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ALGEBRAS WHOSE
CONGRUENCE LATTICES ARE DISTRIBUTIVE

BJARNI JONSSON

1. Introduction.
This note is concerned with equational classes K of algebras, subject
to the condition

A(K) For all A € K, O(A) is distributive.

Here ©(A) is the lattice of all congruence relations over 4. In Section 2
necessary and sufficient conditions are obtained in order for A(K) to
hold. This result is inspired by a theorem in Malcev [7] which gives
necessary and sufficient conditions in order for all the algebras in K to
have permutable congruence relations.

The remainder of the paper, which is independent of Section 2, is
based on Birkhoff’s theorem ([2]) about equational classes of algebras.
For any class K of (similar) algebras, let K¢ be the smallest equational
class that contains K. Also, let I(K), H(K) and S(K) be the classes con-
sisting, respectively, of all isomorphic images, homomorphic images, and
subalgebras of members of K, and let P(K), P (K) and P,(K) be the classes
consisting, respectively, of all direct products, subdirect products, and
ultraproducts of members of K. (For general information about ultra-
products (prime products) see e.g. Frayne, Morel and Scott [4].) As a
corollary to Birkhoff’s theorem, it is shown in Tarski [10] that

K* = HSP(K) .
The principal result in Section 3 states that
A(K®) = K¢ = IP,HSP,K).
The proof is quite simple, but some of the consequences are rather un-
expected. For instance, as a special case of Corollary 3.5 we find that

for any two finite, non-isomorphic, subdirectly irreducible lattices there
exists an identity that holds in one but not in the other. Once such

Received February 25, 1967, cf. Section 7, p. 120.
The results presented in this paper were obtained while the authors investigations
were supported in part by U. S. National Science Foundation Grants G19673 and GP1612.



ALGEBRAS WHOSE CONGRUENCE LATTICES ARE DISTRIBUTIVE 111

identities are known to exist, it is of course theoretically possible to find
them in each specific instance, simply by arranging all the lattice iden-
tities into a sequence and testing them one by one. However, this
method is clearly too inefficient to be actually carried out except in the
most trivial cases, and no practical procedure is known for finding such
identities. In particular, we do not know any identity that distinguishes
between the lattices of all subspaces of two n-dimensional vector spaces
over non-isomorphic fields with the same characteristic.

Section 4 contains some simple results about the lattice of all equa-
tional classes of algebras, and Sections 5 and 6 are concerned with
equational classes of lattices.

2. A condition equivalent to A(K).

Since we regard binary relations as sets of ordered pairs, the lattice
product of two congruence relations ¢ and y over an algebra 4 is simply
their set-theoretic intersection, and the lattice sum of ¢ and y is the set-
theoretic union of the relative products ¢;y, ¢;v;e, @;w;e:p,.... For
a,be A let 0,, be the smallest member ¢ of ©(4) such that apd. If ¢ is
a term (in the formalized language corresponding to the similarity type
of A), then we let ¢4 be the corresponding operation over 4. A binary
relation « over A is said to preserve the operation ¢4 if, for all a,a’, 5,0, . . .
the conditions axa’, bad’, ... jointly imply that t4(a,b,. . .)xt4(a’,d’,. . .).

TaEOREM 2.1. If K is an equational class of algebras, then A(K) if and
only if for some integer n =2 the following condition holds:

A4,(K). There exist terms ty,ty,. . .,t, in three variables such that for
1=0,1,...,n—1 the identities

t(zy2) =2, t,(vyz2) =2 {zyx)==2,
t(x,2,2) = b (2,22) (4even), t(rz2z2) = t;(2,2,2) (¢ odd)

hold in every member of K.X

Proor. Assume A(K). Choose an algebra A that is K-freely generated
by a three-element set {a,b,c}. Then

(a’c> € 6a,c n (oa,b"l' ob,c) = (oa,cnea,b) + (ea,cneb,c) .
Hence for some integer # = 2 there exist dy,d,,. . .,d, € A such that
a = dy(0g,.N0; 5) d1(04,cN0p, ) dg(0g,cN040) - -dn = €.

1 The fact that A,(K) implies A(K) was shown in Prixley [8].
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Since A is generated by {a,b,c}, there exist terms #t,,...,t, in three
variables such that
1) d; = tA(abec) for ¢=0,1,...,n,

and since A is K-freely generated by {a,b,c} it suffices to show that
(2) tod(ab,e) = a, t,4(abec) =c, tAaba)=a,
(3) tA(aac) = t;14(aa.c) (i even), tA(acc) = t;,4a,c,c) (¢ odd) .

The first two equations in (2) follow from (1) and the fact that dy=a and
d,=c. Observe that the elements d, are all in the same 0, ,-class. There-
fore a0, ,t;4(a,b,c), and since a b, .c this implies that a0, ,t;4(a,b,a). But
0,, is trivial on the subalgebra generated by {a,b}, and we therefore infer
that the last equation in (2) holds.

For ¢ even we have

t;4(a,b,0) 04, pt;.114(abc) and @b, ,b,
whence it follows that
t4(a,a,¢) 04, pt:114(a,0,C)

Since 6, , is trivial on the subalgebra generated by {a,c}, this yields the
first part of (3). The proof of the second part is similar.

Assume 4,,(K) and consider any algebra 4 € K. We shall show that if
@ € O(4) and if x and g are any binary relations over A that include the
identity relation and preserve all the operations ¢4, then

(4) en(x;B8) € (pnat);(pna);(@np);(enf=1);(pnat);. ..

with 2n factors on the right. In fact, assuming that agpc and axbfe,
define d;, ¢=0,1,...,n, by (1). Then dy=a, d,=c and, for 1=0,1,...,
n—1,

d; = t;4(a.b,c) pt;4(a,0,0) = £;14(a,0,0) @t 14 (abic) = dyyq

tA(a,a,0) ptii(a,a,a)=a=t4(a,b,a) pt4(ab,c) = d; .

Consequently all the elements d; and the elements ;4(a,a,c) belong to
the same g¢-class. For ¢ even,

d; = t;4(ab,c) a1t A (a,a,c) = t;,,4(a,a,6) xt;q4(a,b,c) = dyyq .

Consequently
di(pnat)tA(a,a.0) (pna)dyyy «

A similar argument shows that if ¢ is odd, then

di(pnp)tA(a.cc)(pnf)dy,, -
Hence (4) follows.
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To prove that @(4) is distributive it suffices to show that
en(y+y) s (pny) + (pny')
for all g,p,9" € ©(4). Letting

o = vy w;. .. (k factors)
we have
eN(p+y’) = (pnoy) U (pNag) U (pnag) U ... .,

and the problem therefore reduces to showing that

(6 gnox s (pny) + (pny')
for k=1,2,3,.... We have «;,; =0«,;8 where f is either y or y'. Hence,
by (4),

PNoesr S (PNo) 5 (PNog); (PNB)3 (@Noe) s
From this it follows by an easy induction that (5) holds for every positive
integer k. This completes the proof.

ExampLE 1. The class K of all lattices satisfies A,(K). In fact, we may
take ty(z,y,2) =1, ty(x,y,2)=2 and

t(x,y,2) = xy+yz+zx.

ExaMPLE 2. 44(K) does not imply A,(K). Consider algebras with two
ternary operations, and let ¢; and ¢, be the corresponding operation sym-
bols. Let K be the class of all models of the identities

Lh@yz) =2, Gxyz) =2,
Lzxe) = 2, t(x,22) = ly(2,2,2), ly(r,22) = 2.
Then A44(K) holds. To say that A,(K) holds means that there exists a
term s(z,y,2) such that the identities
(1) s(xx2) = x, s(xyx) =2 822 =2

hold in K. Our argument showing that no such term exists rests upon
the following assertion: If A s an algebra that is K-freely generated by a
set U, and if we U, then for all a,bce 4

t4(ab,c)=u = a=u, t4(abc)=u = c=u.

This can be proved by constructing 4 as the union of an increasing se-
quence of partial algebras. A detailed proof is somewhat long but not
difficult, and will be omitted. Now if (1) holds in K, then s(z,y,z) cannot
be one of the terms z,y,z, and must therefore be of the form #,(s,(z,y,2),
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85(%,4,2), 85(%,y,2)). By considering an algebra that is K-freely generated
by a three-element set, and by using the above property of K-free alge-
bras, we readily infer that the identities obtained from (1) by replacing
8 by s, if =1 and by s; if =2 hold in K. This leads to a contradiction,
for we may assume s(x,y,2) to be the simplest term (in some easily de-
fined sense) such that the identities (1) hold in K.

3. The equational closure of a class. .

If ¢ is a congruence relation over an algebra B, and if 4 is a subalge-
bra of B, then we let ¢| A4 be the restriction of ¢ to 4. Given (similar)
algebras C;, ¢ € I, if D is a filter in the set I, then we let D™ be the con-
gruence relation over the direct product

B = 1_[ C{
tel
that is associated with D. Thus for z,y € B, D"y if and only if the set
{t: 1€l and z;=y,}

belongs to D. If D is the principal filter generated by a subset J of I,
then we let J"=D".

Lemma 3.1. If A is a subalgebra of the direct product of algebras C,,
i1el, O(4) is distributive, p € O(4), and Alp is subdirectly irreducible,
then there exists an ultrafilter U over I such that U” |A <.

Proor. Let D be the family of all subsets J of I such that J" <o,
and let U be a maximal filter contained in D. Then U" is the lattice sum,
and in fact the set-theoretic union, of the relations J*, J € U, and U" | 4
is therefore contained in ¢. We therefore need only show that U is an
ultrafilter over I.

Forall J,Kcl,

(JUE) |4 = (J*|)n(E"|4).

Hence, if JUK € D, then
(1) ¢ = ¢+ ((JUK)"|4) = (p+ (" |4) n (p+ (K" |4)).

Since A/ is subdirectly irreducible, ¢ is multiplicatively irreducible in
®(4), and (1) therefore implies that either

p=9+(J"[4) or ¢=g+(E"|4).
Thus
(2) JuKeD=JeDvKeD,
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Obviously we also have
(3) IeD, I=2J=2KeD=JeD.

If U is not an ultrafilter, then there exists a subset J of I such that
neither J nor I —J belongs to U. Together with (3) and the maximality
of U, this implies that there exist sets K’ and K’ in U such that neither
JnK' nor (I-J)nK" belongs to D. Then the set K=K'nK'’ belongs
to U and hence to D. However, since K is the union of the two sets
JnK and (I -J)nK, neither of whom belongs to D, this contradicts (2).

CorOLLARY 3.2. If K is a class of algebras and A(K®), then every sub-
directly irreducible member of K® belongs to HS P (K).

Proor. Every algebra in K¢ is isomorphic to a quotient algebra A/p
where 4 is a subalgebra of the direct product B of algebras C; e K,
tel. If Alp is subdirectly irreducible, then U” |4 c¢ for some ultra-
filter U over I. Thus A/p is a homomorphic image of the algebra
AJ(U" | 4), which is isomorphic to a subalgebra of the ultraproduct B/U".

TraeorEM 3.3. If K is a class of algebras and A(K®), then
Ke = IP,HSP,K).

Proor. Since every member of K® is isomorphie to a subdirect product
of subdirectly irreducible members of K¢, this follows from 3.2.

CoroLLARY 3.4. If K i3 a finite set of finite algebras and A(K®), then
every subdirectly irreducible member of K¢ belongs to H S(K), and hence

K¢ = IP,HS(K).

Proor. In this case P, (K)<I(K) (cf. Frayne, Morel and Scott [4,
Corollary 2.3]), and the conclusion therefore follows from 3.2 and 3.3.

CoROLLARY 3.5. Suppose K is an equational class of algebras and A(K).
If A and B are non-isomorphic, finite, subdirectly irreducible members of K,
and if the order of A does not exceed the order of B, then there exists an identity
that holds in A but does not hold in B.

Proor. Since B cannot be a homomorphic image of a subalgebra of 4,
this follows from 3.4 with K replaced by {4}.

4. Lattices of equational classes.

We may regard the equational classes of algebras (of a given simi-
larity type) as members of a lattice ¢, the lattice product of two classes
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K, and K, being their intersection, and their lattice sum being the equa-
tional closure of their union,

K,+K, = (K,UK,)*.

There is a valid objection, that equational classes are not sets, and that
one therefore cannot speak of the class of all equational classes, but
our use of lattice-theoretic terminology is merely intended to be sug-
gestive, and all the statements that we make could easily be reformulated
in such a way that no set-theoretic principles would be violated.

The lattice £~ is dually isomorphic to the lattice of all logically closed
sets of identities. We simply associate with each such set X' the class
M(ZX) consisting of all its models, and verify that

M(ZynZy) = M(Z) + M(2)), M(Zy+2y) = M(Z)n M(Zy),

where X, + X, is the set of all identities that are consequences of X,uX;.
Let F be an algebra that is absolutely freely generated by an infinite
get X, that is, let F' be A-freely generated by X, where A is the class of
all algebras of the given similarity type. For each equational class K
let 0(K) be the smallest congruence relation ¢ over F such that F(¢) € K.
Then 6 maps K dually isomorphically onto a sublattice of @(F). In fact,
if F' is the algebra obtained by adjoining to F all the endomorphisms of
F as new operations, then 0 is a dual isomorphism of K onto O(F").
(This observation was made jointly by E. Engeler and the author.)
Either one of these observations could be used to reformulate our
results in such a way that no set-theoretic objections would apply, but
we find it more suggestive to work directly with the equational classes.

LemMma 4.1. If K, and K, are equational classes of algebras such that
A(Ky+ K,), then every member of K, + K, is isomorphic to a subdirect product
of a member of K, and a member of K, and, in particular, every subdirectly
trreducible member of Ky+ K, belongs to either K, or K, .

Proor. The first part of the conclusion obviously follows from the se-
cond, and this in turn is a consequence of 3.2 and the fact that, for any clas-

s K, and K, ,
T pep (K,UK) = HSP(K,) U HSP(K)) .

CoroLLARY 4.2. If K is an equational class of algebras and A(K), then
the lattice of all equational subclasses of K is distributive.

Proor. If K, K, and K, are equational subclasses of K, then it follows
from 4.1 that every subdirectly irreducible member of K,n (K, + K,) be-
longs to either K,nK, or K,nK,, and from this the conclusion follows.
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Tt is easy to check that under the hypothesis of 4.2 the infinite distribu-
tive law
K+ (VK = () & +K)
vel iel
also holds for equational subclasses K’', K; of K, but the dual law is
obviously false.

CoroLLARY 4.3. If K is a finite set of finite algebras and K' is an
equational class of algebras, and if A(K®+K'), then there are only finitely
many equational classes K'' such that K'c K" cKe+K'.

Proor. If K'c K" cK°+ K’, then by 4.1 every subdirectly irreducible
member 4 of K belongs to either K’ or K°. In the latter case A € HS(K)
by 3.4. Since every equational class is completely determined by its
subdirectly irreducible members, the proof is completed by observing
that HS(K) has only finitely many non-isomorphic members.

5. Equational classes of lattices.

Let L be the class of all lattices.

In the proof of Theorem 3.5 of J6onsson [6] it was shown that L has
the amalgamation property: Given A,B,B'eL and wmonomorphisms
f: 4B, f': A~ B, there exist C € L and monomorphisms g: B — C,
g': B’ — C such that gf=g'f’. (Actually the amalgamation property con-
sidered in [6] is stronger than the one formulated here.) According to
Theorem 3.2 of Jénsson [5] it follows that L also has the following prop-
erty: If, for each 1 € I, A, i3 a sublattice of the lattice B; and f; 13 a mono-
morphism of A; into a lattice C, then there exists an extension D € L of C
such that for each ¢ € I there ts a monomorphism of B; info D that agrees
with f, on A;.

Lemma 5.1. Every lattice is a sublattice of a subdirectly irreducible lat-
tice.

Proor. Obviously every finite chain is a sublattice of a simple lattice.
Now consider a lattice C' and let C’ be the lattice obtained by adjoining
to C two new elements w and 1 with v <1 and 2 <u for all z € C. For all
z,y € C' the chain

A, = {zy, x+y,u, 1}

can be embedded in a simple lattice B, ,, and by the corollary to the
amalgamation property there exist monomorphisms of the lattices B, ,

into an extension D €L of (' taking the elements of the lattices 4,
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into themselves. We may therefore assume that all the lattices B, , are
sublattices of D.

Now consider a maximal congruence relation ¢ over D with the prop-
erty that, for all 2,y € (', xpy implies x=y. Observe that if p cypeO(D),
then uypl, for if  and y are distinct elements of ¢’ with zyy, then
xzyy(z+y) and hence uyl by the simplicity of B, ,. This implies that
D/p is subdirectly irreducible, for any non-trivial congruence relation
over D/p identifies u/p and 1/p. Since C is isomorphic to a sublattice of
D/, this completes the proof.

CoroLLARY 5.2. If F is the class of all finite lattices, then

L = HSP(F).

Proor. It is well known that every finite substructure of a lattice
can be embedded in a finite lattice. Hence L=F¢, and it follows by 5.1

and 3.2 that
L = SHSP,(F) = HSP,(F).

CoroLLARY 5.3. If K+L 138 an equational class of lattices, then there
exists an equational class K' of lattices that covers K.

Proor. By 5.2 there exists a finite lattice 4 that does not belong to K.
By 4.3 there are only finitely many equational classes K’ such that
K<K'c{A}*+K, and at least one of these classes must therefore cover K.

TrEOREM 5.4. If K, and K, are equational classes of lattices such that
K,+K,=L, then K,=L or K;,=L.

Proor. If K, and K, are both proper subclasses of L, then there exist
lattices 4, and A4, such that 4, ¢ K, and 4, ¢ K;. By 5.1 there exists a
subdirectly irreducible lattice B such that 4, and 4, are isomorphic to
sublattices of B. Consequently B belongs to neither K, or K,, whence it
follows by 4.1 that B ¢ K,+K,. Thus K;+ K, + L.

CoROLLARY 5.5. There exists no equational class K of lattices such that L
covers K.

Proor. If the equational class K is properly contained in L, then
there exists a finite lattice 4 such that 4 ¢ K. Since {4} L, it follows
by 5.4 that KK+ {4}*<L. Thus L does not cover K.

6. Open problems.

We conclude by summarizing some of the known facts about the lat-
tice of all equational classes of lattices, and by mentioning some open
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problems. The zero element 0 of this lattice is of course the class of all
one-element lattices. Since every lattice with more than one element
has a two-element sublattice D,, the class D={D,}¢, which is of course
known to be the class of all distributive lattices, covers 0 and is contained
in all the other equational classes. According to our results, D must in
turn be covered by one or more classes. In fact, it is known that every
lattice that is not distributive must contain either a five-element lattice
My that is modular but not distributive or else a five-element non-
modular lattice N, and that these lattices are unique up to isomorphism.
Consequently M;={M}* and N;={N;}¢ cover D and every equational
class other than 0 and D contains either M, of N,. Because of the
distributivity of the lattice of all equational classes of lattices, M+ Nj
covers both M; and N;. For similar reasons, if M is the class of all
modular lattices then M+ N; covers M and is contained in every class
that properly contains M. If My and M, are the lattices indicated in
Fig. 1, then Mg={M¢}¢ and M ;= {M;}* cover M.

Fig. 1.

According to an unpublished result by G. Gritzer, if an equational
class K of modular lattices contains a finite lattice that does not belong
to Mj, then that class contains either My or M; ;. However, Gritzer’s
results do not appear to give answers to the following two related ques-
tions:

ProBLEM 1. Are My and M, the only equational classes of modular
lattices that cover M,?

ProOBLEM 2. Is it true that every equational class of modular lattices
that properly contains My contains either Mg or My g?

More generally we may ask:

ProBLEM 3. Is it true that each proper equational subclass of L is covered
by only finitely many equational subclasses of L
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ProBLEM 4. Is it true that if K and K’ are equational classes of lattices
with K< K’, then some equational subclass of K’ covers K?

ProBLEM 5. Is it true that, for every equational class K of lattices,
K= (KnF), where F is the class of all finite lattices ?

It seems rather too optimistic to hope for an affirmative answer to
this last question, for the following statement obviously holds: If K s
a finitely axiomatizable class of lattices and K= (Kn F)e, then the word prob-
lem for K-free lattices is decidable. In particular, therefore, if it could be
shown that M= (MnF)e, then this would yield a solution to one of the
most important problems in lattice theory, the word problem for free
modular lattices.

Our last two questions suggest a somewhat different area of investiga-
tion:

ProBLEM 6. Find systems of axioms (in the form of identities) for the
classes My, Ny, My and M.

ProOBLEM 7. Give a workable method for finding, for any finite lattice
A, a system of axioms for the class {A}e. Are such classes always finitely
axiomatizable ?

In Birkhoff [1], p. 70, a system of axioms for M; is proposed, and in
Schiitzenberger [9] axioms are proposed for both M, and N;, but in neither
case have the proofs been published. If the answers to the questions in
Problem 1 and 2 are affirmative, then it is clearly a simple matter to
test any finite system of proposed axioms (identities) for M;. The
questions raised in Problems 3 and 4 are of course partly motivated by
their possible significance in connection with the last problem.

7. Added April 1967.

A preliminary account of the work presented here was prepared and
privately circulated during the winter 1963-64, and the results were
reported at the 1964 Congress of Scandinavian Mathematicians. This
manuscript was submitted in September 1964, and was accepted for
publication in the Proceedings of the Congress. Because of a delay in
the publication of these Proceedings, the manuscript was transferred to
Mathematica Scandinavica in February 1967, and accepted for publica-
tion in April 1967.

During the intervening period G. Gritzer’s results, referred to in
Section 6, have appeared in print (Equational classes of lattices, Duke
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Math. J. 33 (1966), 613-622). Also, Corollary 3.5, for the special case
of lattices, has been discovered independently by Alfred L. Foster and
Alden F. Pixley (Algebraic and equational semi-maximality; equational
spectra 11, Math. Zeitschr. 93 (1966), 122-133). Two other papers have
been written, which refer to and make use of the results presented here:
M. 1. Gould and G. Gritzer, Boolean extensions and mnormal subdirect
powers of finite universal algebras, Math. Zeitschr. 99 (1967), 16-25, and
G. Gritzer, On the spectra of classes of algebras, to appear in Math. Scand.
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