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THE DIOPHANTINE EQUATION 3at-2y2=1

RICHARD T. BUMBY

Diophantine equations of the form Ax%+ By?=C have been studied in
great detail in recent decades. In [1], J. H. E. Cohn uses an elementary
method to study certain equations of this type. In the course of his
study he found that it was necessary to know the solutions of 3xz*—2y%=1
to determine the number of solutions of some of these equations. He
conjectured that the only solutions of this equation are (z,y)=(+1, £1)
or (£3, +£11). This paper is a proof of his conjecture.

Let «=5+2-6% and define

o™+ ol-n

T a1

Then the solutions of the equation 3u?—2v?=1 have u= + U, since
(w3t +v28) (3 28) = + am.

Thus, in order to solve the equation 32%—2y%?=1 we must determine
when + U, can be a square.

Let us introduce (—2)! and (—3)}. Also, let us agree that
(~2)t (—3)t= —6t. Then with 0= (—2)t+(—3)}, we have 2= —x. In
addition, we shall use  to denote }(—1+(—3)%).

Now

02n_02—2n
=(=1)p —
Uy = (-1 ——33

On_el-—n 0n+01-—n
= (-1

1-6 1+0

The two factors of U, which we have separated are both algebraic inte-
gers. A slightly less obvious fact is

LemMa 1. The quantity
gn + ol—n
Yo =7 +0
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s in Q((—2)Y), and its conjugate is
gn —_ gl—n
Y, = (-1)% ————

G
Proor. The field @((—2)},(—3)}) contains all expressions which are
rational combinations of § and w. This field is a Galois extension of Q
with group Z,®Z,. If we label each automorphism by the generator of
its fixed field, table 1 gives the effect of these automorphisms on 6
and .

fixed element image of 0 image of w
(—2)t 6-t w?
(—3) -0t )

6% -0 w?
table 1

Using table 1 we find that the automorphism fixing (—2)¥ also fixes Y,
and Y.’ while the others interchange these terms. This proves the lemma.

LEmMMA 2. The quantities
© 0" — w1

w?—wb

D, = , ¥, = 0?0l

are in Q((—2)) and their conjugates are

or 201-n
D, = (- l)n?__iﬁ)___, Y, = — (w0214 w2fl-2n)
w+w?l
Proor. Direct calculation using table 1.
Also note Y, _, =Y, and ¥,_,=—¥,'. Furthermore

(w¥—w0)(w+w?0) = 1+ (0—w?)0 — 62
= 0[(w—w?) +(0-1-0)] = —6(-3)t.
From this it follows that @, is an algebraic integer. Also ¥, is clearly

an algebraic integer.
Other calculations we will require are given in table 2.

1-6 = $[(2—-2(-2)}) - (- 3)}(2)]
W —wf = H(2+(~2)) - (= 3)(~2)1
-0 = (4= (=2}~ (~3)}(2+ (= 2]
w07 — w6t = §[(—8+5(~2)})— (—3)}(~ 6~ (= 2]
¥ = w0+w201= -3 (-2}

table 2
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Among the consequences of table 2 are:

1-6

—_ = —(=2)}.
w2 —wb (=2)

1) D=1 & =1-(-2)

Since w?—wb|(—3)}, we have 1—6|6%.

Lemma 3. Y=Y =1, Y=Y _ ;= —14+2(=2){=(1+(—2)})2 and Y,=
Y, 4 (mod4(—2)). U, is a unit times a square if and only if Y, is a square
in Z[(—2)H.

Proor. The calculation of Y, is a special case of the following.
If 2n—1=3(2p—1), then

(@) Y, = (1+(-2}) Y, &,/ &) .
Since 62=3+ 2(—2) (mod4(—2)}),
64 = 1 (mod4(—2)).

Thus one verifies easily that Y,=Y,,, (mod4(—2)}). Finally Y, is
always odd, so (Y,,Y,')=1. The domain Z[(— 2)*] has unique factoriza-
tion, so

Y,Y,” = unit xsquare = Y, = unit x square .

But modulo 4(—2)} the quantity Y, is always congruent to a square,
never to the negative of a square.
Other applications of the calculations modulo 4(—2)! are

q)n—!—z = (3+ 2( - 2)*)@1»

@ Wy = (342(-2))w, (A=

LevMma 4. The quadratic character of +(—2)t modulo a prime g&
Z[(—2)¥] is given by

(@) if o= £1 or +£1+2(—2)¥(mod4(—2)}) then both +(—2)t are QR.

(b) if o= £3 or +3+2(—2)}(mod4(—2)}) then neither is a QR.

(€) if o=+ (1+(—2)t) or +(3+(—2)})(mod4(—2)t) then only —(—2)}
s @ QR.

(d) if o=+ (1—(—2)}) or +(3—(—2)})(mod4(—2)*) then only +(—2)}
18 @ QR.

Proor. This is a consequence of Hilbert’s reciprocity law. (See [3,
Chapter VII].) This special case can also be obtained by the following
elementary method (due to Dirichlet [2]).

The character of an ordinary integer k¥ modulo g in Z[(—2)!] is the
same as that of £ modulo the norm of ¢ in Z. If g=r+s(—2)}, then
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(—2)* is the root of sz +r=0 (modg). Hence the quadratic character of
(—2)* modyg is the same as that of —rs modN(p). This is given by the

ordinary Legendre symbol :
—17r8 )
(r2 +282/°

The lemma follows from quadratic reciprocity. For example when r, s
are both odd, r2+2s2=3 (mod8) and thus

(?2_;128&5) = —(sgnr)(sgns )( ]r]l) (T—sTl) (|i|) (=1*

k= 143r=1)+s—1)+302-1).

THEOREM 1. If n is even, (Y,,,3)=1, and Y,=£2 then n=0.

with

Proor. We will show inductively that n=0 (mod4-3%) for all a>1.
We have Y, +7,,;=0 (mod®,’). Using the consequences of table 2
(in particular (1) and lemma 3), we have modulo @,'=14(~2)}:

Yo =Yora = 1, Ygug = Ygua = — 1, Youp = Ygus = 0.

Since @," has norm 3, —1 is not a quadratic residue. Thus only Y}, can
satisfy all hypotheses. Also 6= —w? (mod ¥,) since ¥; = w?6-1(0% + w?)..
We also have VY,=-—¥,/=3—-(—-2)}, so it has norm 11, Hence
(1+6,%;)=1, so that Yy, , 4= —1 (mod¥;), and —1 is not a quadratic
residue mod ¥;. Thus we must have n=0 (mod4-3!).
Assume already shown that the hypothesis requires n=0 (mod4-32-1)
where > 1. Let m=4(1+3%1). Then m=2 (mod3), so (9,,3)=1.
Also 01=@? (mod®P,). If n=—2-3%-1 (mod2-32), then
_w*—wb

Y, = -y ( 2)*(mod n) or Y, =

If n=2-3%-1, then

(mod®,,”) .

1
(—2y

w+w20_ w?—wb
" 140 (

=% ) = 2)* (mod®,,) .

If a is even, then m =2 (mod4) so
D, = D, = 3+2(—2) (mod4(—2)}).

Now lemma 4 completes this part of the proof.
If a is odd, then @,,=1~—(—2)}(mod4(—2)!). As above, we have that
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Y, is not a quadratic residue mod®,’ if n= —2-32-1 (mod2-32). This
leaves n= —4-3%"! (mod4-3%) to be dealt with. Here we find Y,=
(—2)-t (mod ¥,,’). Since ¥,,' =3+ (—2)} (mod 4(— 2)}), lemma 4 comes to
the rescue again.

CoroLLARY. The only integer solutions of 3z*—2y% =1 are (x,y)=
(£1, £1) or (£3, £11).

Proor. Using lemma 3 and the fact that Y,=Y,_,, we need only
find those » which are even for which Y, is a square. If n=0: Y,=1,
U,=1,z= 11, y= +1. By theorem 1, any other solution has (¥,,3)+1.
This requires 3|2n— 1. Apply (2) and note that Y, @', (D;_p are relatively
prime in pairs and Y, cannot be congruent to either —£2 or
+(1+(—2)})&2 Thus if Y, is square, so is Y,. We must then check
n=2. Here Y, =(1+(—-2)})? u,=9, 2= +3, y= + 11. Looking next at
n= —4 we find that we do not get a square. Actually

O, = 3+2(—2), D' = —1+(—2)f (modd4(—2)})

8o they are not congruent to +£&% or +(1+(—2)})2. This shows that
there are no other solutions.
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