \) as the minimum possible dimension of the linear subspace \(\langle \gamma_1, \ldots, \gamma_n \rangle \) spanned by the set of vectors \(\{\gamma_i\} \), with respect to which a congruent \(n \)-tuple to \(\{\beta_i\} \) can be expressed as \(\{\gamma_i + a_i \varphi_i\} \). Thus of course in case the \(\beta_i \)'s of an \(n \)-tuple are mutually orthogonal, the type is 0.

For any set of vectors \(\{\gamma_i\} \), which is such that the inner products \((\gamma_i, \gamma_j) \) satisfy

\[
(\gamma_i, \gamma_j) = (\beta_i, \beta_j), \quad i \neq j, \quad i, j = 1, 2, \ldots, n,
\]

we may replace \(\gamma_j \) by another vector, with satisfaction of the same condition (2), to reduce the dimension of the subspace \(\langle \gamma_1, \ldots, \gamma_n \rangle \) by 1, unless \(\gamma_j \) is in the span of the remaining \(\gamma_i \)'s. We state this as a Lemma.

Received March 15, 1966.
Lemma. If \(\gamma_n \notin \langle \gamma_1, \ldots, \gamma_{n-1} \rangle \), then without affecting the values of the off-diagonal inner products, we may replace \(\gamma_n \) by a vector \(\gamma_n' \), to reduce the dimension of \(\langle \{ \gamma_i \} \rangle \).

Proof. In case \(\dim \langle \gamma_1, \ldots, \gamma_{n-1} \rangle = 0 \), the type of \(\{ \beta_i \} \) is zero, and we may replace \(\gamma_n \) by a zero vector, increasing the value of \(a_n \) to maintain congruence. Otherwise, let \(\delta_n \) be a unit vector in \(E_n \) which is orthogonal to \(\langle \gamma_1, \ldots, \gamma_{n-1} \rangle \). Then replacing \(\gamma_n \) by any vector of the form \(\gamma_n' = \gamma_n + d_n \delta_n \), the off-diagonal inner products are not affected. We have

\[
(\gamma_n', \gamma_n') = (\gamma_n, \gamma_n) + d_n [2(\gamma_n, \delta_n) + d_n].
\]

The choice \(d_n = -\|\gamma_n\| \cos \theta_n \), where \(\theta_n \) is the angle between \(\gamma_n \) and \(\delta_n \), reduces \((\gamma_n, \gamma_n) \) to its minimum possible value

\[
(\gamma_n', \gamma_n') = (\gamma_n, \gamma_n)(1 - \cos^2 \theta_n) = (\gamma_n, \gamma_n) \sin^2 \theta_n,
\]

and also subtracts off the component of \(\gamma_n \) in the direction of \(\delta_n \), placing \(\gamma_n' \) in the subspace \(\langle \gamma_1, \ldots, \gamma_{n-1} \rangle \).

Theorem 1. For each \(n \)-tuple \(\{\beta_i\} \), the type exists, and its value is at most \(n-1 \). (For arbitrary non-zero scalars \(b_1, \ldots, b_n \), the type of \(\{b_1 \beta_1, \ldots, b_n \beta_n\} \) is the same as that of \(\{\beta_1, \ldots, \beta_n\} \).)

Proof. Again consider the symmetric matrix of inner products \(\{(\beta_i, \beta_j)\} \). If one of the \(\beta_i \)'s, say \(\beta_n \), is orthogonal to the span of the others, then we may replace \(\beta_n \) by 0 without affecting the values of the off-diagonal inner products. Then if another \(\beta_i \), say \(\beta_{n-1} \), is orthogonal to the span of the remaining \(\beta_i \)'s, it also may be replaced by 0 without affecting the values of the off-diagonal inner products; and so on. An \(n \)-tuple congruent to the original \(\beta_i \)'s may be expressed in the form \(\beta_1, \beta_2, \ldots, \beta_k, a_{k+1} \varphi_{k+1}, \ldots, a_n \varphi_n \). In any case of \(k < n \), we have therefore that type \(\{\beta_i\} \leq k < n \).

In case no \(\beta_i \) is orthogonal to the span of the others, \(k = n \), by the Lemma we have that the type is \(\leq n-1 \). Also in the case \(k < n \) of the preceding paragraph, the type is \(\leq k-1 \). The process indicated in the proof of the Lemma may be continued until we have the situation that each \(\gamma_j \) is in the span of the other \(\gamma_i \)'s. Let us refer to this property of the set of vectors \(\{\gamma_i\} \) as the span property.

Converse Lemma. If a set of vectors \(\{\gamma_i\} \) has the span property, then there does not exist a congruent set of vectors \(\{\gamma_i' + a_i \varphi_i\} \) with \(\dim \langle \{\gamma_i'\} \rangle < \)
dim \langle \{ \gamma_i \} \rangle. With the same hypothesis concerning the set \{ \gamma_i \}, for any set of vectors \{ \gamma'_i + a_i \varphi_i \} such that the correspondence

\[\gamma'_i \leftrightarrow \gamma'_i + a_i \varphi_i \]

is a congruence, we have that necessarily \(a_i = 0 \) for \(i = 1, \ldots, n \).

Proof. If a set \{ \beta_i \} has the span property, then of course any congruent set \{ \gamma'_i \} has the property. If \(a_i \neq 0 \), then \(\gamma'_i + a_j \varphi_j \) cannot be in the span of the other \((\gamma'_i + a_i \varphi_i)'s \), because \(\varphi_1, \ldots, \varphi_n, E_n \) are mutually orthogonal. No linear combination of the other vectors can cancel the non-zero coefficient \(a_j \).

Theorem 2. For a set of vectors \{ \beta_i \} and any two sets of vectors \{ \gamma_i + a_i \varphi_i \} and \{ \gamma'_i + a'_i \varphi_i \}, in which \{ \gamma_i \} and \{ \gamma'_i \} both have the span property, in case the correspondences

\[\gamma_i + a_i \varphi_i \leftrightarrow \beta_i \quad \text{and} \quad \gamma'_i + a'_i \varphi_i \leftrightarrow \beta_i \]

are congruences, then necessarily \(\gamma_i \leftrightarrow \gamma'_i \) is a congruence, and for \(i = 1, \ldots, n \), we have \(a_i = \pm a'_i \). (Our “congruence” includes the possibility of an involutory isometry, or “mirror image” situation, in which \{ \beta_i' \} could not be brought into coincidence with \{ \beta_i \} by an orthogonal transformation of determinant \(+1 \).)

Proof. It follows from our hypothesis that the correspondence \(\gamma_i \leftrightarrow \gamma'_i + (a'_i \pm a_i) \varphi_i \) is a congruence. By the Converse Lemma, for each \(i = 1, \ldots, n \) we must have \(a'_i \pm a_i = 0 \), and therefore that \(\gamma_i \leftrightarrow \gamma'_i \) is a congruence.

Corollary. Given a set of vectors \{ \beta_i \}, for any expression of the vectors in the form \(\beta_i = \gamma_i + a_i \varphi_i \), \(i = 1, \ldots, n \), in which the set \{ \gamma_i \} has the span property, we have that the dimension of \(\langle \gamma_1, \ldots, \gamma_n \rangle \) is as small as possible, so that the type of \{ \beta_i \} is equal to that dimension.

Theorem 3. In case type \{ \beta_i \} = \text{dim} \langle \gamma_1, \ldots, \gamma_n \rangle = m, the inner product matrix \(\langle (\gamma_i, \gamma_j) \rangle \) (which agrees off the diagonal with \(\langle (\beta_i, \beta_j) \rangle \)) is of the form \(CCT^T \), where \(C \) is an \(n \) by \(m \) matrix, and \(C^T \) is its transposed matrix.

Proof. We may choose an orthonormal basis \(\delta_1, \ldots, \delta_n \) for \(E_n \), such that \(\langle \delta_1, \ldots, \delta_m \rangle = \langle \gamma_1, \ldots, \gamma_n \rangle \). Then

\[\gamma_1 = c_{11} \delta_1 + \ldots + c_{1m} \delta_m, \ldots, \gamma_n = c_{n1} \delta_1 + \ldots + c_{nm} \delta_m; \]

the matrix of coefficients \(C = \{ c_{ij} \} \) is the required matrix.

Representing vectors by their coefficients with respect to an orthonormal basis in \(E_n \), the set of vectors
\[\gamma_1 = (1,1,1,\ldots,1,0) \]
\[\gamma_2 = (1,0,0,\ldots,0,0) \]
\[\gamma_3 = (0,1,0,\ldots,0,0) \]
\[\ldots \ldots \ldots \ldots \]
\[\gamma_n = (0,0,0,\ldots,1,0) \]

has the span property, with

\[\dim \langle \gamma_1, \ldots, \gamma_n \rangle = n - 1. \]

If \(A \) is any linear transformation of rank \(k \) on \(\langle \gamma_1, \ldots, \gamma_n \rangle \), then the set of transforms \(A\gamma_1, \ldots, A\gamma_n \) has the span property. Also it is geometrically obvious that there are sets of any number \(n \) of vectors in the plane, or in a line, which have the span property. Therefore for each integer \(k \) between 0 and \(n - 1 \), inclusive, there exists a linearly independent set \(\{\beta_i\} \) which is of obliquity type \(k \).

The author has in mind application of the obliquity type to classification of convex polytopes. At each vertex of a polytope, consider the set of edge vectors originating at the vertex. In case of an \(n \)-simplex, the type can be zero for at most one vertex. If the type is 0 at one vertex, then necessarily it is 1 at all other vertices. The type of an equilateral \(n \)-simplex is 1 at each vertex. This follows from the fact that the equilateral \(n \)-simplex may be congruently embedded in \(E_{n+1} \) with its vertices at \((a,0,\ldots,0), \ldots, (0,\ldots,0,a) \). Translation through say \((-a,0,\ldots,0) \) places one vertex at the origin, and the set of vectors from the origin to the other vertices clearly is of type 1. Similarly, it may be seen that a simplex which is of type 1 at one vertex, must be of type \(\leq 2 \) at all of its other vertices; and that for any Euclidean simplex, if the minimum type among the vertices is \(k \), then each vertex is of type either \(k \) or \(k+1 \).

Clemson University, Clemson, South Carolina, U.S.A.