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A GENERALIZATION OF A THEOREM OF FROSTMAN!

WALTER RUDIN

1. Introduction.

The theorem to which the title of this paper refers [1, p. 111] concerns
inner functions in the open unit disc U; these are the bounded holo-
morphic functions f in U whose radial limits

(1) f*(eiO) = Iimr—)lf(reio)

satisfy the equality |f*(e®®)| =1 for almost all real . The theorem asserts
that if f is inner, then

) iy _
f]ogluf“_de=

@) lim o~ 1 — &f (re®®)

=]

Jor nearly all x € U. , .

Here, and in the rest of this paper, the phrase “nearly all «” means
that there is a set E in the plane (the “‘exceptional set’’) whose logarith-
mic capacity is zero, such that the property in question holds for every «
in the complement of E.

Frostman’s proof applies, almost verbatim, to inner functions in poly-
discs. However, a slight reformulation of the original theorem suggests
a much more farreaching generalization:

If f is inner and « € U then log|1 — &f| is a bounded harmonic function
in U. Hence

bR

1 7 ) 1 7 )
— f log|1— af (re'®)| d6 = — f log |1 — af*(é)| d
27 2n

if 0<r<1. Also
log|1—af*(e)| = —log|f*(e®) -«

if |f*(e®)|=1. So Frostman’s theorem is equivalent to the assertion that
if f is inner, then
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(3) limi floglf(re"")——(xl do = 1 flog |f*(e?) — x| O
= 27'5_"

r>1 270

for nearly all x. [For |x]| =1, (3) always holds if |f|<1.]

It now seems reasonable to ask whether (3) remains true, say, in the
class of all bounded holomorphic functions in U, or, more generally, in
H?-gpaces. It turns out that the answer is affirmative, in an even larger
subclass of the functions of bounded characteristic, not only in one vari-
able but in several, and that the exceptional sets are always the same,
namely sets of logarithmic capacity zero.

Observe that the left side of (3) is the least harmonic majorant of
log|f—«|, evaluated at the origin; the right side is the Poisson integral
of log|f* — «|, also evaluated at the origin. Our generalization (Theorem
4) will be stated in terms of these two harmonic functions which are
agssociated with log|f—«l.

2. Definitions.

We fix a positive integer n. The polydisc U™ is the cartesian product
of n copies of U. In other words, U™ is the set of all z=(zy,. . .,2,) in the
space C" of n complex variables such that |z <1 for ¢=1,...,n. The
distinguished boundary of U™ is the torus T™; w=(wy,...,w,) € T™ pro-
vided that |w,/=1 for i=1,...,n. The Haar measure of 7™ will be
denoted by dm.

For z=(rye',. . .,r, e e U", w=(e",. .., e e T, the Poisson kernel
P(z,w) is the product of the one-variable kernels

n 1— rkz

(4) P(zw) =TI

k=1 ]. - 21‘k cos(@k—tk) + Tkz’

If ¢ € LY(T™) we denote its Poisson integral by P[e¢]:

(5) Plple) = [ Plew) plw) dm(w),  ze U™
Tn

More generally, if x4 is a measure on 7™, its Poisson integral Pldyu] is
defined as in (5), with du in place of pdm.

Every Poisson integral is n-harmonic in U™. This means that P[du] is
harmonic in each of the variables z,,...,2,.

A detailed discussion of n-harmonic functions and Poisson integrals is
presented in Chapter XVII of [3].
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3. The classes N and N,.
Let H(U™) be the class of all holomorphic functions in U™, Associate
with each fe H(U™) a family of functions f, on 7™:
(6) fr(w) = frw), O<r<l, weln,
The class N (for Nevanlinna) consists of all fe H(U™) such that

(7) sup [ log*|f,| < oo.

o<r<1

[Here and in the sequel the integral extends over 7™, with respect to dm,
unless something else is indicated.]

We say that fe N, if fe H{U") and if the functions logt|f,| have
uniformly absolutely continuous integrals. Explicitly, what is required
is that to each ¢> 0 there should exist a § > 0 such that

f log* |f (rw)| dm(w) < &
A

for all 4 =T with m(4) <4, and for all r € (0,1). It is clear that N, <N.
We observe, in passing, that if ¥ is a positive increasing function on
[0,00) such that Y(t)/t > o as t > oo, if fe H({U™), and if

sup | P(log*|f,]) < oo
o<r<li

then fe N,. The proof is as in [3; vol. 1, p. 143]. Taking ¥(¢)=e?*
(with p>0) we see that N, contains all HP-gpaces.

4. Harmonic majorants.
Suppose fe H(U?), f£0. If 0<r<1, define

(8) u,[f1(z) = f P(r1z,w) log|f(rw)| dm(w)
™
for those z=(z,,...,%,) which have |z;| <7 for ¢=1,...,n. The fact that

log|f] is subharmonic in each variable implies that u,[f](z) increases to
a limit u[f](z), for each z € U, as r — 1, and that [3; vol. II, pp. 321-2]

(9) log|f| = w[f].

If fe N, (7) and (8) show that u[f](z) <o for each ze€ U™, so u[f] is
n-harmonic, by Harnack’s theorem.
It is not hard to see that [f] is actually the least n-harmonic majorant
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of log|f|, in the following sense: If % is m-harmonic and if log|f| <
in U7, then actually «[f]=wu.
We can now state our results.

THEOREM 1. Suppose fe N.

(a) The radial limits
(10) f*(’ll)) = limr—)lf(rw)
exist for almost all we T™.

(b) If f=0 then log|f*| € LY(T™) and there is a singular measure o; on
T such that

(11) ulf] = Pllog|f*| + doy] .
TrEOREM 2. If fe N, f*£0, then

(12) ulf] = Pllog|f*[].

So 0;<0.

TrrorEM 3. If fe N then o ,20 and
(13) ulf-a] 2 Pllog|f*—«]
for nearly all .

THEOREM 4. If fe N, then oy ,=0 and
(14) ulf—a] = Pllog|f*—«l]

Jor nearly all .

Proors. Theorem 1 (a) is of course not new (in fact, much more is
known concerning non-tangential limits; see Chapter XVII of [3]) but
the following easy reduction to the corresponding one-variable theorem
may have some interest. Since w — ¢®%w is, for each real §, a measure
preserving map of 7 onto 7™ we have

flog’r |f (rw)] dm(w) = fdm(w) i flog+ |f (ref®w)| dO .
rn Tn 2 -t

The integral on the left is bounded as r — 1. Hence the inner integrals
on the right are bounded for almost all w, which says that the functions
A — f(Aw) are, for almost all w € T, of class N in U; for any of these w,
lim f(re®%w) exists for almost all 6; hence f*(w) exist a.e. on T,

To prove Theorem 1 (b), define

a5 4, =[logtlfl, B, = [logolfl, €, = [loglfl.
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Since log|f| and hence log+|f| are subharmonic in each variable, 4, and
C, do not decrease as r - 1; 4, is bounded; C,< 4,; since f%=0, C,> —oo;
and B,=A,-C,. It follows that B, has a finite limit, as r - 1. By
Fatou’s lemma,

(16) flog+|f*| < lim4,, flog—|f*1 < limB,,

hence log|f*| € LY(T™).
We just saw that A,+ B, is bounded on (0,1); ie., the functions
log|f,| form a bounded family in LY(T™"). If z is fixed in U=, then

lim P(r-1z,w) = P(z,w)

uniformly for we T, as r - 1. The definition of u[f] therefore shows
that

17 u[f](z) = lim,_,, P[log|f,|](2), zeU™.

It follows from the L!-boundedness of {log|f,|} that there is a sequence
r; — 1 such that log|f, | converges weakly (in the dual space of C(T™)) to
a measure x4 on 7™, and hence that u[f]=P[du]. To prove (11) we have
to show that the Radon-Nikodym derivative of u is log|f*|, and this
will follow [3; vol. II, p. 313] from the relation

(18) lim, ,u[f](rw) = log|f*(w)| a.e.onT™.
Note that the left side of (18) exists a.e. since u[f]=P[du]. Denote it

by w*w). By (9), u*=log|f* a.e. Fatou’s lemma implies that
[(u*—log|f*|) does not exceed the lower limit of

(19) [ uts 1w dmw)— [1og|f(ru)| dmu)
Tn

Tn

The first integral in (19) is «[f](0), since »[f] is n-harmonic; the second
integral is u,[f](0), as in (8). Hence the limit of (19), as r - 1, is O.
So u*<log|f*| a.e. This proves (18), and Theorem 1 is complete.

Now suppose f e Ny, f=0. Since log*|f,| - log*|f*| a.e., the uniform
absolute continuity of the integrals of logt|f,| implies that

(20) P[10g+ If*l] = hmr—»lp[log-'. Ifrl] .

By Fatou’s lemma,

(21) Pllog=|f*|] = limirllf Pllog=|f,1] .
r—>

If we subtract (21) from (20), (17) gives Theorem 2.
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Before turning to the proof of Theorem 3 let us observe that the ob-
vious inequality
(22) logt|f—a| = |« +log*|f]|

implies that f—x e N if fe N and that f—ae N, if fe N,.
Our first aim in the proof of Theorem 3 will be to show that

(23) lim [ log=|f,~a| = [log=|f*~al
r—>1
for nearly all «.
To do this it suffices to show that every compact set K of positive
logarithmic capacity contains points « for which (23) holds. So let K
be such a set. There is a positive measure x on K such that the potential

(24) 6() = [ log1i—al du(x)
K

is continuous in the whole plane [2; p. 84]; having compact support,
G is also bounded. (In Frostman’s proof it was enough to know the
existence of a u for which @ was bounded; our present setting requires
the continuity of G.) Put

(25) B,(x) = f log~ | f (rw) — o] dm(w) .
rn
Then
(26) [Bi@ aue) = [(sw) dmw).
K g

We know, by the reasoning following (15), that lim B,(«x) exists. Call it
B(x). Apply Fatou’s lemma to the left side of (26) and the dominated
convergence theorem to the right; this depends on the continuity and
boundedness of . We obtain

[ B du() = limint [ B,() dutx)
K r—>1 i

= liminf | G(f(rw)) dm(w)
(27) "
= f G(f*(w)) dm(w)
Tn

- f du(x) f log=|f*(w) — o] dm(w) .
K T
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But Fatou’s lemma implies also that

(28) [1og=1*(w) - a1 dmw) < B)
Tn
for every «. We conclude from (27) and (28) that (23) holds for almost

all (relative to u) « € K. Thus (23) holds for nearly all «.
Next we claim that actually

(29) lim

r—>1

log-|f, —a| ~log=|f*—a| | = 0

for every o for which (23) holds. This is a consequence of the following
lemma:

Lemma. If {p;} is a sequence of measurable functions on a measure
space X, if ¢, —> ¢ pointwise a.e., and if

lim [l = [lo] < o,
b'q b'q
then
lim fl%—tpl =0.
x
This may not be as well known as it deserves to be, so we include a
proof. Assume [x|@;|=1, without loss of generality. If ¢>0, X can be

partitioned into sets A, B such that ¢, - ¢ uniformly on A4, 4 has
finite measure, and [plp| <& (Egoroff). For large 1,

[id =1- ol <1+e=[lol =+ [1ol < 26
B A A B

so that
[1i=0l < 3 + [1pi=ol.,
X A

which proves the lemma.

To apply the lemma to our situation, let r; - 1 and put ¢;=log~|f,,—«f,
p=log|f*—«|. This gives (29).

It follows that
(30) P[log-,f*—‘xl] = lim,_,lP[log— [fr—“l]
if (23) holds, whereas Fatou’s lemma gives

(31) Pllog*|f*—«|] £ lim,_,, P[log*|f, —«[]
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for every «. If we subtract (30) from (31) we obtain (13) and hence
Theorem 3.
Finally, Theorem 4 is an immediate corollary of Theorems 2 and 3.

5. Examples.
Strict inequality can hold in (13). In fact, if

(32) f(z) =exp{%{—z , ze U,
then
(33) ulf—a](0) = 1+ Pllog|f*—«[](0)

for every complex number «. We omit the proof of this. It can also
happen, for certain «, that (13) holds for some z but not for all. An
example is

z

(34 s = exp

where P[log|f*|](z)=0 for all z but u[f](z) assumes both positive and
negative values in U. That (14) may fail for all « in a preassigned com-
pact set of capacity zero was already noted by Frostman in [1].

}, ze U,

6. Further generalizations.

Let B® be the unit ball in C*: z=(z,,...,2,) € B* provided that
21|24 .. . +|2,/2< 1. Everything said in this paper holds with B® in
place of U™ if the following changes are made: 7 must be replaced by
the sphere defined by 3 |2,/2=1, the Haar measure on 7'* must be re-
placed by the normalized rotation invariant measure on this sphere,
P(z,w) must be replaced by the Poisson kernel for the ball, and ‘“n-har-
monic” is to be replaced by “harmonic”’. We leave it to the reader to
verify that theorems and proofs are unaffected by these changes.

There are undoubtedly other types of regions in which similar results
hold.
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