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ON THE DIOPHANTINE EQUATION Ax*—By2=C (C=1,4)

W. LJUNGGREN
Introduction,

In a previous paper [7] I have given a method for obtaining an upper
bound for the number of solutions in rational integers z,y of any equation
of the form #%2+4 1=Dy* In case D=2 the complete solution was found.
The same method also works for the more general equation Azt — By®=1,
B not a square. Unfortunately, the procedure involves large computa-
tional work, so it has been desirable to search for simpler methods. For
the special equation 3x*—2y2=1 such a method was found by R.T.
Bumby [2]. However, his paper contains also a good deal of calculation,
and the method used seems not to be suitable for generalization to all
equations Axt*— By?=1.

In a recent paper J. H. E. Cohn [3] has given an elementary treatment
of diophantine equations of the types y*—Dxt= +C and z*—Dy?= +C
where C'=1 or C=4. He considers only values of D for which the equa-
tion 22— Dy?= —4 has a solution (x,y), when both = and y are odd
rational integers. For this case he obtained the complete solution, and
the method of determining possible non-trivial solutions is very simple.
However, apart from the equation z2+1=Dy* all these equations were
already solved by the author in papers [4]-[6], [8]-[10], and without any
restriction on D. In [6] and [9] the author also solved in an elementary
way the equation z2+ 1=Dy%, imposing on D the condition mentioned
above. However, his method for finding the only possible solution z,y
was quite complicated.

Cohn’s method has certain similarities with that used by the author
in [9]. Operating with Jacobi’s symbol instead of that of Legendre, he
obtains his simple procedure for determining possible solutions.

In the following we assume that the odd positive integers A and B
have the property that the diophantine equation

(1) Az?— Bz =4

has solutions in odd, positive integers z, and z,. The solvability of (1)
can always be decided in a simple way. For this well-known fact consult
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for instance Arndt [1] or Nagell [11]. By the way we note that
AB=5 (mod8) is a necessary but not sufficient condition.

Let (a,b) be the least solution of (1) in odd, positive integers. Then
all solutions of (1) in positive integers z,,2, are given by the formula

(2) (204t +2,BY) = (}(adi+bBY)",

where 7 is a positive integer in the case 4 =1 and an odd positive integer

otherwise.
Combining my method in [10] with an idea from that of Cohn (see
[3]), we obtain the following two theorems:

TaEOREM 1. The diophantine equation
(3) Azt—By? = 4

has at most two solutions in positive integers x,y. If a=h? and Aa?—3 =42,
there are two solutions, namely x=h and x="hk. If a=h? and Aa®—3+ L2,
there is one solution x=h. If a=>5h* and A%*—5Aa2+ 5=>5k?, there is
one solution x = bhk.

THEOREM 2. Under the given condition on A and B, the diophantine

equation
(4) Az*—By? =1

has at most one solution in positive integers x,y. If x=wx,, y=1vy, 18 a so-

lution, then
w, At +y, Bt = (}(adt+0BY))3.

1. Notations.

Let £>1 be any unit with norm +1 in the algebraic number field
Q(DY), D>0, and let further & denote the conjugate unit, such that
ee’=1. We introduce the following notations, where n, m, p and ¢ denote
natural numbers, » odd:

gm—g'm
Hm(e) = 3—8, = Hm’
e"—1
P,(e) = g'¥n-D ot Hypi1)(8) + Hynp(e) »

, e"+1
Qn(e) = etn-D L H i 41)(€) — Hyn-1)(€)
R =¥+ &%,

D



ON THE DIOPHANTINE EQUATION Aat—By?=C (C =1, 4) 151

Here we have
Hn(s) = Pn(g) Qn(e) .
From the well-known formula [12, p. 154]

¥n-1) n [n—1 ) .
ahpyn = 3 (—1)i ( . )(x+y)"-m(xy)@,
iz n—t\ 1

we obtain for ¢ odd, putting z=¢¥, y=¢'¥,

3n— —3
(5) Q. (¢ =( zl)( —1) i . (ni 1‘) (e+&' + 2)kn-1—i (Qtz(g))}(n—n-i .

=0 n—1

Especially for t=1, since @,(¢)=1,

}(n—l\ .
(6) Q,(e) = ( 7,) (e +¢ +2)kn-D-i

2. Proof of some lemmas.
Lemma 1. H,=H,, ¢ (mod8) if e+¢' is odd.
Proor. H,—H, _g=(e"3+¢&™3)Hy;=0 (mod8), since
Hy = 246241 = (e+¢&')2—1 = 0 (mod8).

LemMMA 2. Q,(¢)=1 (mod8) if n= +1 (mod12) and e+¢’ odd. Q,(¢)=
—(e+¢') (mod8) if n= +5 (mod12) and e+¢' odd.

Proor. If n=12k+1, we get Q,(¢)=Hg1—Heg=H,=1 (mod8), on
account of lemma 1. If n=12k+5, we find Q,(¢)=Hgy 53— Hepro=
H;—H,= —(¢+¢') (mod8). The remaining two congruences can be
proved in the same way.

Lemma 3. H,,#=0 (mod3) if (m,6)=1.

Proor. This follows immediately from the congruences H,=H, 4
(mod3) if (¢+¢',3)=1and H,,= —H,,_, (mod3) if (¢+¢',3)=3.

Lemma 4. B, =2 (modn) if e+¢'+2=0 (modn), p2 1.
Proor. We proceed by induction. We have
E2+e2—-2 = (e+¢')—4 = (e+&'+2)(e+&'—2) = 0 (modn) .
Assuming R,=2 (modn), we obtain by squaring

R2=R,,;+2 = 4 (modn), or RB,,; = 2 (modn).
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LeMma 5.
R, = e+&' —1 (modQ4(e)) if pisodd,

R, = —(¢+¢') (modQy(e)) if p is even .
Proor. Q4(c)=(e+¢")2—(e+¢’)—1, which gives

e+¢? = (e+&)2—2 = (e+¢&')—1 (modQy(e)) .
Hence

gttt = (246222 = (e+¢')2—2(e+&)—1 = —(e+¢') (modQ4(e)) .

If R,=(s+¢')—1 (mod@y(e)) we get R,.,=—(e+¢') (mod@ys(e)) and
R, ,=(e+¢')—1 (mod@y(e)).

LeMMA 6. None of the equations Qq(e) =22, Qy(c) =322 and Qqy(e) =2z
have solutions in positive integers e+ ¢’ and z.

Proo¥. We have Qy(c) = @3(c)Q4(e%) = u(u®+ 3u?— 3), where u=¢+¢' — 1.
The equation Qg(¢) =22 implies, either

(") w = 3h% wd+3u:-3 = 3k

or

(8) u = h?  ud4+3ut-3 = k?

The last equation in (7) is impossible mod 9, and the last equation in (8
q q

gives

(9) BS+3h4—3 = k2,

which is impossible for &= 3, since it is easy to check that
2h®+3h > 2k > 2R3+ 3R —1.

Equation (9) is impossible also for A=2, but is satisfied for =1, which
gives ¢+¢&'=2, but this value must be excluded.
The equation Qy(¢) =322 implies
u = 9h2, w3+ 3u2—3 = 3k2,
from which we conclude that 3548+ 3%%—1=£k2, impossible mod 3.

The equation
w(ud+ 3u?—3) = 222

implies, since % =0 (mod 3) is impossible,
w = 2h2, ud+3u2—-3 = k2.
From 8h%412h% —3=£k2, we deduce
2(2h2 +1)(2h4+2h2—1) = K241,
which is impossible since 2h*+2h2—1= —1 (mod4).
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LeMmaA 7. The equation Q,(c)=mn2* with ¢+¢'+2=0 (modn?) has no
solution in integers e+¢&' and z provided. that the odd squarefree integer
contains a primefactor ¢=3 (mod4).

Proor. Putting n=mgq, (m,q)=1, we find

Qn(e) = Qm(e) Qq(sm) = quz .
From (5) we derive that the greatest common divisor of @,,(¢) and

Q,(e™) divides q. Further it follows from (6) that @,,(¢)=0 (modg) while
Q,(e™)= —q (modg?). Hence

Qm(g) = mhlz: Qq(sm) = qh22 s
the last equation giving k,2+1=0 (modg), which is impossible.

Lemma 8. The equation @Q,(¢)=nz* with e+¢& +2=0 (modn?) has no
solution in integers e+¢' and z, provided that the odd squarefree integer
n=%=5 (mod24) and ¢+¢&' is odd.

Proor. According to lemma 7 we assume n=1 (mod4). At first we
prove that n=8t+1, ¢ an integer, is impossible. We find

Qu(e)+1 = (¥ + &%) (Hyy— Hyy) .

Putting 2¢=2%¢,, (t,,2)=1, p=1, we get that R, is a divisor of nz2+1,
and consequently (—n/R,)=1. Now it is easily found that E,= -1
(mod8), and from lemma 4 we have E,=2 (modn). Using these facts,

@) )6
“\R,)  \R,)  \ax/) \u/ 7’

a contradiction. Putting n=8r+ 5, we distinguish between the two cases

r=2 (mod3) and r=1 (mod3). If r=2 (mod3), we get n=0 (mod3),

which must be excluded according to lemma 6. If r=1 (mod3), we get

n=1 (mod12) and therefore nz?2=1 (mod8), on account of lemma 2 if
e+¢& is odd, i.e. n=1 (mod8), a contradiction.

3. Proof of two propositions.

ProrosiTioN 1. Q,(¢) ts not a square for n>3 if ¢ +¢’ is an odd natural
number.

Proor. A proof by elementary means is given in my paper [10].
However, for the sake of completeness, I add a proof. It is sufficient to
assume n =4+ 3 since the case n=4¢+1 can be handled in exactly the
same manner. From

(10) Qn(s) = 2%
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we conclude
22+ 1 = (414 ") (Hyyy(e) — Hi(e)) -

If ¢t is odd, we put t+1=27¢, (£,2)=1, p=1, which gives 22+1=0
(mod R,). This is impossible since B,= —1 (mod8). If # is even and
t=2 (mod3), then
e+e
e+é

= (¢+¢')2—~3 = —2 (mod8)

is a divisor of 22+ 1, which is also impossible. If ¢ is even and t=1 (mod 3)
then both ¢+¢' and e+¢& —1 are divisors of z2+1, again impossible,
since ¢+¢ =1 (mod4) would imply ¢+¢& —1=0 (mod4). Consequently
t=0 (mod3) i.e. n=0 (mod3). In the same way we find if »>1 and
n=1 (mod4) that n=0 (mod3).

Remark. By substituting e= —g9, &' = —g?% where p2+p+1=0, it is
easily shown that ¢+¢&' —1 divides H,,,(s) - H(¢).

According to lemma 6 it now only remains to discuss the case n=3m,
where (m,3)=1. Equation (10) can be written

Qnle) @y(e™) = 2.

The greatest common divisor of @, (¢) and @4(c™) divides 3 (formula (5)),
@,,(¢) however is not divisible by 3, the last fact following from lemma 3,
since @,,(¢) is a divisor of H,(¢). Hence

Qm(e) = zlz! Qa(sm) = 222 .

The first part of the proof shows that m=1, i.e. n=3 is a possible solu-
tion.

ProPOSITION 2. The equation Q,(e)=nz? with e+¢&'+2=0 (modn?) has
no solution in integers e +¢' and z if e+¢&' 13 odd and n> 5 and squarefree.

Proor. Lemmas 7 and 8 show that it is sufficient to treat the case
n=24k+5. We find

(11) Qu(e) + Qs(e) = (% + &%) (Hgpi3— Hepo)

Putting k=27-k,, (k,,2)=1, p=1, we have that R, is a divisor of the
right-hand side of (11). From (11) now follows

- (590G - @

@
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By lemma 2 it follows that @Q,(e)= —(e+¢’) (mod8), and therefore
e+¢& =3 (mod8) and Q=5 (mod8). Then we derive

= (2)- (8)- (557) sorrs

y/
and

(59 () - (8- (53] - -1 v,

a contradiction. Putting in the first case ¢+¢&' —1=2T, T=1 (mod4),
we find further

(G- -G-8

and our proposition is proved.

4. Proof of theorems 1 and 2.

All solutions of Axt— By?=C, C=1,4, in positive integers x,y are
given by
(12) (2 At +yBY)C-t = (Hadt+bBYH)",
where 7 is an odd, positive number.,

This follows immediately from (2) if we can prove that (2) is true also
if 4=1. Tt is well known that C'=1 implies n=0 (mod3). But an equa-
tion

x2+yBt = (}(a+bBY))sm = 28
results in
222 = 28448, AV =1,
or, putting 2+ A’ =¢,
(13) 22? = (12-2)((12—2)2-3).
From (13) we easily derive
22 = 2h%,  4WA—3 = k2

with the only solution ¢=2, which is clearly impossible.
If C=4, an equation
3@ +yBY) = 22
gives a2=2,2+1,"2 = (A, +4,)?—2 = {,2—2, which is also impossible.
With the notation

e = (J(@aAdi+bBY)) = §(Aa®—2+ab(4AB)})
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we get from (12)
(14) 2C-tz% = aQ,(e), e+ +2 = Aa?.

At first we shall prove theorem 1. The equation (14) can then be
written

(15) 2% = a@,(e).
Putting a =rh?, r without any squared factor > 1, we deduce from (15)
(16) Qule) = ri2.

On account of (6) it is easily seen that r is a divisor of n, say n=rn,.
If r=1, we get n=1 or n=3 (proposition 1). If r>1, we rewrite (16) in

the form Qu(€) Q™) = 782
yielding Qule) = B Q™) = rh?.

The first of these equations implies 7,=1 or n; =3 (proposition 1), and
the second one gives as the only possibility r=5 (proposition 2). But
Q;(¢%) = 5k,% can be written

5(3(2(e3+£3)—1))2 = 1+4kg?,

impossible, since 2(¢3+¢'3)=0 (mod4). Theorem 1 now follows as an
immediate consequence.

Then we proceed to prove theorem 2. From (12) we get
(17) 22 At +yBt = (}(adt+bBY))m,
We distinguish between two cases:

1° m=0 (mod3). Equation 17 implies, putting m = 3r,

(18) 224t +yBt = g,
where
&t = (Had?+bBY)) = Hudt+vBY).
Hence
(19) 22% = uQy(ey) -

The greatest common divisor of u and Qy(,) divides 9, and if 4 =0 (mod 3),
then Qy(¢,) =9 (mod27). From (19) we then conclude either

u = k2 Qole1) = 2Kk52,
U = 2k12’ Q9(8l) = kzz ’

or

both systems being impossible on account of lemma 6.
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2° m=0 (mod3). Putting
et = (Hadt+0BY)™ = J(u A+ BY),  (u,2) =1,

we get from (17)

222 = u,Q(es) ,
yielding either

(20) Uy = h%, Q@a(eg) = 2k2,
or
(21) uy = 3%, Qyleg) = 6K

The first case gives the equation Ak*— Bv,2=4, (h,2)=1. From theo-
rem 1 we then conclude

(24} + v, BY) = (3(ad?+0BY)), ¢=1 or t=5,

since =3 must be excluded, % being odd. Hence

(22) x2At+yBt = (}(aA?+bBY))3 .

We shall show that =5 never occurs. For =5 we write (22) in the form
(23) 224+ yBt = (a,4%+b,B%)?,

putting

(3(ad?+bBY))? = (a, A+ b, BY) .
From (23) it follows

2% = a,(164%,*—20A42%a,%2+5),
giving either

(24) oy = h2,  1642a,1—204a>+5 = k2,

or

(25) a, = 5h2, 16A42,*—204a.2+5 = 5k,2.
1 1 1 1 1

The last equations in (24) and (25) can be written,
(84a,2—5)2—5 = 4,2 and 5(404hA—1)2 = 1+4k,2,

respectively. Obviously, these equations have no solutions in integers
hy, &y, with Aa,%?> 4. Consequently, the only possibility for (20) is given
by (22) with ¢=1.

At last we have to discuss the system (21). Here we find 944%— Bv,*=4,
(h,2)=1. We put

(Hadt+DBY)* = }a, A1 +b,BY), (5,6) =1,

where s denotes the least exponent such that a,=0 (mod3), and shall
show that s=1 is a necessary condition. Clearly (Bb,3)=1. Assuming
(@,8)=1, we derive from Aa?—Bb*=4 that 4 —B=1 (mod3), giving
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either 4=2 or 4 =0 (mod3). In the first case the least value of s is 3,
in the second case 8=2, contrary to the assumption. On account of
theorem 1 we obtain

2?4t +yBt = (Jadi+bBY)¥, t=1 or t=5,

where ¢=5 is excluded as in the foregoing case.
This completes the proof of theorem 2.
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