ON THE IRREDUCIBILITY OF THE TRINOMIALS \(x^m \pm x^n \pm 4 \).

ARNE T. JONASSEN

1.

The object of this paper is to prove the following

Theorem. Let \(m \) and \(n \) denote any natural numbers, \(m > n \), and let \(\varepsilon_1, \varepsilon_2 \in \{ \pm 1 \} \). The polynomials

\[f(x) = x^m + \varepsilon_1 x^n + 4 \varepsilon_2 \]

are then irreducible over the field of rationals with the exception of

(i) \(x^{3t} + \varepsilon_1 x^{2t} + 4 \varepsilon_1 = (x^t + 2 \varepsilon_1)(x^{2t} - \varepsilon_1 x^t + 2) \)
(ii) \(x^{5t} + \varepsilon_1 x^{2t} - 4 \varepsilon_1 = (x^{3t} + \varepsilon_1 x^{2t} - x^t - 2 \varepsilon_1)(x^{2t} - \varepsilon_1 x^t + 2) \)
(iii) \(x^{11t} + \varepsilon_1 x^{4t} + 4 \varepsilon_1 = (x^{5t} - x^{3t} - \varepsilon_1 x^{2t} + 2 \varepsilon_1)(x^{6t} + x^{4t} + \varepsilon_1 x^{3t} + x^{2t} + 2) \),

where \(t = (m, n) \) and the factors in these decompositions are irreducible.

Assuming reducibility of \(f(x) \), let

\[f(x) = \varphi_r(x) \psi_s(x), \quad r + s = m, \]

where \(\varphi_r(x) \) and \(\psi_s(x) \) are monic polynomials with integral coefficients of positive degrees \(r \) and \(s \), respectively. Both \(\varphi_r(x) \) and \(\psi_s(x) \) have a constant term of modulus 2. For suppose the converse. Then one of them, say \(\varphi_r(x) \), has a constant term of modulus 1. This implies that one of the zeros of \(f(x) \) has modulus not greater than 1, hence the inequality \(| -4 \varepsilon_1 | \leq 1 + 1 = 2 \) which is impossible.

Both \(\varphi_r(x) \) and \(\psi_s(x) \) are irreducible over the field of rationals. Assume this to be false. The reducibility of one of these polynomials shows that there must exist a zero of \(f(x) \) with modulus not greater than 1, a contradiction.

The method of proof is a refinement of that used by W. Ljunggren in [1]. The proof depend on 10 lemmas, which will be proved in sections 2–9.

Received August 1, 1967.
2.

Putting

$$f_1(x) = x^r \varphi_r(x^{-1}) \psi_s(x) = \sum_{j=0}^{m} c_j x^{m-j},$$

and

$$f_2(x) = x^s \psi_s(x^{-1}) \varphi_r(x) = \sum_{j=0}^{m} c_{m-j} x^{m-j}$$

we get

$$f_1(x) f_2(x) = x^m f(x) f(x^{-1}).$$

Writing

$$S_{m-k} = \sum_{j=0}^{k} c_j c_{j+m-k}, \quad 0 \leq k \leq m,$$

we obtain, after neglecting the terms in (5) having exponents less than m, and then canceling by x^m

$$\sum_{j=0}^{m} S_{m-j} x^{m-j} = 4\varepsilon_2 x^m + \varepsilon_1 x^{m-n} + 4\varepsilon_1 \varepsilon_2 x^n + 18.$$

Since $\varphi_r(x)$ and $\psi_s(x)$ have constant terms with modulus 2, and

$$S_0 = \sum_{j=0}^{m} c_j^2 = 18, \quad S_m = C_0 C_m = 4\varepsilon_2,$$

we get

$$c_0 = 2\delta_0, \quad c_m = 2\delta_0 \varepsilon_2 \quad \text{and} \quad \sum_{j=1}^{m-1} c_j^2 = 10, \quad \delta_0 = \pm 1,$$

giving the following lemma:

Lemma 1. There are the following four possibilities for the set $\mathcal{M} = \{c_i\}$, $i = 1, 2, \ldots, m - 1$:

1° One element of \mathcal{M} has modulus 3 and one has modulus 1.
2° Two elements of \mathcal{M} have modulus 2 and two have modulus 1.
3° One element of \mathcal{M} has modulus 2 and six have modulus 1.
4° Ten elements of \mathcal{M} have modulus 1.

In all of the four cases the remaining elements of \mathcal{M} are equal to zero.

From (7) it is seen that

$$S_i = 0 \quad \text{if} \quad 0 < i < m, \quad i \neq n - m, \quad i \neq n$$

$$S_{m-n} = \varepsilon_1 \text{ and } S_n = 4\varepsilon_1 \varepsilon_2 \quad \text{if} \quad n \neq \frac{1}{2} m$$

$$S_n = 4\varepsilon_1 \varepsilon_2 + \varepsilon_1 \quad \text{if} \quad n = \frac{1}{2} m.$$
In what follows δ_x, x being some index, always is a member of the set \{\pm 1\}. We also define
\[c_j = 0 \quad \text{if} \quad j > m \quad \text{or} \quad j < 0 . \]

3.

In this section we prove three lemmas.

Lemma 2.
\[c_i \equiv c_{m-i} \equiv 0 \pmod{2}, \quad 0 < i < \frac{1}{2} n , \]
\[n \equiv 0 \pmod{2}, \quad c_{\frac{1}{2} n} \equiv c_{m-\frac{1}{2} n} \equiv 1 \pmod{2}. \]

Proof. Suppose c_i even for $0 \leq i < \frac{1}{2} n$, c_k odd and c_{m-j} even for $0 \leq j < k < \frac{1}{2} n$, c_{m-k} odd. If $k < h$ we get $S_{m-k} \equiv 2, \pmod{4}$, and if $k > h$ we find $S_{m-h} \equiv 2, \pmod{4}$, which is impossible on account of (9). If $k = h$ we get
\[S_{m-2k} \equiv c_k c_{m-k} \equiv 1 \pmod{2} , \]
contradicting (9) since $k < \frac{1}{2} n$. Hence
\[c_i \equiv c_{m-i} \equiv 0 \pmod{2}, \quad 0 \leq i < \frac{1}{2} n . \]

If $(n, 2) = 1$
\[S_{m-n} \equiv c_{\frac{1}{2} (n-1)} c_{m-\frac{1}{2} (n+1)} + c_{\frac{1}{2} (n+1)} c_{m-\frac{1}{2} (n-1)} \equiv 0 \pmod{2} , \]
which also contradicts (9). Hence n even and
\[S_{m-n} \equiv c_{\frac{1}{2} n} c_{m-\frac{1}{2} n} \equiv \varepsilon_1 \equiv 1 \pmod{2} \]
This completes the proof of lemma 2.

Lemma 3. Case 1° in lemma 1 can only occur if $n = \frac{3}{2} m$ and $\varepsilon_2 = \varepsilon_1$.

Proof. Lemmas 1 and 2 imply either $c_{\frac{1}{2} n} = \pm 1$, $c_{m-\frac{1}{2} n} = \pm 3$ or $c_{\frac{1}{2} n} = \pm 3$, $c_{m-\frac{1}{2} n} = \pm 1$, the other c_i's being equal to zero. Since
\[|S_{m-\frac{1}{2} n}| = |c_0 c_{m-\frac{1}{2} n} + c_{\frac{1}{2} n} c_m| = |\pm 2 \pm 6| \geq 4 , \]
we get by (9) that $m - \frac{1}{2} n = n$, that is, $n = \frac{3}{2} m$, and further
\[c_0 c_{m-\frac{1}{2} n} + c_{\frac{1}{2} n} c_m = 4 \varepsilon_1 \varepsilon_2 , \quad (10) \]
or
\[c_m c_{m-\frac{1}{2} n} + c_{\frac{1}{2} n} c_0 = 4 \varepsilon_1 , \quad (11) \]
multiplying (10) by ε_2 and utilizing $c_0 = \varepsilon_2 c_m$ from (8). Equation (10) implies
\[c_{\frac{1}{2} n} c_{m-\frac{1}{2} n} + \varepsilon_2 \equiv 2 \pmod{4}, \quad \text{that is}, \quad c_{\frac{1}{2} n} c_{m-\frac{1}{2} n} = -3 \varepsilon_2 . \]
By means of (11) we then obtain
\[S_{m-n} = \varepsilon_1 = c_0 c_{\frac{1}{2}n} + c_m c_{m-\frac{1}{2}n} + c_{\frac{1}{2}n} c_{m-\frac{1}{2}n} = 4\varepsilon_1 - 3\varepsilon_2 , \]
giving \(\varepsilon_2 = \varepsilon_1 \). Our lemma is proved.

Lemma 4. Case 2° in lemma 1 can only occur if \(n = \frac{3}{2}m \) and \(\varepsilon_1 = -\varepsilon_2 \).

Proof. On account of lemmas 1 and 2 we have
\[c_{m-\frac{1}{2}n} = \delta_1 , \quad c_{\frac{1}{2}n} = \delta_2 , \quad c_{k_1} = 2\delta_3 , \quad c_{k_2} = 2\delta_4 , \quad m > k_1 > k_2 > 0 . \]
At first we prove that \(k_1 = m - k_2 \). Suppose contrary and define \(h_1 = \max\{k_1, m - k_2\} \). Then \(h_1 > \frac{1}{2}m \) and \(c_0 c_{h_1} + c_{m-h_1} c_m = \pm 4 \), since
\[c_{h_1}^2 + c_{m-h_1}^2 = 4 , \]
the last relation following from the fact that
\[h_1 \leq k_1 > k_2 \geq m - h_1 , \quad h_1 \pm m - \frac{1}{2}n , \quad m - h_1 \pm m - \frac{1}{2}n . \]
Now it is seen to be possible to determine \(\delta_2 = \pm 1 \) in such a way that
\[(c_0 + \delta_x c_{h_1})^2 + (c_{m-h_1} + \delta_x c_m)^2 = 20 . \]
Then we get
\[\sum_{j=0}^{m-h_1} (c_j + \delta_x c_{j+h_1})^2 = 2\delta_x S_{h_1} + 12 + T , \]
where \(T = 0 \) if \(h_1 < m - \frac{1}{2}n \) and \(T = c_{\frac{1}{2}n}^2 + c_{m-\frac{1}{2}n}^2 = 2 \) if \(h_1 > m - \frac{1}{2}n \). Consequently \(20 \leq 14 + 2|S_{h_1}| \), that is \(|S_{h_1}| \geq 3 \) which implies \(S_{h_1} = \pm 4 \) and \(h_1 = n \). Considering
\[S_{\frac{1}{2}n} = c_0 c_{\frac{1}{2}n} + c_{\frac{1}{2}n} c_{h_1} + c_{m-h_1} c_{m-\frac{1}{2}n} + c_{m-\frac{1}{2}n} c_m , \]
we find \(S_{\frac{1}{2}n} \equiv 2 \pmod{4} \), which is impossible. Hence \(k_1 + k_2 = m \).

Then we shall prove that \(c_0 c_{k_1} + c_{m-k_1} c_m = 0 \). Suppose the contrary. Then \(c_0 c_{k_1} + c_{m-k_1} c_m = \pm 8 \), giving \(S_{k_1} = \pm 8 + T \), where \(T \) now denotes the remaining part of the sum \(S_{k_1} \). The part \(T \) contains at most one term \(\neq 0 \), namely \(c_{\frac{1}{2}n} c_{m-\frac{1}{2}n} = \pm 1 \), giving \(|S_{k_1}| \geq 7 \), a contradiction, and our assertion is proved. This formula implies \(\delta_2 = -\delta_3 \varepsilon_2 \). Inserting this in the identity (5) and treating it as a congruence mod 4, we find \(\delta_2 = \varepsilon_1 \delta_4 \).

If \(\varepsilon_1 = \varepsilon_2 \), (5) reduces to
\[4\delta_0 \delta_1 x^{2m-\frac{1}{2}n} + 4\delta_0 \delta_1 \varepsilon_2 x^{m+\frac{1}{2}n} - 4\varepsilon_1 x^{2k_1} \equiv 4x^{m+n} . \]
Since \(m + \frac{1}{2}n \notin \{2m - \frac{1}{2}n, m+n\} \), the identity (13) implies \(2k_1 = \frac{1}{2}n + m \) and \(m + n = 2m - \frac{1}{2}n \), giving \(k_1 = m - \frac{1}{2}n \) which is impossible.
If \(\varepsilon_1 = -\varepsilon_2 \), (5) reduces to

\[
4\delta_1 \delta_3 \varepsilon_1 x^{m+k_1-\frac{1}{2}n} + 4\delta_1 \delta_3 x^{2m-k_1-\frac{1}{2}n} + 4\varepsilon_1 x^{2k_1} \equiv -4x^{m+n},
\]
\[k_1 < m - \frac{1}{2}n,\]

\[
4\delta_1 \delta_3 \varepsilon_1 x^{m+k_1-\frac{1}{2}n} + 4\delta_1 \delta_3 x^{k_1+\frac{1}{2}n} + 4\varepsilon_1 x^{2k_1} \equiv -4x^{m+n},
\]
\[k_1 > m - \frac{1}{2}n.\]

It is easily seen that (15) cannot occur, while (14) is satisfied only by putting \(m + k_1 - \frac{1}{2}n = m + n \) and \(2m - k_1 - \frac{1}{2}n = 2k_1 \), hence \(n = \frac{3}{2}m \). This completes the proof of lemma 4.

4.

Here we prove a lemma which shall be frequently used in the following sections:

Lemma 5. In cases 4° and 3° in lemma 1 we have

\[
S_{m-i} = c_0 c_{m-i} + c_i c_m \quad \text{if} \quad 0 < i < n, \quad n \leq \frac{3}{2}m,
\]

\[
c_i = c_{m-i} = 0 \quad \text{if} \quad 0 < i < \frac{1}{2}n, \quad i \neq m - n,
\]

the restriction \(i \neq m - n, \ n \leq \frac{3}{2}m \), being necessary only in case 3°. In case 3°, \(n > \frac{3}{2}m \) implies \(c_n^2 + c_{m-n}^2 = 4 \).

From Lemma 2 it is obvious that \(c_i = c_{m-i} = 0, \ 0 < i < \frac{1}{2}n \), for the case 4°. Let \(0 < i < n, \ 0 < t < i \). If \(0 < t < \frac{1}{2}n \) then \(c_t = 0 \). If \(\frac{1}{2}n \leq t < i \) then \(m - \frac{1}{2}n < m - i + t < m \) so that \(c_{m-i+t} = 0 \). This gives

\[
S_{m-i} = \sum_{t=0}^{i} c_tC_{m-i+t} = c_0 c_{m-i} + c_i c_m, \quad 0 < i < n,
\]

proving the lemma for the case 4°.

Again from lemma 2, but now in the case 3°, it follows that at most one of \(c_i, c_{m-i} \), \(0 < i < \frac{1}{2}n \), can be nonzero. Let \(i = k \) give one such. Then obviously \(c_k^2 + c_{m-k}^2 = 4 \) and \(S_{m-k} = \pm 4 \). This gives \(k = m - n < \frac{1}{2}n \), that is, \(n > \frac{3}{2}m \), proving the first formula for the case 3°, and the last statement.

The second formula for the case 3° follows as for case 4°, ending the proof of lemma 5.

5.

Lemma 6. The cases 3° and 4° in lemma 1 are both impossible if \(n \geq \frac{1}{2}m \).

Proof. Suppose \(n = \frac{1}{2}m \).
We get from the first formula in lemma 5, on account of (9), that
\[S_n = c_0 c_n + c_{\frac{1}{2}n} c_{m-\frac{1}{2}n} + c_n c_m = 4\varepsilon_1 \varepsilon_2 + \varepsilon_1. \]

If \(c_n = 0 \) or \(c_n = \pm 2 \), we find \(S_n \equiv \pm 1 \pmod{8} \), which is impossible. If \(c_n = \pm 1 \) there are an odd number of terms of modulus 1 in the set \(\mathcal{M} \), defined in lemma 1, but this is also impossible.

Suppose then \(\frac{1}{2}m < n \leq \frac{3}{2}m \). The second formula in lemma 5 gives
\[S_n = c_0 c_n + c_{m-n} c_m = 4\varepsilon_1 \varepsilon_2 \]
or
\[(18) \quad c_m c_n + c_0 c_{m-n} = 4\varepsilon_1. \]

We conclude that
\[S_{m-n} = \varepsilon_1 = c_0 c_{m-n} + c_{\frac{1}{2}n} c_{m-\frac{1}{2}n} + c_n c_m, \]

hence
\[S_{m-n} = 4\varepsilon_1 + \delta_1 \delta_2 = \varepsilon_1, \]

which is impossible.

Suppose at last \(n > \frac{3}{2}m \). In case 4° we find \(S_n = 0 \), contrary to (9).

In case 3° we obtain from lemma 5
\[(19) \quad S_{\frac{1}{2}n} = c_0 c_{\frac{1}{2}n} + c_{m-n} c_{m-\frac{1}{2}n} + c_{\frac{1}{2}n} c_n + c_{m-\frac{1}{2}n} c_m = 0 \]

By (19) we get
\[(20) \quad c_{m-n} c_{m-\frac{1}{2}n} + c_{\frac{1}{2}n} c_n = 0, \]

utilizing
\[S_{m-\frac{1}{2}n} = c_0 c_{m-\frac{1}{2}n} + c_{\frac{1}{2}n} c_m = c_0 c_{\frac{1}{2}n} + c_{m-\frac{1}{2}n} c_m = 0. \]

Since (20) contradicts \(c_{m-n}^2 + c_n^2 = 4 \), our lemma is proved.

6.

Lemma 7. If \(n < \frac{1}{2}m \) the cases 3° and 4° in lemma 1 results in, either

(A) \(c_i = c_{m-i} = 0, \quad 0 < i < \frac{3}{2}n, \quad i \equiv \frac{1}{2}n; \)

\[c_{m-\frac{1}{2}n} = \delta_1, \quad c_{\frac{1}{2}n} = -\varepsilon_2 \delta_1, \quad c_{m-\frac{1}{2}n} = \delta_2, \quad c_{\frac{1}{2}n} = -\delta_2 \varepsilon_2; \]

\[\varepsilon_2 = \varepsilon_1, \quad c_{m-n} \equiv c_n \pmod{2}, \]

or

(B) \(c_i = c_{m-i} = 0, \quad 0 < i < n, \quad i \equiv \frac{1}{2}n; \)

\[c_{m-\frac{1}{2}n} = \delta_1, \quad c_{\frac{1}{2}n} = -\varepsilon_2 \delta_1, \quad c_{m-\frac{1}{2}n} = \delta_2, \quad c_n = -\delta_2 \varepsilon_2; \]

\[\varepsilon_2 = -\varepsilon_1, \quad c_{m-\frac{1}{3}n} \equiv c_{\frac{1}{3}n} \pmod{2}. \]

Proof. Since \(n < \frac{1}{2}m < \frac{3}{2}n \) it follows from lemma 5 that \(c_i = c_{m-i} = 0, 0 < i < \frac{1}{2}n \) and \(c_0 c_{m-i} + c_i c_m = 0, 0 < i < n \). Consequently, \(c_i \equiv c_{m-i} \pmod{2}, \)
0 < i < n. It is obvious that none of these \(c_i \)'s can be equal to ±2. From lemma 5 it further follows

\[
S_{m-n} = c_0 c_{m-n} + c_1 c_n = 0.
\]

Putting \(c_{m-n} = \delta_1 \), equation (21) implies \(c_1 = -\epsilon_2 \delta_1 \).

Suppose that there exist indices \(i, \frac{1}{2} n < i < n \), such that \(c_i^2 + c_{m-i}^2 \neq 0 \), and let \(k \) be the smallest of these. As in the proofs of lemmas 2 and 5 we get \(c_i = c_{m-i} = 0 \), \(\frac{1}{2} n < i < k \), and \(c_k \equiv c_{m-k} \equiv 1 \) (mod 2). We have

\[
S_{m-2k} = c_0 c_{m-2k} + c_1 c_{m-2k} + c_k c_{m-k} + c_{2k} c_{m-1} + c_{2k-1} c_{m-n} + c_{2k} c_m.
\]

Here \(S_{m-2k} = 0 \) or \(4 \epsilon_1 \epsilon_2 \) on account of (9) since \(m - 2k < m - n \). The relation \(c_k c_{m-k} \equiv 1 \) (mod 2) shows that

\[c_{m-2k+1} + c_2 \equiv c_{2k-1} \equiv (mod 2) .
\]

Now we shall prove that \(m - 2k + \frac{1}{2} n = m - n \), that is, \(k = \frac{3}{4} n \). Suppose the contrary. Then

\[
S_{m-2k+1} = c_0 c_{m-2k+1} + c_{2k-1} c_m \equiv 2 \pmod{4},
\]

which is impossible since \(S_{m-2k+1} \equiv 0 \pmod{4} \). From

\[
S_{m-k} = c_0 c_{m-k} + c_k c_m
\]

it follows, putting \(c_{m-n} = \delta_2 \), that \(c_1 = -\epsilon_2 \delta_2 \). At last we remark that

\[
c_{m-n} = c_{m-2k+1} + c_{2k-1} \equiv c_n (mod 2),
\]

giving \(\epsilon_1 = S_{m-n} \equiv 2 - \epsilon_2 \pmod{4} \), and hence \(\epsilon_2 = \epsilon_1 \), giving us the case (A).

Suppose that \(c_i = 0, \frac{1}{2} n < i < n \). We conclude that \(c_i = c_{m-i} = 0 \) for these \(i \).

Suppose further \(c_{m-n} \equiv c_n \) (mod 2). Then

\[
S_{m-n} = c_1 c_{m-n} + c_n c_{m-n} \equiv 1 \pmod{2},
\]

which is impossible since \(m - \frac{3}{2} n + m - n \). Hence \(c_{m-n} \equiv c_n \) (mod 2).

We shall prove that \(c_{m-n} \equiv c_n \equiv 1 \pmod{2} \). Assume the contrary. Then \(c_n \equiv c_{m-n} \equiv 0 \pmod{2} \), from which we conclude \(c_i^2 + c_{m-n}^2 = 0 \) or 4. Considering

\[
S_{m-n} = c_0 c_{m-n} + c_n c_{m-n} + c_n c_m
\]

as a congruence mod 8, the second possibility implies

\[
\epsilon_1 = S_{m-n} \equiv \pm 3 \pmod{8},
\]

and hence

\[
c_n = c_{m-n} = 0.
\]

Let \(k > n \) be the smallest index \(i \) such that \(c_i \neq 0 \) (such an index must exist). As in case (A) we find
\[c_i = c_{m-i} = 0, \quad n < i < k \quad \text{and} \quad c_k \equiv c_{m-k} \equiv 1 \pmod{2}. \]

Putting \(c_{m-k} = \delta_2 \) we get \(c_k = -\delta_2 \varepsilon_2 \). Since \(m - k - \frac{1}{2}n \equiv m - n, \ n \equiv \frac{1}{2}m, \) we have

\[S_{m-k-\frac{1}{2}n} = c_0c_{m-k-\frac{1}{2}n} + c_1c_{m-k} + c_kc_{m-\frac{1}{2}n} + c_{k+\frac{1}{2}n}c_m \equiv 0 \pmod{2}. \]

Now \(c_1c_{m-k} + c_kc_{m-\frac{1}{2}n} = -2\delta_1\delta_2\varepsilon_2 \), and consequently

\[c_{k+\frac{1}{2}n} \equiv c_{m-k-\frac{1}{2}n} \pmod{4}. \]

Further we have

\[S_{m-n-k} = c_1c_{m-k-\frac{1}{2}n} + c_{k+\frac{1}{2}n}c_{m-\frac{1}{2}n} \equiv 1 \pmod{2}, \]

which is impossible on account of (9) since \(n \equiv \frac{1}{2}m \). Then we have proved that

\[c_n \equiv c_{m-n} \equiv 1 \pmod{2}. \]

From

\[S_{m-n} = c_0c_{m-n} + c_1c_{m-\frac{1}{2}n} + c_nc_m = \varepsilon_1 \]

we conclude \(2\delta_0(c_{m-n} + \varepsilon_2c_n) = \varepsilon_1 + \varepsilon_2 \), that is, \(\varepsilon_2 = -\varepsilon_1 \), and further, putting \(c_{m-n} = \delta_2 \), that \(c_m = -\delta_2 \varepsilon_2 \). Considering

\[S_{m-\frac{1}{2}m} = c_0c_{m-\frac{1}{2}m} + c_1c_{m-n} + c_nc_{m-\frac{1}{2}n} + c_{\frac{1}{2}m}c_m \equiv 0 \pmod{4} \]

on account of (9), noferring \(c_{m-\frac{1}{2}m} \equiv c_{\frac{1}{2}m} \pmod{2} \), we have case B. This completes the proof of lemma 7.

7.

Lemma 8. When \(n < \frac{1}{2}m \), the case 3° in lemma 1 can only occur if \(\varepsilon_2 = \varepsilon_1 \) and \(n = \frac{4}{11}m \).

Proof. Let \(m > k_1 > k_2 > k_3 > k_4 > k_5 > k_6 > 0 \), the \(k_i \)'s denoting natural numbers. Let further \(c_{k_i} \) be the six values of \(c_j \) in (3) with modulus 1 and put \(c_{k_i} = 2\delta_7 \). By lemma 2, \(k_6 = m - k_1 = \frac{1}{2}n \). Comparing both sides of the identity (5) modulo 2 we get

\[
\begin{align*}
&x^{k_2-k_6} + x^{k_3-k_6} + x^{k_4-k_6} + x^{k_5-k_6} + \\
&+ x^{k_1-k_5} + x^{k_2-k_5} + x^{k_3-k_5} + x^{k_4-k_5} + \\
&+ x^{k_1-k_4} + x^{k_2-k_4} + x^{k_3-k_4} + \\
&+ x^{k_1-k_3} + x^{k_2-k_3} + \\
&+ x^{k_1-k_2} \equiv 0 \pmod{2}.
\end{align*}
\]

Now \(k_2 - k_6 = k_1 - k_5 \), giving \(k_1 - k_2 = k_5 - k_6 \). Suppose \(k_3 - k_6 = k_1 - k_4 \), implying \(k_1 - k_3 = k_4 - k_6 \). However, this is impossible, since then \(k_2 - k_5 \)
would be greater than all the remaining exponents. We conclude that there are the following two possibilities:

(a) \(k_3 - k_6 = k_2 - k_5 > k_1 - k_4 \),
(b) \(k_1 - k_4 = k_2 - k_5 > k_3 - k_6 \).

From (a) we get \(k_4 - k_5 > k_1 - k_2 = k_2 - k_3 = k_5 - k_6 \). If \(k_2 - k_3 \neq k_3 - k_4 \) we would obtain \(h = \min\{k_2 - k_3, k_3 - k_4\} \) smaller than all the remaining exponents, which is impossible. Hence \(k_2 - k_3 = k_3 - k_4 \), and we get \(k_1 - k_3 = k_2 - k_4, \ k_1 - k_4 = k_4 - k_5 \) and \(k_3 - k_5 = k_4 - k_6 \). Solving these equations we find

\[
\begin{align*}
 k_6 &= \frac{1}{2}n, \quad k_5 = \frac{1}{14}(2m+5n), \quad k_4 = \frac{1}{14}(8m-n), \quad k_3 = \frac{1}{14}(10m-3n), \\
 k_2 &= \frac{1}{14}(12m-5n), \quad k_1 = m - \frac{1}{2}n.
\end{align*}
\]

The case (b) is symmetrical to (a) and gives

\[
\begin{align*}
 k_6 &= \frac{1}{2}n, \quad k_5 = \frac{1}{14}(2m+5n), \quad k_4 = \frac{1}{14}(4m+3n), \quad k_3 = \frac{1}{14}(6m+n), \\
 k_2 &= \frac{1}{14}(12m-5n), \quad k_1 = m - \frac{1}{2}n.
\end{align*}
\]

Lemma 7 implies, either

(A) \[\epsilon_2 = \epsilon_1, \quad k_2 = m - \frac{3}{2}n = \frac{1}{14}(12m-5n), \]

hence \(n = \frac{11}{3}m \), our exceptional case, or

(B) \[\epsilon_2 = -\epsilon_1, \quad k_2 = \frac{1}{14}(12m-5n) = m - n, \]

giving \(n = \frac{7}{3}m \).

Then we shall show that the last case cannot occur. Let \(h = \{\max k_7, m - k_7\} \) and assume \(h = \frac{1}{2}m \). Since

\[\frac{1}{2}(m-n) \notin \{\frac{1}{2}n, n, k_3, m - k_3, k_4, m - k_4, \frac{1}{2}m\} \]

we must have

\[\frac{1}{2}(m-n), \frac{1}{2}(m+n) \notin \{0, k_1, k_2, k_3, k_4, k_5, k_6, m\}, \]

and hence \(c_{\frac{1}{2}(m-n)} = c_{\frac{1}{2}(m+n)} = 0 \). Since \(c_{\frac{1}{2}m} = c_{k_7} = \pm 2 \),

\[S_{\frac{1}{2}m} = c_0 c_{\frac{1}{2}m} + c_{\frac{1}{2}m} c_m = 0 \]

implies \(c_0 + c_m = 0 \) and hence \(\epsilon_2 = -1 \). Further we get

\[S_{\frac{1}{2}(m-n)} = c_{\frac{1}{2}n} c_{\frac{1}{2}m} + c_{\frac{1}{2}m} c_{m-\frac{1}{2}n} = \pm 2 \delta_1(1 - \epsilon_2) = \pm 4, \]

which contradicts (9). Hence \(h > \frac{1}{2}m \) and \(h \notin m - \frac{1}{2}n, h \notin m - n \). Assuming \(c_h c_{m-h} = 0 \), we can find a \(\delta_x \) such that

\[(c_0 + \delta_x c_h)^2 + (c_{m-h} + \delta_x c_m)^2 = 20. \]
Then we get
\[20 \leq \sum_{j=0}^{m-h} (c_j + \delta_x c_{j+h})^2 \leq 18 + 2S_h \delta_x = 18, \]
which is clearly impossible. Consequently \(c_h c_{m-h} \neq 0 \), and we must have either \(k_7 = m-k \) or \(k_7 = m-k_3 \).

In order to complete the proof we introduce
\[h_3 = \max \{k_3, m-k_3\} = \frac{5}{8} m, \quad h_4 = \max \{k_4, m-k_3\} = \frac{5}{8} m, \]
separating two cases.

1°. \(k_7 = m-k_3 \). Using the equations
\[c_0 c_{h_3} + c_{\frac{1}{4} n} c_{m-n} + c_n c_{m-\frac{1}{4} n} + c_{m-h_3} c_m = S_{h_3} = 0, \]
\[c_0 c_{h_4} + c_{\frac{1}{4} n} c_{h_3} + c_n c_{m-n} + c_{m-h_3} c_{m-\frac{1}{4} n} + c_{m-h_4} c_m = S_{h_4} = 0 \]
we get the following two possibilities:

(i) \(c_{m-\frac{1}{4} n} = -\delta_7, \quad c_{m-n} = -\varepsilon_2 \delta_0, \quad c_{m-\frac{1}{4} 3n} = 2\delta_7, \quad c_{m-2n} = 0, \)
\[c_{\frac{1}{4} n} = \delta_7 \varepsilon_2, \quad c_n = \delta_0, \quad c_{\frac{1}{4} 3n} = -\delta_7 \varepsilon_2, \quad c_{2n} = -\delta_0; \]
(ii) \(c_{m-\frac{1}{4} n} = \delta_7 \varepsilon_2, \quad c_{m-n} = \delta_0 \varepsilon_2, \quad c_{m-\frac{1}{4} 3n} = -\delta_7 \varepsilon_2, \quad c_{m-2n} = -\delta_0 \varepsilon_2, \)
\[c_{\frac{1}{4} n} = -\delta_7, \quad c_n = -\delta_0, \quad c_{\frac{1}{4} 3n} = 2\delta_7, \quad c_{2n} = 0. \]

Both cases result in
\[S_{m-\frac{1}{4} 5n} = \sum_{j=0}^{5} c_{\frac{1}{4} j n} c_{m-\frac{1}{4} 5n + \frac{1}{4} j n} \equiv 2 \pmod{4}, \]
which contradicts (9).

2°. \(k_7 = m-k_4 \) is shown to be impossible in the same way, using \(S_{m-3n} \) instead of \(S_{m-\frac{1}{4} 5n} \). Then we have proved lemma 8.

8.

Lemma 9. The case 4° in lemma 1 together with case A in lemma 7 is impossible if \(n \neq \frac{1}{4} m \).

Proof. As in the proof of lemma 7, we find
\[c_i \equiv c_{m-i} \pmod{2} \quad \text{for} \quad \frac{3}{4} n < i < n, \quad n < i < \frac{5}{4} n, \]
giving
\[c_i = c_{m-i} = 0, \quad \frac{1}{4} i < i < \frac{5}{4} n; \quad c_{m-\frac{1}{4} 5n} \equiv c_{\frac{1}{4} 5n}, \quad c_{m-\frac{1}{4} 3n} \equiv c_{\frac{1}{4} 3n} \pmod{2}. \]

We have also
\[c_{m-i} \equiv c_i \pmod{2}, \quad n < i < \frac{3}{2} n, \quad i \neq \frac{5}{4} n. \]

These relations imply the equations:
\[S_{m-n} = c_0 c_{m-n} - \varepsilon_2 + c_n c_m = \varepsilon_1 \]
\[S_{m-\frac{1}{4} 5n} = c_0 c_{m-\frac{1}{4} 5n} - 2\delta_1 \delta_2 \varepsilon_2 + c_{\frac{1}{4} 5n} c_m = 0 \]
(23)
\[S_{m-\frac{1}{3}n} = c_0 c_{m-\frac{1}{3}n} + c_{m-n} (-\delta_1 e_2) - e_2 + c_n \delta_1 + c_{\frac{1}{3}n} c_m = 0, \]
because \(m > 3n \), as seen from the following.

One member in each pair \((c_x, c_{m-x})\), \(x = n, \frac{2}{3}n, \frac{5}{3}n \), must be equal to \(\pm 1 \).
If \(\frac{2}{3}n + m - n \) and \(\frac{5}{3}n + m - \frac{5}{3}n \) we get new odd coefficients. But these inequalities are satisfied, since \(\frac{2}{3}n = m - n \) gives \(m - \frac{2}{3}n = \frac{2}{3}n \) which is impossible, and \(\frac{5}{3}n = m - \frac{5}{3}n \) is the case excluded. Since \(x < m - x \) we have \(\frac{2}{3}n < m - \frac{2}{3}n \), that is, \(m > 3n \).

Suppose first \(c_{m-n} \equiv c_{m-\frac{1}{3}n} \equiv 1 \ (\text{mod} \ 2) \). Then by (23)
\[
\begin{align*}
c_{m-\frac{1}{3}n} &= \delta_0 e_2, \\
c_{\frac{1}{3}n} &= -\delta_0, \\
c_{\frac{2}{3}n} &= -\delta_2 e_2, \\
c_n &= 0, \\
c_{\frac{5}{3}n} &= 0, \\
c_0 c_{m-\frac{1}{3}n} + c_{\frac{1}{3}n} c_m &= 2e_2.
\end{align*}
\]

We define
\[T = \sum_{i=1}^{5} (c_{\frac{1}{6}n} c_{\frac{1}{6}n+i\frac{1}{6}n} + c_{m-\frac{1}{6}n-i\frac{1}{6}n} c_{m-\frac{1}{6}n}) \]
Now
\[S_{\frac{1}{6}n} = T + R + c_0 c_{\frac{1}{6}n} + c_{m-\frac{1}{6}n} c_m, \]
where \(R \) denotes the rest of the elements in \(S_{\frac{1}{6}n} \). We have \(c_0 c_{\frac{1}{6}n} + c_{m-\frac{1}{6}n} c_m = 0 \). The part \(R + T \) contain at most 10 elements of the types \(\pm 1 \), and \(T \) alone seven of these.

If \(c_{\frac{1}{6}n} = 0 \) we find \(T = 5\delta_0 \delta_2 e_2 \), and if \(c_{m-\frac{1}{6}n} = 0 \) we find \(T = 4\delta_0 \delta_2 e_2 \), utilizing (24). Since \(|R| \leq 3\), this contradicts \(R = -T \), \(S_{\frac{1}{6}n} \) being zero.

The possibilities \(c_{m-n} \equiv c_{m-\frac{1}{3}n} \equiv 0 \) and \(c_{m-n} \equiv c_{\frac{1}{3}n} \equiv c_{\frac{5}{3}n} \ (\text{mod} \ 2) \) can be excluded in exactly the same way, and hence
\[c_{m-n} \equiv c_{\frac{1}{3}n} \equiv c_{m-\frac{1}{3}n} \ (\text{mod} \ 2). \]

If we solve the equations (23), we get, either
\[
\begin{align*}
c_{m-\frac{1}{3}n} &= -\delta_0 e_2, \\
c_{m-\frac{1}{3}n} &= \delta_2, \\
c_{m-n} &= 0, \\
c_{m-\frac{1}{3}n} &= -\delta_2, \\
c_{\frac{1}{3}n} &= \delta_0, \\
c_{\frac{2}{3}n} &= -\delta_2 e_2, \\
c_n &= 0, \\
c_{\frac{5}{3}n} &= 0, \\
\text{or}
\end{align*}
\]
\[
\begin{align*}
c_{m-\frac{1}{3}n} &= \delta_0 e_2, \\
c_{m-\frac{1}{3}n} &= \delta_2, \\
c_{m-n} &= \delta_0 e_2, \\
c_{m-\frac{1}{3}n} &= 0, \\
c_{\frac{1}{3}n} &= -\delta_0, \\
c_{\frac{2}{3}n} &= -\delta_2 e_2, \\
c_n &= 0, \\
c_{\frac{5}{3}n} &= \delta_2 e_2, \\
c_{\frac{5}{3}n} &= 0.
\end{align*}
\]

We define
\[
\begin{align*}
u_j &= (c_j - c_{j+\frac{1}{3}n} \delta_0 \delta_2 e_2 + c_{j+\frac{1}{3}n})^2, \\
v_j &= (c_j + c_{j+\frac{1}{3}n} \delta_0 \delta_2 e_2 + c_{j+\frac{1}{3}n})^2, \\
-\frac{1}{3}n &\leq j \leq m.
\end{align*}
\]
A calculation shows that
\[
U = \sum_{j=-\frac{1}{2}n}^{m-\frac{1}{2}n} u_j = \sum_{j=-\frac{1}{2}n}^{m-\frac{1}{2}n} (c_j^2 + c_{j+\frac{1}{2}n}^2 + c_{j+\frac{1}{2}n}^2) - 4\delta_0 \delta_2 \varepsilon_2 \sum_{j=0}^{m-\frac{1}{2}n} c_j c_{j+\frac{1}{2}n} + 2 \sum_{j=0}^{m-\frac{1}{2}n} c_j c_{j+\frac{3}{2}n}
\]
\[
= 2 \sum_{j=0}^{m} c_j^2 + \sum_{j=0}^{m-\frac{1}{2}n} c_j^2 - \sum_{j=0}^{m-\frac{1}{2}n-1} c_j^2 - 4\delta_0 \delta_2 \varepsilon_2 S_{m-\frac{1}{2}n} + 2S_{m-\frac{1}{2}n}
\]
\[
= 36 + 14 - 4 = 46
\]
noticing that \(S_{m-\frac{1}{2}n} = S_{m-\frac{1}{2}n} = 0 \). In a similar way is found that
\[
V = \sum_{j=-\frac{1}{2}n}^{m-\frac{1}{2}n} v_j = 46
\]
Inserting the values from (25) in the sum \(U \), and the values from (26) in \(V \), we obtain
\[
\sum_{j=-1}^{4} (u_{\frac{1}{2}n} + u_{m-\frac{n}{2}n+\frac{1}{2}n}) = 48 \leq U = 46, \quad 48 \leq V = 46
\]
a contradiction. This completes the proof of lemma 9.

9.
In this section we prove our last lemma:

Lemma 10. The case 4° in lemma 1 together with case B in lemma 6 is impossible.

Proof. With arguments similar to those used in lemma 9 we get \(c_{\frac{1}{2}n} \equiv c_{m-\frac{1}{2}n} \pmod{2} \). As in the proof of lemma 7 we find \(c_i = c_{m-i} = 0 \) for \(n < i < \frac{3}{2}n \) and \(c_i \equiv c_{m-i} \pmod{2} \) for \(\frac{3}{2}n < i < 2n \). From this we obtain \(c_{m-2n} \equiv c_{2n} \pmod{2} \), \(m > 3n \), and \(c_{m-45n} \equiv c_{45n} \pmod{2} \). This gives further \(m-2n > 2n \). By lemma 7, case (B):

\[
S_{m-3n} = c_0 c_{m-3n} - 2\delta_1 \delta_2 \varepsilon_2 + c_{\frac{1}{2}n} c_m = 0
\]
\[
S_{m-2n} = c_0 c_{m-2n} - \delta_1 \varepsilon_2 c_{m-\frac{1}{2}n} - \varepsilon_2 + c_{\frac{1}{2}n} \delta_1 + c_{2n} c_m = 0
\]
\[
S_{m-\frac{1}{2}n} = c_0 c_{m-\frac{1}{2}n} - \delta_1 \varepsilon_2 c_{m-2n} - \delta_2 \varepsilon_2 c_{m-\frac{3}{2}n} + c_{\frac{1}{2}n} \delta_2 + c_{2n} \delta_1 + c_{\frac{1}{2}n} c_m = 0
\]
Suppose \(c_{\frac{1}{2}n} = c_{m-2n} = 0 \). Then \(c_{m-3n} = \delta_1 \delta_2 \varepsilon_2 \delta_0, c_{2n} = \delta_0, \) and \(c_{\frac{1}{2}n} c_{m-\frac{1}{2}n} = -\varepsilon_2 \), giving \(\delta_2 = \delta_0 \varepsilon_2 \) and \(c_{m-\frac{3}{2}n} = \delta_1 \). Hence \(S_{m-\frac{1}{2}n} = 2 \pmod{4} \), which contradicts (9). The cases \(c_{m-\frac{1}{2}n} = c_{2n} = 0 \) and \(c_{m-2n} \equiv c_{m-\frac{1}{2}n} \pmod{2} \) give impossibilities in the same way, in the last case by considering \(S_{m-3n} \) and \(S_{m-\frac{3}{2}n} \) instead of \(S_{m-\frac{1}{2}n} \). Hence
\[
c_{m-\frac{1}{2}n} \equiv c_{m-2n} \equiv c_{m-\frac{1}{2}n} \pmod{2}
\]
and from (27) we get the two cases:

(i) \[c_{m-n} = \delta_0 \varepsilon_2, \quad c_{m-\frac{1}{2} n} = \delta_1, \quad c_{m-2n} = \delta_0 \varepsilon_2, \quad c_{m-\frac{3}{2} n} = \delta_1, \quad c_n = -\delta_0, \quad c_{\frac{1}{2} n} = c_{2n} = c_{\frac{3}{2} n} = 0, \]

(ii) \[c_{m-n} = -\delta_0 \varepsilon_2, \quad c_{m-\frac{1}{2} n} = c_{m-2n} = c_{m-\frac{3}{2} n} = 0, \quad c_n = \delta_0, \quad c_{\frac{1}{2} n} = -\delta_1 \varepsilon_2, \quad c_{2n} = \delta_0, \quad c_{\frac{3}{2} n} = -\delta_1 \varepsilon_2. \]

In both cases \(c_{m-n} = \delta_1, \quad c_{\frac{1}{2} n} = -\delta_1 \varepsilon_2. \)

The final phase in the proof is quite similar to that in the previous section. We put

\[
W = \sum_{j=0}^{m-n} (c_j + c_{j+n})^2 = \sum_{j=0}^{m-n} c_j^2 + 2 \sum_{j=0}^{m-n} c_j c_{j+n} + \sum_{j=n}^{m} c_j^2 = 18.
\]

Since in both cases

\[
3 \sum_{j=0}^{3} (c_{m-\frac{1}{2} j n} + c_{m-\frac{3}{2} j n})^2 + 3 \sum_{j=0}^{3} (c_{\frac{1}{2} j n} + c_{n+\frac{1}{2} j n})^2 = 24 \leq W = 18,
\]

we have proved lemma 10.

10.

The ten lemmas which we have proved in section 2–9 tell us that \(f(x) \) is irreducible, apart from the cases:

\[n = \frac{2}{3} m \text{ and } \varepsilon_2 = \varepsilon_1; \quad n = \frac{2}{3} m \text{ and } \varepsilon_2 = -\varepsilon_1; \quad n = \frac{4}{11} m \text{ and } \varepsilon_2 = \varepsilon_1. \]

It is easily shown that these exceptions give rise to exactly the listed identities, and our theorem is proved.

A further development of the ideas in [1], although in another direction, is given in papers [2] and [3]. According to a general result due to A. Schinzel in [3] it is for instance possible effectively to compute a constant \(C \) such that \(m/(m,n) < C \). However, his investigations are quite complicated, and the value of \(C \) seems to be only of theoretical interest. The method used in this paper is elementary and can be used to prove other theorems of irreducibility.

REFERENCES

UNIVERSITY OF OSLO, NORWAY