ON THE ANGULAR DERIVATIVE OF REGULAR FUNCTIONS

B. G. EKE

1. Introduction.

Let $z(\zeta)$ be a regular function, defined for $\text{Re }\zeta > 0$, and suppose ζ_0 lies on the imaginary axis. If

$$\lim_{\zeta \to \zeta_0} z(\zeta) = z_0, \quad \lim_{\zeta \to \zeta_0} \frac{z(\zeta) - z_0}{\zeta - \zeta_0} = \tau ,$$

both limits being attained uniformly as $\zeta \to \zeta_0$ in each angle

$$-\frac{1}{2}\pi + \alpha \leq \arg(\zeta - \zeta_0) \leq \frac{1}{2}\pi - \alpha, \quad \alpha > 0$$

then τ is called the "angular derivative" of $z(\zeta)$ at ζ_0 . If $\zeta_0 = \infty$ or $\zeta_0 = \infty$, $z_0 = \infty$, the angular derivative is defined by

$$\lim_{\zeta \to \infty} \zeta[z(\zeta) - z_0] \, = \, \tau, \quad \text{or} \quad \lim_{\zeta \to \infty} \frac{\zeta}{z(\zeta)} = \, \tau \; ,$$

respectively, the limits being attained uniformly as $\zeta \to \infty$ in each angle

$$(1)_{\alpha} \qquad -\frac{1}{2}\pi + \alpha \leq \arg \zeta \leq \frac{1}{2}\pi - \alpha, \qquad \alpha > 0.$$

We formulate our discussion for the case $\zeta_0 = \infty$, $z_0 = \infty$.

Valiron [4] has proved that, if $z(\zeta)/\zeta$ tends uniformly to τ^{-1} , $\tau \neq 0$, as $\zeta \to \infty$ in an angle $(1)_{\alpha}$, then $z'(\zeta)$ tends uniformly to τ^{-1} , as $\zeta \to \infty$ in each angle $(1)_{\alpha'}$, where $\alpha' > \alpha$.

Carathéodory [2] shows that for functions regular in the right half plane, the quotient $z(\zeta)/\zeta$ tends uniformly to a finite value as $\zeta \to \infty$ in an angle $(1)_{\alpha}$ if $\text{Re } z(\zeta) > 0$ for $\text{Re } \zeta > 0$, and Ahlfors [1] generalises this result.

In this note, we use a result in [3] to obtain a necessary condition for the existence of a finite, non-zero angular derivative, and discuss necessary conditions of Ahlfors [1], and Ferrand {[4]; [5] chap. VI} for the case when $z(\zeta)$ gives a conformal map of $\text{Re}\,\zeta > 0$. These authors, and others, give sufficient conditions for a finite, non-zero τ , and necessary and sufficient conditions have been given by Warschawski [7] when the

Received January 27, 1967.

boundary of $z\{\text{Re }\zeta>0\}$ exhibits smooth behaviour. Recently, Warschawski [8] has given a new sufficient condition which improves previous results in the case $\text{Re }z(\zeta)>0$, for $\text{Re }\zeta>0$.

2. A necessary condition for regular functions.

We define the surface function $p(R) = p(R, \text{Re } \zeta > 0, z), R > 0$, of $z(\zeta)$ to be the finite or infinite Lebesgue integral

$$\frac{1}{2\pi}\int\limits_{0}^{2\pi}n(Re^{i\theta})\;d\theta$$
 ,

where $n(\omega)$ denotes the number of zeros in $\text{Re }\zeta > 0$ of $z(\zeta) - \omega$, counted according to their multiplicity. We suppose that $z(\zeta)$ tends uniformly to infinity as ζ approaches infinity in each angle $(1)_{\alpha}$ and that

$$\int_{R_0}^{R_1} \frac{dR}{R \, p(R)}, \qquad p(R_0) > 0 \; ,$$

diverges as $R_1 \to \infty$. Write

$$s = \sigma + it = \log \zeta, \quad X = \log |z|.$$

LEMMA 1 ([3, Theorem 3]). Suppose that F(s), regular in the strip $|t| < \frac{1}{2}\pi$, satisfies

$$\overline{\lim}_{\sigma\to\infty}|F(\sigma)| = +\infty.$$

If $p(R) = p(R, |t| < \frac{1}{2}\pi, F)$ and

$$\int_{R_0}^{R_1} \frac{dR}{R \, p(R)} \to \infty \quad as \ R_1 \to \infty, \qquad p(R_0) > 0, \, R_0 > 0 \ ,$$

then

$$\sigma - \frac{1}{2} \int_{R_0}^{|F(s)|} \frac{dR}{R \, p(R)} \, \to \, \beta \, ,$$

uniformly as $s = \sigma + it$ tends to infinity with $|t| < \frac{1}{2}\pi - \delta$, $\delta > 0$, where $-\infty < \beta \le +\infty$.

We apply Lemma 1 to the function $F(s) = z(e^s)$, which clearly satisfies the hypotheses, since

$$p(R) = p(R, |t| < \frac{1}{2}\pi, F) = p(R, \operatorname{Re} \zeta > 0, z)$$
.

124 B. G. EKE

We deduce that

(1)
$$\sigma - \frac{1}{2} \int_{\log R_0}^X \frac{dT}{p(e^T)} \rightarrow \beta,$$

uniformly as $s = \sigma + it \to \infty$ with $|t| < \frac{1}{2}\pi - \delta$, $\delta > 0$, and $-\infty < \beta \le +\infty$.

If we assume that $z(\zeta)$ possesses a finite, non-zero angular derivative, then $\log |z(\zeta)/\zeta| = X - \sigma$ tends to a finite limit as $s = \sigma + it \to \infty$, with $|t| < \frac{1}{2}\pi - \delta$, $\delta > 0$. Since (1) can be written

$$\sigma \, - \, X \, - \, {1 \over 2} \int\limits_{\log R_0}^X {1 - 2 p(e^T) \over p(e^T)} \, dT \, \,
ightarrow \, eta \, - \, \log R_0 \; ,$$

we conclude that a necessary condition for the existence of a finite, non-zero angular derivative is that

$$\int\limits_{R_0}^{R_1} \frac{1-2p(R)}{R \, p(R)} \, dR \, \to \, \gamma \quad \text{ as } R_1 \to \infty \, ,$$

where $-\infty \le \gamma < +\infty$. Thus we may state

Theorem 1. If $z(\zeta)$, regular for $\text{Re }\zeta>0$, has a surface function p(R) such that

$$\int\limits_{R_0}^{R_1} \frac{dR}{R \; p(R)} \rightarrow \; \infty \quad \text{ as } \; R_1 \rightarrow \infty, \qquad p(R_0) > 0 \; , \\ R_0 > 0 \; , \qquad R_0 > 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 > 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 > 0 \; , \\ R_0 = 0 \; , \qquad R_0 = 0 \; , \\ R_0 = 0$$

then a necessary condition for $z(\zeta)$ to possess a finite, non-zero angular derivative is that

$$\int_{R_0}^{R_1} \frac{1 - 2p(R)}{R p(R)} dR \rightarrow \gamma \quad as \quad R_1 \rightarrow \infty ,$$

where $-\infty \le \gamma < +\infty$.

3. The case of conformal maps.

Suppose now that $z(\zeta)$ maps $\text{Re }\zeta > 0$ conformally onto a domain G so that $z = \infty$, $\zeta = \infty$ correspond. Suppose also that $z(\zeta)/\zeta$ tends uniformly to a finite, non-zero limit as $\zeta \to \infty$ with $-\frac{1}{2}\pi + \alpha \leq \arg\zeta \leq \frac{1}{2}\pi - \alpha$, $\alpha > 0$. By translating and rotating G, if necessary, we may suppose that the angular derivative is real, and also that z = 0 is a boundary point of G. Ahlfors observes that the argument principle allows us to deduce that G contains all points z with $-\frac{1}{2}\pi + \varepsilon \leq \arg z \leq \frac{1}{2}\pi - \varepsilon$, and $|z| > r_0(\varepsilon)$, for arbitrary $\varepsilon > 0$. Therefore G contains the half line $\operatorname{Im} z = 0$, $\operatorname{Re} z > R_0'$,

say. For $R > R_0'$, let $\theta(R)$ denote the angular measure of the arc of |z| = R, which lies in G and meets the real z-axis. In the notation of Lemma 1, $2\pi p(R)$ denotes the total angular measure of all arcs of |z| = R which lie in G. However, for this special case, there is no difficulty in modifying the proof of Lemma 1 so that $\theta(R)/2\pi$ can replace p(R) in the conclusion. Theorem 1 is altered accordingly so that a necessary geometrical condition on G for $z(\zeta)$ to possess a finite, non-zero angular derivative is that

$$\int\limits_{R_0}^{R_1} \frac{\pi - \theta(R)}{R \, \theta(R)} dR \to \gamma' \quad \text{ as } R_1 \to \infty, \qquad \theta(R_0) > 0, \, R_0 > {R_0}' \,,$$

where $-\infty \le \gamma' < +\infty$.

We state the following three necessary conditions of Ahlfors [1] for the existence of a finite, non-zero τ .

1. G contains an angle grater than $\pi - \varepsilon$ (near infinity), for arbitrary $\varepsilon > 0$, but no angle greater than π (near infinity), that is no set of points

$$\{z: |\arg z| > \pi + \delta; |z| > \varrho\}$$

for any $\varrho, \delta > 0$.

$$\lim_{R_1 \to \infty} \int_{R_0}^{R_1} \frac{\pi - \theta(R)}{R \, \theta(R)} \, dR < +\infty.$$

3. If \overline{G} is the largest domain contained in G which is symmetrical about the real axis, and if \overline{G} is described by a function $\overline{\theta}(R)$ $R > R_0$, for which $\overline{\theta}^2(R)$ has finite variation in $[R_0, \infty]$, then

$$\lim_{R_1\to\infty}\int_{R_0}^{R_1}\frac{\pi-\bar{\theta}(R)}{R\,\bar{\theta}(R)}dR > -\infty.$$

Thus we can sharpen 2 and 3, and restate Theorem 1 as

Theorem 1a. With the above notation, a necessary condition for $z(\zeta)$ to possess a finite, non-zero τ is that

$$\lim_{R_1\to\infty}\int\limits_{R_0}^{R_1}\frac{\pi-\theta(R)}{R\,\theta(R)}\,dR\,=\,\gamma',\qquad\theta(R_0)>0\ ,$$

where $-\infty \leq \gamma' < +\infty$.

If the symmetrical domain $\overline{G} \subseteq G$ is such that $\overline{\theta}^2(R)$ has bounded variation in $[R_0, \infty]$, then it is necessary that

$$\lim_{R_1\to\infty}\int\limits_{R_2}^{R_1}\frac{\pi-\bar{\theta}(R)}{R\,\bar{\theta}(R)}\,dR\qquad \text{exists and is finite.}$$

126 B. G. EKE

Ahlfors' condition 2 has been improved by Ferrand $\{[4]; [5, \text{Chap. VI}]\}$ who replaces $\theta(R)$ by a smaller function $\theta(R)$ defined as follows. Let $\{R_n\}_1^{\infty}$ be an increasing unbounded sequence of numbers such that

(A)
$$\sum_{1}^{\infty} \left(\log \frac{R_{n+1}}{R_n} \right)^2 < +\infty, \qquad R_1 > R_0',$$

and set

$$\theta_n = \min_{R_n \le R < R_{n+1}} \theta(R), \quad n = 1, \dots$$

Then $\hat{\theta}(R) = \theta_n$, $R_n \le R < R_{n+1}$, and the necessary condition is 4. For all sequences $\{R_n\}_1^{\infty}$ satisfying (A), it is necessary that

$$\overline{\lim}_{n\to\infty} \sum_{i=1}^{n} (\pi - \theta_i) \left(\log \frac{R_{i+1}}{R_i} \right) < + \infty ,$$

or equivalently,

$$\overline{\lim}_{\hat{R}\to\infty}\int_{R_1}^{\hat{R}}\frac{\pi-\hat{\theta}(R)}{R}dR < +\infty.$$

The proof of Lemma 1 is based on a generalisation of Ahlfors' well-known distortion theorem ["Erste Hauptungleichung"], and a comparable distortion theorem involving the function $\theta(R)$ is established in [4, p. 184, equation (6)]. Basing ourselves on this equation we find that Lemma 1 can be proved in the case of conformal maps in terms of the function $\theta(R)$. This enables us to state

Theorem 1b. A necessary condition for $z(\zeta)$ to possess a finite non-zero τ is that

$$\lim_{\hat{R}\to\infty}\int_{R_1}^{\hat{R}}\frac{\pi-\hat{\theta}(R)}{R}dR=\gamma''\quad as\ \hat{R}\to\infty,$$

where $-\infty \leq \gamma'' < +\infty$.

We remark that $\gamma' = -\infty$, $\gamma'' > -\infty$ can occur for the same G.

REFERENCES

- L. V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Soc. Sci. Fenn. Nova Ser. A 1 (1930), No 9, 40 pp.
- C. Carathéodory, Über die Winkelderivierten von beschränkten, analytischen Funktionen, S.-B. Preuss. Akad. Wiss. Berlin 1929, 39-54.
- 3. B. G. Eke, Remarks on Ahlfors' distortion theorem, J. Analyse Math. 19, 1967, 97-134.
- J. Ferrand, Sur l'inégalité d'Ahlfors et son application au problème de la dérivée angulaire, Bull. Soc. Math. France 72 (1944), 178–192.

- J. Lelong-Ferrand, Représentation conforme et transformations à intégrale de Dirichlet bornée, Paris, 1955.
- G. Valiron, Sur un théorème de M. Julia étendant le lemme de Schwarz, Bull. Sci. Math. (2) 53 (1929), 70-76.
- S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280-335.
- 8. S. E. Warschawski, On the boundary behaviour of conformal maps. (To appear.)

DEPARTMENT OF MATHEMATICS, GÖTEBORG, SWEDEN