ON THE DIOPHANTINE EQUATION $Ax^4 - By^2 = C$ (C=1,4)

W. LJUNGGREN

Introduction,

In a previous paper [7] I have given a method for obtaining an upper bound for the number of solutions in rational integers x,y of any equation of the form $x^2+1=Dy^4$. In case D=2 the complete solution was found. The same method also works for the more general equation $Ax^4-By^2=1$, B not a square. Unfortunately, the procedure involves large computational work, so it has been desirable to search for simpler methods. For the special equation $3x^4-2y^2=1$ such a method was found by R. T. Bumby [2]. However, his paper contains also a good deal of calculation, and the method used seems not to be suitable for generalization to all equations $Ax^4-By^2=1$.

In a recent paper J. H. E. Cohn [3] has given an elementary treatment of diophantine equations of the types $y^2 - Dx^4 = \pm C$ and $x^4 - Dy^2 = \pm C$ where C = 1 or C = 4. He considers only values of D for which the equation $x^2 - Dy^2 = -4$ has a solution (x,y), when both x and y are odd rational integers. For this case he obtained the complete solution, and the method of determining possible non-trivial solutions is very simple. However, apart from the equation $x^2 + 1 = Dy^4$ all these equations were already solved by the author in papers [4]-[6], [8]-[10], and without any restriction on D. In [6] and [9] the author also solved in an elementary way the equation $x^2 + 1 = Dy^4$, imposing on D the condition mentioned above. However, his method for finding the only possible solution x, y was quite complicated.

Cohn's method has certain similarities with that used by the author in [9]. Operating with Jacobi's symbol instead of that of Legendre, he obtains his simple procedure for determining possible solutions.

In the following we assume that the odd positive integers A and B have the property that the diophantine equation

$$Az_1^2 - Bz_2^2 = 4$$

has solutions in odd, positive integers z_1 and z_2 . The solvability of (1) can always be decided in a simple way. For this well-known fact consult

Received February 10, 1967.

for instance Arndt [1] or Nagell [11]. By the way we note that $AB \equiv 5 \pmod{8}$ is a necessary but not sufficient condition.

Let (a,b) be the least solution of (1) in odd, positive integers. Then all solutions of (1) in positive integers z_1, z_2 are given by the formula

$$\frac{1}{2}(z_1A^{\frac{1}{2}}+z_2B^{\frac{1}{2}})=(\frac{1}{2}(aA^{\frac{1}{2}}+bB^{\frac{1}{2}}))^n,$$

where n is a positive integer in the case A = 1 and an odd positive integer otherwise.

Combining my method in [10] with an idea from that of Cohn (see [3]), we obtain the following two theorems:

THEOREM 1. The diophantine equation

$$Ax^4 - By^2 = 4$$

has at most two solutions in positive integers x,y. If $a=h^2$ and $Aa^2-3=k^2$, there are two solutions, namely x=h and x=hk. If $a=h^2$ and Aa^2-3+k^2 , there is one solution x=h. If $a=5h^2$ and $A^2a^4-5Aa^2+5=5k^2$, there is one solution x=5hk.

Theorem 2. Under the given condition on A and B, the diophantine equation

$$Ax^4 - By^2 = 1$$

has at most one solution in positive integers x,y. If $x=x_1$, $y=y_1$ is a solution, then

$$x_1 A^{\frac{1}{2}} + y_1 B^{\frac{1}{2}} = (\frac{1}{2} (aA^{\frac{1}{2}} + bB^{\frac{1}{2}}))^3$$
.

1. Notations.

Let $\varepsilon > 1$ be any unit with norm +1 in the algebraic number field $Q(D^{\frac{1}{2}})$, D > 0, and let further ε' denote the conjugate unit, such that $\varepsilon \varepsilon' = 1$. We introduce the following notations, where n, m, p and t denote natural numbers, n odd:

$$\begin{split} H_m(\varepsilon) &= \frac{\varepsilon^m - \varepsilon'^m}{\varepsilon - \varepsilon'} = H_m \;, \\ P_n(\varepsilon) &= \varepsilon'^{\frac{1}{2}(n-1)} \frac{\varepsilon^n - 1}{\varepsilon - 1} = H_{\frac{1}{2}(n+1)}(\varepsilon) + H_{\frac{1}{2}(n-1)}(\varepsilon) \;, \\ Q_n(\varepsilon) &= \varepsilon'^{\frac{1}{2}(n-1)} \frac{\varepsilon^n + 1}{\varepsilon + 1} = H_{\frac{1}{2}(n+1)}(\varepsilon) - H_{\frac{1}{2}(n-1)}(\varepsilon) \;, \\ R_n &= \varepsilon^{2^p} + \varepsilon'^{2^p} \;. \end{split}$$

Here we have

$$H_n(\varepsilon) = P_n(\varepsilon) Q_n(\varepsilon)$$
.

From the well-known formula [12, p. 154]

$$x^n + y^n \, = \, \sum_{i=0}^{\frac{1}{2}(n-1)} (-1)^i \, \frac{n}{n-i} \, \binom{n-i}{i} \, (x+y)^{n-2i} \, (xy)^i \; ,$$

we obtain for t odd, putting $x = \varepsilon^{\frac{1}{2}t}$, $y = \varepsilon'^{\frac{1}{2}t}$,

$$(5) \qquad Q_n(\varepsilon^l) = \sum_{i=0}^{\frac{1}{2}(n-1)} (-1)^i \frac{n}{n-i} \binom{n-i}{i} \left(\varepsilon + \varepsilon' + 2\right)^{\frac{1}{2}(n-1)-i} \left(Q_l^{\,2}(\varepsilon)\right)^{\frac{1}{2}(n-1)-i} \,.$$

Especially for t=1, since $Q_1(\varepsilon)=1$,

(6)
$$Q_n(\varepsilon) = \sum_{i=0}^{\frac{1}{2}(n-1)} (-1)^i \frac{n}{n-i} \binom{n-i}{i} (\varepsilon + \varepsilon' + 2)^{\frac{1}{2}(n-1)-i}.$$

2. Proof of some lemmas.

Lemma 1. $H_m \equiv H_{m-6} \pmod{8}$ if $\varepsilon + \varepsilon'$ is odd.

Proof.
$$H_m-H_{m-6}=(\varepsilon^{m-3}+\varepsilon'^{m-3})H_3\equiv 0\pmod 8$$
, since
$$H_3=\varepsilon^2+\varepsilon'^2+1=(\varepsilon+\varepsilon')^2-1\equiv 0\pmod 8\;.$$

Lemma 2. $Q_n(\varepsilon) \equiv 1 \pmod{8}$ if $n \equiv \pm 1 \pmod{12}$ and $\varepsilon + \varepsilon'$ odd. $Q_n(\varepsilon) \equiv -(\varepsilon + \varepsilon') \pmod{8}$ if $n \equiv \pm 5 \pmod{12}$ and $\varepsilon + \varepsilon'$ odd.

PROOF. If $n=12\,k+1$, we get $Q_n(\varepsilon)=H_{6k+1}-H_{6k}\equiv H_1\equiv 1\pmod 8$, on account of lemma 1. If n=12k+5, we find $Q_n(\varepsilon)=H_{6k+3}-H_{6k+2}\equiv H_3-H_2\equiv -(\varepsilon+\varepsilon')\pmod 8$. The remaining two congruences can be proved in the same way.

LEMMA 3. $H_m \equiv 0 \pmod{3}$ if (m, 6) = 1.

PROOF. This follows immediately from the congruences $H_m \equiv H_{m-6} \pmod{3}$ if $(\varepsilon + \varepsilon', 3) = 1$ and $H_m \equiv -H_{m-2} \pmod{3}$ if $(\varepsilon + \varepsilon', 3) = 3$.

Lemma 4. $R_p \equiv 2 \pmod{n}$ if $\varepsilon + \varepsilon' + 2 \equiv 0 \pmod{n}$, $p \ge 1$.

PROOF. We proceed by induction. We have

$$\varepsilon^2 + \varepsilon'^2 - 2 \, = \, (\varepsilon + \varepsilon')^2 - 4 \, = \, (\varepsilon + \varepsilon' + 2)(\varepsilon + \varepsilon' - 2) \, \equiv \, 0 \, \, (\operatorname{mod} n) \, \, .$$

Assuming $R_n \equiv 2 \pmod{n}$, we obtain by squaring

$$R_{p^2} \equiv R_{p+1} + 2 \equiv 4 \pmod{n}$$
, or $R_{p+1} \equiv 2 \pmod{n}$.

LEMMA 5.

$$R_p \equiv \varepsilon + \varepsilon' - 1 \pmod{Q_5(\varepsilon)}$$
 if p is odd, $R_p = -(\varepsilon + \varepsilon') \pmod{Q_5(\varepsilon)}$ if p is even.

PROOF. $Q_5(\varepsilon) = (\varepsilon + \varepsilon')^2 - (\varepsilon + \varepsilon') - 1$, which gives

$$\varepsilon^2 + \varepsilon'^2 = (\varepsilon + \varepsilon')^2 - 2 \equiv (\varepsilon + \varepsilon') - 1 \pmod{Q_5(\varepsilon)}$$
.

Hence

$$\varepsilon^4 + \varepsilon'^4 = (\varepsilon^2 + \varepsilon'^2)^2 - 2 \equiv (\varepsilon + \varepsilon')^2 - 2(\varepsilon + \varepsilon') - 1 \equiv -(\varepsilon + \varepsilon') \pmod{Q_5(\varepsilon)}.$$

If $R_p \equiv (\varepsilon + \varepsilon') - 1 \pmod{Q_5(\varepsilon)}$ we get $R_{p+1} \equiv -(\varepsilon + \varepsilon') \pmod{Q_5(\varepsilon)}$ and $R_{p+2} \equiv (\varepsilon + \varepsilon') - 1 \pmod{Q_5(\varepsilon)}$.

Lemma 6. None of the equations $Q_9(\varepsilon) = z^2$, $Q_9(\varepsilon) = 3z^2$ and $Q_9(\varepsilon) = 2z^2$ have solutions in positive integers $\varepsilon + \varepsilon'$ and z.

PROOF. We have $Q_9(\varepsilon) = Q_3(\varepsilon)Q_3(\varepsilon^3) = u(u^3 + 3u^2 - 3)$, where $u = \varepsilon + \varepsilon' - 1$. The equation $Q_9(\varepsilon) = z^2$ implies, either

$$(7) u = 3h^2, u^3 + 3u^2 - 3 = 3k^2$$

 \mathbf{or}

$$(8) u = h^2, u^3 + 3u^2 - 3 = k^2$$

The last equation in (7) is impossible mod 9, and the last equation in (8) gives

$$(9) h^6 + 3h^4 - 3 = k^2,$$

which is impossible for $h \ge 3$, since it is easy to check that

$$2h^3 + 3h > 2k > 2h^3 + 3h - 1$$
.

Equation (9) is impossible also for h=2, but is satisfied for h=1, which gives $\varepsilon+\varepsilon'=2$, but this value must be excluded.

The equation $Q_9(\varepsilon) = 3z^2$ implies

$$u = 9h^2, \qquad u^3 + 3u^2 - 3 = 3k^2,$$

from which we conclude that $3^5h^6 + 3^4h^4 - 1 = k^2$, impossible mod 3.

The equation

$$u(u^3 + 3u^2 - 3) = 2z^2$$

implies, since $u \equiv 0 \pmod{3}$ is impossible,

$$u = 2h^2$$
, $u^3 + 3u^2 - 3 = k^2$.

From $8h^6 + 12h^4 - 3 = k^2$, we deduce

$$2(2h^2+1)(2h^4+2h^2-1) = k^2+1$$

which is impossible since $2h^4 + 2h^2 - 1 \equiv -1 \pmod{4}$.

LEMMA 7. The equation $Q_n(\varepsilon) = nz^2$ with $\varepsilon + \varepsilon' + 2 \equiv 0 \pmod{n^2}$ has no solution in integers $\varepsilon + \varepsilon'$ and z provided, that the odd squarefree integer n contains a primefactor $q \equiv 3 \pmod{4}$.

PROOF. Putting n = mq, (m,q) = 1, we find

$$Q_n(\varepsilon) = Q_m(\varepsilon) Q_q(\varepsilon^m) = m q z^2$$
.

From (5) we derive that the greatest common divisor of $Q_m(\varepsilon)$ and $Q_q(\varepsilon^m)$ divides q. Further it follows from (6) that $Q_m(\varepsilon) \equiv 0 \pmod{q}$ while $Q_q(\varepsilon^m) \equiv -q \pmod{q^2}$. Hence

$$Q_m(\varepsilon) = mh_1^2, \qquad Q_q(\varepsilon^m) = qh_2^2,$$

the last equation giving $h_2^2 + 1 \equiv 0 \pmod{q}$, which is impossible.

Lemma 8. The equation $Q_n(\varepsilon) = nz^2$ with $\varepsilon + \varepsilon' + 2 \equiv 0 \pmod{n^2}$ has no solution in integers $\varepsilon + \varepsilon'$ and z, provided that the odd squarefree integer $n \equiv 5 \pmod{24}$ and $\varepsilon + \varepsilon'$ is odd.

PROOF. According to lemma 7 we assume $n \equiv 1 \pmod{4}$. At first we prove that n = 8t + 1, t an integer, is impossible. We find

$$Q_n(\varepsilon) + 1 = (\varepsilon^{2t} + \varepsilon'^{2t})(H_{2t+1} - H_{2t})$$
.

Putting $2t = 2^p t_1$, $(t_1, 2) = 1$, $p \ge 1$, we get that R_p is a divisor of $nz^2 + 1$, and consequently $(-n/R_p) = 1$. Now it is easily found that $R_p \equiv -1 \pmod{8}$, and from lemma 4 we have $R_p \equiv 2 \pmod{n}$. Using these facts, we get

 $1 = \left(\frac{-n}{R_p}\right) = -\left(\frac{n}{R_p}\right) = -\left(\frac{R_p}{n}\right) = -\left(\frac{2}{n}\right) = -1$,

a contradiction. Putting n = 8r + 5, we distinguish between the two cases $r \equiv 2 \pmod{3}$ and $r \equiv 1 \pmod{3}$. If $r \equiv 2 \pmod{3}$, we get $n \equiv 0 \pmod{3}$, which must be excluded according to lemma 6. If $r \equiv 1 \pmod{3}$, we get $n \equiv 1 \pmod{12}$ and therefore $nz^2 \equiv 1 \pmod{8}$, on account of lemma 2 if $\varepsilon + \varepsilon'$ is odd, i.e. $n \equiv 1 \pmod{8}$, a contradiction.

3. Proof of two propositions.

PROPOSITION 1. $Q_n(\varepsilon)$ is not a square for n > 3 if $\varepsilon + \varepsilon'$ is an odd natural number.

PROOF. A proof by elementary means is given in my paper [10]. However, for the sake of completeness, I add a proof. It is sufficient to assume n=4t+3 since the case n=4t+1 can be handled in exactly the same manner. From

$$(10) Q_n(\varepsilon) = z^2$$

we conclude

$$z^2 + 1 = (\varepsilon^{t+1} + \varepsilon'^{t+1}) (H_{t+1}(\varepsilon) - H_t(\varepsilon)) .$$

If t is odd, we put $t+1=2^pt_1$, $(t_12)=1$, $p\geq 1$, which gives $z^2+1\equiv 0\pmod {R_p}$. This is impossible since $R_p\equiv -1\pmod 8$. If t is even and $t\equiv 2\pmod 3$, then

$$\frac{\varepsilon^3 + \varepsilon^3}{\varepsilon + \varepsilon'} = (\varepsilon + \varepsilon')^2 - 3 \equiv -2 \pmod{8}$$

is a divisor of z^2+1 , which is also impossible. If t is even and $t \equiv 1 \pmod{3}$ then both $\varepsilon+\varepsilon'$ and $\varepsilon+\varepsilon'-1$ are divisors of z^2+1 , again impossible, since $\varepsilon+\varepsilon'\equiv 1 \pmod{4}$ would imply $\varepsilon+\varepsilon'-1\equiv 0 \pmod{4}$. Consequently $t\equiv 0 \pmod{3}$ i.e. $n\equiv 0 \pmod{3}$. In the same way we find if n>1 and $n\equiv 1 \pmod{4}$ that $n\equiv 0 \pmod{3}$.

Remark. By substituting $\varepsilon = -\varrho$, $\varepsilon' = -\varrho^2$, where $\varrho^2 + \varrho + 1 = 0$, it is easily shown that $\varepsilon + \varepsilon' - 1$ divides $H_{t+1}(\varepsilon) - H_t(\varepsilon)$.

According to lemma 6 it now only remains to discuss the case n=3m, where (m,3)=1. Equation (10) can be written

$$Q_m(\varepsilon) Q_3(\varepsilon^m) = z^2$$
.

The greatest common divisor of $Q_m(\varepsilon)$ and $Q_3(\varepsilon^m)$ divides 3 (formula (5)), $Q_m(\varepsilon)$ however is not divisible by 3, the last fact following from lemma 3, since $Q_m(\varepsilon)$ is a divisor of $H_m(\varepsilon)$. Hence

$$Q_m(\varepsilon) = z_1^2, \qquad Q_3(\varepsilon^m) = z_2^2.$$

The first part of the proof shows that m=1, i.e. n=3 is a possible solution.

PROPOSITION 2. The equation $Q_n(\varepsilon) = nz^2$ with $\varepsilon + \varepsilon' + 2 \equiv 0 \pmod{n^2}$ has no solution in integers $\varepsilon + \varepsilon'$ and z if $\varepsilon + \varepsilon'$ is odd and n > 5 and squarefree.

PROOF. Lemmas 7 and 8 show that it is sufficient to treat the case n=24k+5. We find

$$(11) Q_n(\varepsilon) + Q_5(\varepsilon) = (\varepsilon^{6k} + \varepsilon'^{6k})(H_{6k+3} - H_{6k+2}).$$

Putting $k=2^{p-1}k_1$, $(k_1,2)=1$, $p\geq 1$, we have that R_p is a divisor of the right-hand side of (11). From (11) now follows

$$\begin{split} 1 &= \left(\frac{-nQ_5}{R_p}\right) = &- \left(\frac{nQ_5}{R_p}\right) = &- \left(\frac{n}{R_p}\right) \left(\frac{Q_5}{R_p}\right) = &- \left(\frac{R_p}{n}\right) \left(\frac{Q_5}{R_p}\right) \\ &= &- \left(\frac{2}{n}\right) \left(\frac{Q_5}{R_p}\right) = \left(\frac{Q_5}{R_p}\right). \end{split}$$

By lemma 2 it follows that $Q_n(\varepsilon) \equiv -(\varepsilon + \varepsilon') \pmod{8}$, and therefore $\varepsilon + \varepsilon' \equiv 3 \pmod{8}$ and $Q_5 \equiv 5 \pmod{8}$. Then we derive

$$1 \, = \left(\frac{Q_5}{R_p}\right) = \left(\frac{R_p}{Q_5}\right) = \left(\frac{\varepsilon + \varepsilon' - 1}{Q_5}\right) \quad \text{for p odd}$$

and

$$1 \, = \left(\frac{-\left(\varepsilon + \varepsilon'\right)}{Q_5}\right) = \left(\frac{\varepsilon + \varepsilon'}{Q_5}\right) = \left(\frac{Q_5}{\varepsilon + \varepsilon'}\right) = \left(\frac{-1}{\varepsilon + \varepsilon'}\right) = \, -1 \quad \text{ for } p \text{ even ,}$$

a contradiction. Putting in the first case $\varepsilon + \varepsilon' - 1 = 2T$, $T \equiv 1 \pmod{4}$, we find further

$$1 = \left(\frac{2}{Q_5}\right) \left(\frac{T}{Q_5}\right) = -\left(\frac{T}{Q_5}\right) = -\left(\frac{Q_5}{T}\right) = -\left(\frac{-1}{T}\right) = -1$$
,

and our proposition is proved.

4. Proof of theorems 1 and 2.

All solutions of $Ax^4 - By^2 = C$, C = 1, 4, in positive integers x, y are given by

$$(12) (x^2A^{\frac{1}{2}} + yB^{\frac{1}{2}})C^{-\frac{1}{2}} = (\frac{1}{2}(aA^{\frac{1}{2}} + bB^{\frac{1}{2}}))^n,$$

where n is an odd, positive number.

This follows immediately from (2) if we can prove that (2) is true also if A = 1. It is well known that C = 1 implies $n \equiv 0 \pmod{3}$. But an equation

$$x^2 + yB^{\frac{1}{2}} = (\frac{1}{2}(a+bB^{\frac{1}{2}}))^{6m} = \lambda^6$$

results in

$$2x^2 = \lambda^6 + \lambda'^6, \qquad \lambda\lambda' = 1,$$

or, putting $\lambda + \lambda' = t$,

(13)
$$2x^2 = (t^2-2)((t^2-2)^2-3).$$

From (13) we easily derive

$$t^2-2=2h^2$$
, $4h^4-3=k^2$

with the only solution t=2, which is clearly impossible.

If C=4, an equation

$$\frac{1}{2}(x^2 + yB^{\frac{1}{2}}) = \lambda_1^2$$

gives $x^2 = \lambda_1^2 + \lambda_1'^2 = (\lambda_1 + \lambda_1')^2 - 2 = t_1^2 - 2$, which is also impossible. With the notation

$$\varepsilon = (\frac{1}{2}(aA^{\frac{1}{2}} + bB^{\frac{1}{2}}))^2 = \frac{1}{2}(Aa^2 - 2 + ab(AB)^{\frac{1}{2}})$$

we get from (12)

(14)
$$2C^{-\frac{1}{2}}x^2 = aQ_n(\varepsilon), \qquad \varepsilon + \varepsilon' + 2 = Aa^2.$$

At first we shall prove theorem 1. The equation (14) can then be written

$$(15) x^2 = a Q_n(\varepsilon) .$$

Putting $a = rh^2$, r without any squared factor > 1, we deduce from (15)

$$(16) Q_n(\varepsilon) = rk^2.$$

On account of (6) it is easily seen that r is a divisor of n, say $n=rn_1$. If r=1, we get n=1 or n=3 (proposition 1). If r>1, we rewrite (16) in the form

$$Q_{n_1}(\varepsilon)\,Q_r(\varepsilon^{n_1})\,=\,rk^2$$

yielding

$$Q_{n_1}(\varepsilon) = k_1^2, \qquad Q_r(\varepsilon^{n_1}) = rk_2^2.$$

The first of these equations implies $n_1=1$ or $n_1=3$ (proposition 1), and the second one gives as the only possibility r=5 (proposition 2). But $Q_5(\varepsilon^3)=5k_3^2$ can be written

$$5(\frac{1}{5}(2(\varepsilon^3+\varepsilon'^3)-1))^2 = 1+4k_3^2$$
,

impossible, since $2(\varepsilon^3 + \varepsilon'^3) \equiv 0 \pmod{4}$. Theorem 1 now follows as an immediate consequence.

Then we proceed to prove theorem 2. From (12) we get

(17)
$$x^2 A^{\frac{1}{2}} + y B^{\frac{1}{2}} = (\frac{1}{2} (a A^{\frac{1}{2}} + b B^{\frac{1}{2}}))^{3m}.$$

We distinguish between two cases:

1° $m \equiv 0 \pmod{3}$. Equation 17 implies, putting m = 3r,

(18)
$$x^2 A^{\frac{1}{2}} + y B^{\frac{1}{2}} = \varepsilon_1^{\frac{9}{2}},$$

where

$$\varepsilon_1^{\frac{1}{2}} = \left(\frac{1}{2}(aA^{\frac{1}{2}} + bB^{\frac{1}{2}})\right)^r = \frac{1}{2}(uA^{\frac{1}{2}} + vB^{\frac{1}{2}})$$
 .

Hence

$$2x^2 = uQ_{\theta}(\varepsilon_1).$$

The greatest common divisor of u and $Q_9(\varepsilon_1)$ divides 9, and if $u \equiv 0 \pmod{3}$, then $Q_9(\varepsilon_1) \equiv 9 \pmod{27}$. From (19) we then conclude either

$$u = k_1^2, \qquad Q_9(\varepsilon_1) = 2k_2^2,$$

or $u = 2k_1^2, \quad Q_9(\varepsilon_1) = k_2^2,$

both systems being impossible on account of lemma 6.

 $2^{\circ} \ m \not\equiv 0 \pmod{3}$. Putting

$$\varepsilon_2^{\frac{1}{2}} = (\frac{1}{2}(aA^{\frac{1}{2}} + bB^{\frac{1}{2}}))^m = \frac{1}{2}(u_1A^{\frac{1}{2}} + v_1B^{\frac{1}{2}}), \quad (u_1, 2) = 1$$

we get from (17)

$$2x^2 = u_1Q_3(\varepsilon_2) ,$$

yielding either

(20)
$$u_1 = h^2, \quad Q_3(\varepsilon_2) = 2k^2,$$

 \mathbf{or}

(21)
$$u_1 = 3h^2, \quad Q_3(\varepsilon_2) = 6k^2.$$

The first case gives the equation $Ah^4 - Bv_1^2 = 4$, (h, 2) = 1. From theorem 1 we then conclude

$$\frac{1}{2}(h^2A^{\frac{1}{2}}+v_1B^{\frac{1}{2}})=(\frac{1}{2}(aA^{\frac{1}{2}}+bB^{\frac{1}{2}}))^t, \quad t=1 \text{ or } t=5,$$

since t=3 must be excluded, h being odd. Hence

$$(22) x^2 A^{\frac{1}{2}} + y B^{\frac{1}{2}} = (\frac{1}{2} (aA^{\frac{1}{2}} + bB^{\frac{1}{2}}))^{3t}.$$

We shall show that t=5 never occurs. For t=5 we write (22) in the form

$$(23) x^2 A^{\frac{1}{2}} + y B^{\frac{1}{2}} = (a_1 A^{\frac{1}{2}} + b_1 B^{\frac{1}{2}})^5,$$

putting

$$(\frac{1}{2}(aA^{\frac{1}{2}}+bB^{\frac{1}{2}}))^3 = (a_1A^{\frac{1}{2}}+b_1B^{\frac{1}{2}})$$
.

From (23) it follows

$$x^2 \, = \, a_1(16A^2a_1{}^4 - 20A^2a_1{}^2 + 5) \,\, ,$$

giving either

(24)
$$a_1 = h_1^2, \quad 16A^2a_1^4 - 20Aa_1^2 + 5 = k_1^2,$$

 \mathbf{or}

$$(25) a_1 = 5h_1^2, 16A^2a_1^4 - 20Aa_1^2 + 5 = 5k_1^2.$$

The last equations in (24) and (25) can be written,

$$(8Aa_1^2-5)^2-5=4k_1^2$$
 and $5(40Ah_1^4-1)^2=1+4k_1^2$,

respectively. Obviously, these equations have no solutions in integers h_1 , k_1 , with $Aa_1^2 > 4$. Consequently, the only possibility for (20) is given by (22) with t = 1.

At last we have to discuss the system (21). Here we find $9Ah^4 - Bv_1^2 = 4$, (h, 2) = 1. We put

$$(\frac{1}{2}(aA^{\frac{1}{2}}+bB^{\frac{1}{2}}))^s = \frac{1}{2}(a_sA^{\frac{1}{2}}+b_sB^{\frac{1}{2}}), \quad (s,6) = 1,$$

where s denotes the least exponent such that $a_s \equiv 0 \pmod{3}$, and shall show that s = 1 is a necessary condition. Clearly (Bb, 3) = 1. Assuming (a,3) = 1, we derive from $Aa^2 - Bb^2 = 4$ that $A - B \equiv 1 \pmod{3}$, giving

either $A \equiv 2$ or $A \equiv 0 \pmod{3}$. In the first case the least value of s is 3, in the second case s=2, contrary to the assumption. On account of theorem 1 we obtain

$$x^2A^{\frac{1}{2}}+yB^{\frac{1}{2}}=(\frac{1}{2}(aA^{\frac{1}{2}}+bB^{\frac{1}{2}}))^{3t}, t=1 \text{ or } t=5$$
,

where t=5 is excluded as in the foregoing case.

This completes the proof of theorem 2.

REFERENCES

- F. Arndt, Untersuchungen über einige unbestimmte Gleichungen zweiten Grades, und über die Verwandlung der Quadratwurzel aus einem Bruche in einen Kettenbruch, Arch. d. Math. und Physik 12 (1849), 211–276.
- 2. R. T. Bumby, The diophantine equation $3x^4 2y^2 = 1$, Math. Scand. 21 (1967), 144-148.
- 3. J. H. E. Cohn, Eight diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
- 4. W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahlkörper. Mit Anwendungen auf die Lösung einer Klasse unbestimmter Gleichungen 4. Grades, Skr. Norske Vid. Akad. Oslo, Mat.-Naturv. Klasse, 1936, No. 12, 73 pp.
- 5. W. Ljunggren, Über die unbestimmte Gleichung $Ax^2 By^4 = C$, Arch. for Math. og Naturv. (Oslo) 41, Nr. 10 (1938), 18 pp.
- 6. W. Ljunggren, Über die Gleichung $x^4 Dy^2 = 1$, Arch. for Math. og Naturv. (Oslo) 45, 1942, 61-70.
- 7. W. Ljunggren, Zur Theorie der Gleichung $x^2+1=Dy^4$, Avh. Norske Vid. Akad. Oslo I, 1942, No. 5, 1942, 27 pp.
- W. Ljunggren, Einige Sätze über unbestimmte Gleichungen von der Form Ax⁴+Bx²+C= Dy², Skr. Norske Vid. Akad. Oslo, Mat.-Naturv. Klasse, 1942, No. 9, 53 pp (1943).
- 9. W. Ljunggren, On the diophantine equation $x^2+4=Ay^4$, Norske Vid. Selsk. Forh. (Trondheim) 24 (No. 18) (1951), 82-84.
- 10. W. Ljunggren, Ein Satz über die Gleichung $Ax^2 By^4 = C$ (C = 1, 2, 4), Comptes Rendus du Douzième Congrès des Mathématiciens Scandinaves, Lund (1953), 188–194.
- T. Nagell, On a special class of diophantine equations of the second degree, Ark. för Mat. 3 (1954), 51-65.
- 12. O. Perron, Algebra I, Berlin, 1932.

UNIVERSITY OF OSLO, NORWAY