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ON THE ABSOLUTE CONVERGENCE
OF A SERIES ASSOCIATED WITH A FOURIER SERIES

S.M. MAZHAR

1.
Let f(t) be integrable (L) over (—m,n) and periodic with period 2=
and let

(1.1) J@) ~ 3ay + :{‘(a,, cosnt+b, sinnt) = > A4,(t) .
<

Numbers = and s being fixed, we write

p(t) = H{f(x+8)+f(x—1t)—2s},
¢
D, (1) = f%of(t—u)“-l p(u) du, x>0,

Put) = Ia+ 1)1 B,(),  @oft) = ¢(f)

and
n n
Sp= DA =23 Ai).
0 0
2.
In this note we are concerned with the series
(2.1) S (8,—8)n.

Cesaro summability of this series was first investigated by Hardy and
Littlewood [5, p. 238, Theorem 5], whereas a necessary and sufficient
condition for its convergence was given by Zygmund [10, p.61].
Recently Mohanty and Mohapatra [8] have investigated the absolute
convergence and summability |C,d] of this series. In this connection
they proved the following theorems:

TaeorEM A. If
k
(i) (Pl(t) lOg; € BV(O>7‘) ’
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i) | —-——"”lt( Vgt < o,
0
(iii) {n’A4,} € BV for some §>0,

then the series (2.1) ts absolutely convergent.

TraEOREM B. If the series (2.1) is absolutely convergent, then
[ @1t
f———l"’”t‘( Nt < o, 8>0.
0

Trrorem C. If

n

]
iy« o,
0

then the series (2.1) i3 summable |C,6|, 6> 0.

The object of the present paper is to generalise these theorems of
Mohanty and Mohapatra.

3.
We prove the following theorems.

TrrOREM 1. A necessary and sufficient condition that the series (2.1)
be absolutely convergent, whenever

k
@4(2) logz- € BV(0,n),
3 that

[l
i) dt < oo,
of 4

(ii) {l %e"‘“s"'}eBV

11 —_ —_ ’
et T m

where 0 <x < 1.

THEOREM 2. If the series (2.1) is summable |C,«|, 20, then
n
t
firdtl, . o,
0 .

where ﬂ>&+i. -
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THEOREM 3. If "
2.0 4, -
j—t—— < oo, x20,

then the series (2.1) i3 summable |C,p|, where B> .

4.
The following lemmas are pertinent for the proof of these theorems:

Lemma 1 (Bosanquet [2]). If ¢71¢,(t) € L(0,7), then t-1@p(t) € L(0,7),
where >« 2 0.

Lemma 2 (Mohanty [7]). If ¢(z)log(t~tk) € BV (0,7), k>, then the
Fourier series (1.1) at t=x is summable |R,e™*, 1|, where 0 <o <1.

Lrvma 3 (Mohanty and Mohapatra [8]). If ¢(t) log(¢-'k) € BV (0,7),
k>n, and t-1¢(t) € L(0,n), then the series (2.1) ts absolutely convergent.

Lemma 4. If ¢,(t)log(¢-1k) e BV(0,7), k>m, then q4t)log(t-'k)e
BV (0,7), where §>0=0.

Proor. (The special case: =0, =1, is due to Mohanty [7].) Since

j E—u)f1 @ (u) du ,

¢p(t)=l-. — )
)y
we have
1
k Ir'g+1) %k
w0 08y = Fm— T f (== 5 log - p,(u) du
(B+1) P log
*=lx* log — t) dx .
“)”H)f( 2" log ;- p,(a) da
Let 0<ty<t;<ty<...<t,=n. Then
n—1 k
2 Pp(tm+1) logt—
0 'm+1
n1 I'(g+1) k k
< 1—2)f>llog— @ (#t,,.1) — log — @.(zt,) dx
Z TG O o et log et
1
I'g+1) n-1 k
= z* l_x)ﬂ—“-l lo a(xtm )_IO e a(xtm)
F(ﬂ_o‘)r(“""l)o ( mgo g m+1qJ i gxtmq)
I'g+1)

! 1 n1
— )1 - -
I‘(ﬂ — OC)F(OL + 1) bfxa(l x) lOg x mz-ol(pa(xtm+1) ‘pa(xtm)‘ dx

dzx
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1

1
fa:"‘(l-—x)"““l log;dx =0(1),
0

1
= O[fx“(l——x)ﬂ""‘ldx +0
0

by hypothesis.
LemMa 5. If

(i) @.(t) log(t-k) e BV(0,%), k>,
(ii) t-1py(t) € L(0,m),

then the series (2.1) s summable |R,e"*, 1|, where 0 <a < 1.

Proor. We have

8,—8 =i" t)sin(n+{;)t

n nw g 2 sin §t

cos nt

f o(t) cot gt—— di+= f o(t)

= “n+ﬂn’ say .
Now integrating by parts we have
17 17 sinn
n
Oy = —~f¢1(t) cosnt cot it dt+-—f¢1(t) e
7w 7 2n sin? ¢
= —v,+6,, say.

From hypothesis (i) we observe that @,(z) cot it log (¢-1%) € BV (0,7) and
therefore by Lemma 2, Xy, is summable |R,e"* 1|, 0<x<1. Again
integrating by parts we have

n T
1 1 innt t
8 = — f o, (0) cosnt P f o, (t) sinnt cos o
7 7
0 0

2(sin §2)% 2n (sin}t)®
= —Ppt+qy 83Y.
By Lemma 4
k 1
BV(0,n),
Dy(t) 1 gt (sin 31)? € (0,7)

hence applying Lemma 2, we find that 3p, is summable |R,e"" 1|,
O<a<l.

Also

t i
J‘t oy(t) cosit)ssmn
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Now Lemma 3 asserts that if

k t
x(2) log; € BV(0,n) and %) € L(0,x),

then

3 ltal < oo,
where -
1 sinni
t,,=;b[x(t) .
Taking )
t) = 1D,(t) cos 3t
= o singtys

it follows using also hypothesis (ii) that 3 |g,| <~ and hence summable
|R, e, 1|,
We will now consider §,.

17 cosni
ﬂn=;of¢<t> ~
_ 1 rcosmi d [itpy(t) log(t—llc))} it
T n {(_i—t( log (t-1k)

cosnt t d ( : ) lo k) i+ lf"cosnt . © (1 + 1 ) @t
n log(t-1k) di 1 €3 ag n 71 log (¢-1%)

=X,+%Y,, say.

From Lemma 2, 7Y, is summable |R,e"” 1| and hence Y Y, is also
summable |R,e™* 1|. Also by proceeding as in the proof of Theorem 5A
(Mohanty [7]) we easily see that 3 X, is summable |R, e 1].

This completes the proof of the lemma.

Lrmma 6 (Mohanty [6]). Let u,,>0, 4, =37 u,, and
1 m
dp = TZ HBnCy -
m 1

Then, if {c,,} i3 a sequence of bounded variation, the sequence {d,} is also
of bounded variation.

LemMma 7. If the sequence

_n“" me , -
e Y ema,y
: .
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is of bounded variation, then the sequence
n
{e‘”“ > em® m*ltm}
1
is also of bounded variation, where t,=37'a,, 0<ax<l.

Proor. We have

1 ”‘"‘"’ae’“

35

1 ”e"‘“
S ST S s Sae e Saer].
1

= R,+R,, say.
But

By = (30 et e )

e T m Stem*m1
= Ry, R,,, say.

From hypothesis and Lemma 6, Ry, is of bounded variation and it is
therefore sufficient to prove that

1 n
(4.1) {—“ > e’""‘m-l} e BV .
ey

The proof is just like the proof given below of

1 n
4.2 — a-lgm*t = BV .
(4.2) {e”"‘ %‘ m*-1l¢ } €
Also
12 em* ml ST A(e") e (673 @)
R - ,aA _y 1 ) 1 %8
17 e “? m*ml-= 21: e ™) Sl g A(e")

m—1

1
et S A6 uom)

g 1™ m*=Ly(m) m== 371 " A(e)

zq em® a1

’

“we
"y

where y(m) € BV, and thus R, will be of bounded variation provided
(4.2) holds and

m—~1
(4.3) {-1— Y e"d(e=")t € BV .
m*
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Proor oF (4.2). Since

n*_ 1 1 n (em“ — e(m-—l)”‘)em“ me—1

n
— m* pma—1 —
n® z e m e en®_ 1 - (ema _ e(m—l)"‘)

and
e™'me-1[(em* — em-1%) € BV,

the result follows from Lemma 6.

Proor oF (4.3). In this case we have

__1_ Z A () = _l_mE—I O —e” 1)
1 e(v+1)"‘ (,‘, + l)a—l
D i R Y (e it
= — z v+ l y——1 1 1 .
217 +1)
Since

e’v*-1/(e” —e-D*) € BV
and is greater than some fixed positive number, it follows that
(e — et~ D%)[ey*-1e BV .

Also it can easily be seen that
1 m
— >l e BV.
m* T

Applying Lemma 6, the result is obvious.

Lemma 8 (Bhatt [1]). If
(i) Xa, 1s summable |R,Ak|, k>0,

1 m
IR D> a,,z,,] e BV,
Y —
and

(m){ }eBV

n+1

then Ya, 13 absolutely convergent.

Lemma 9 (Pati [9]; Zygmund [10, p. 258]). Let k,°(t) denote the n-th
Cesdaro mean of order B of the series

o0
3+ cosnt,
1
then
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('iTGn

where g ts zero or a positive integer and f= 0.

de b A(0) = O(netl), O0<tsnt,
- { O(t-1-8ne8) + O (n-1t—2-2), n-l<t<m,

Lemma 10 (Bosanquet [3]). Let
y.(®) = J (1 —u)*1 coszu du ,
0

then for >0, t>0, n>0, we have

4r (Z )‘ya(nt)

Levma 11 (Hardy [4, p 101]). If &> —1 and Ya, ts summable (C,x)
then S,% =o0(n%), where o’ <x and 8, is the n-th Cesdaro sum of order & of
the series Xa,.

Luvma 12. Let A,*= (”:"‘) and

Anrtr Az0, p=0,
An—P-24-2-2 p+ige-2,
Ant-o oo, p+i>o—2.

=

Inlt) = 3 Ab=2 AW {(n+1)Apy(nt)},
then B ot
m(t) = tl‘*‘““ﬂml"ﬂ)
where 0<ax<f—1<h+1 and h=[«].

Proor. We split J,, as follows,

In(t) = Z + E =21+ 2, say,
m+p+1
where p=[1/t]. Now

m+p
121l =0 [ S (n—m+ 1) fhtl min(l,(mt)l—ﬂ)]

m

= O[t* min(1, (m¢)*~#)],
by Lemma 10. Further

N
12, = p+1 max 2 Ah+l{(n+l)Ayﬂ(nt)}l

N>m+4p+1 | m+p+l
= O[t==4» min(1, ((m + p)t)*~#)]
= O[t* min(1, (mey-*)] .

This completes the proof of the lemma.

Math, Scand. 21 — 7
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5.

REMARKS. (1) By virtue of Lemma 1, Condition (ii) of Theorem A
implies Condition (i) of Theorem 1 but the converse is not true.

(2) Condition (iii) of Theorem A implies Condition (ii) of Theorem 1.
For if n1-=4, € BV, then

e""‘A 2/ (€™ —em=D%) € BV
and applying Lemma 6 we find that

{ Ze’""A }e BV.

Finally from Lemma 7, we observe that Condition (ii) of Theorem 1 is
satisfied.

(3) Theorems B and C are particular cases of Theorem 2 and Theorem 3
of the present paper, which correspond to Theorem 2 and Theorem 1 of
Bosanquet [3] for Fourier series 34, (x).

6.

Proor or THEOREM 1. Necessity: By Theorem B and Liemma 1, it is
evident that condition (i) is necessary for the absolute convergence of
(2.1). Applying Abel’s transformation to the expression

12 -
—— Z em“ .8_1"_‘_9

n* ’
€"

m

it follows from Lemma 6 and the result (4.1) of Lemma 7, that the
condition (ii) of Theorem 1 is also necessary.
Sufficiency: In the proof of Lemma 7 we have shown that

n em“
{e"“ >—i€ BV,
therefore, from condition (ii) it follows that

m*l e BV.
3] e

Also, from Lemma 5 we observe that the series (2.1) is summable
|R,en*, 1], 0<a<1. Hence from Lemma 8 the result follows.

7.

Proor or THEOREM 2. Without loss of any generality we can assume
that 0<a<f—1<h+1, h=[«]. Let S,* denote the n-th Cesaro sum of
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order % of the series 3,(s,,—s)/(m+1). Then applying Lemmas 10 and 11
we have

B1gy(t) = —§+ S Ay (@) yalnt)

n=0

(nt)

n=-0
=ﬂ§08n" Ar{(n+ 1) Ayy(nt)}
= 3 ara 1) dyo)) 3 Ak
= 3 513 Al A (k1) dyy (o)
= §OS:::1 I n(?)
= §OS;‘,,AJm(t), by Lemma 12,
(7.1) = Eoc AZAT(t), o = %A% .

Since m
St = =S = An [on- o]
= O(m*|oy, — oy y|) +O(m*)
and by Lemma 10,
AM(n+1)Ay4(nt)} = O(n~F),
we have

ES"‘“ Z Al—x AW (4 1) Ay nt)}’

Mm=0 n=p+l1

Z 1851 Ak, Max.

z A (n+ 1)Ayy(nt)}

N==p+l l

m—O p'>p+l
P
- olp 3 sy
m=0
P
=0 {pl"” Y m*|o%,— ol Ah“"} + 0{ =y A"‘lAp_m}
m=0 m=0

- 0{p1+“~‘* > lUﬁ‘»-Uﬁ‘.._ll} + O

m=0

= O(P1+“_ﬂ) = 0(1)’ P>,
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by virtue of the fact that f>a+1 and 3|0y, —oy_;| <co. Thus we get
P o
lim 3> 3 SgtAlr AW (n+1)dy,nt)} =0,
P—>00 M=0 n=p+1

which justifies the change of order of summation.
Let

Vald) = 3 A247,0) .

ye=m

We shall now show that

O(m*t*)+0
(7.2) V() = {0§Zli“)’jt”g')ﬁ’) )

We have
Valt) = 2 474J,(2)

y=m

= 2 A7) + An 1T p(0)

y=m

=0 § p*1 yl—ﬂt1+a—ﬂ} + O{ma mi—8 i1+a—ﬁ}

y=m

=0 {m1+a—ﬂ t1+¢x—ﬂ} .

This proves the second part of (7.2). In the expression

Tt
2 sin (n +
=_f¢ n %dt
7
0

2 sin it

let @(t) =sin? }¢ for all ¢, then

Sp—

8—8 =13, and i:O for n>0.

Therefore ¢,*=1% for every n. Also
1 t
8o = 55 Of (t—w)P sinw du .
Thus from (7.1) we get

t
-] l
AT () = — | (t—u)® si
02 4,54 ,(t) ﬁtp!(t u)’ sinu du

so that
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m—1

Vinlt) = EA WAT (= 3 A,

ﬂltﬁf(t— ) sinu du —zA 1 (1) + A, 5T, ()
— 0t)+0 (z n"‘—lt“) +O(m*12)
0

= O(t) + O(m*t*) ,

by Lemma 12. This completes the proof of (7.2).
From (7.1) we observe that

Bst) = 3 0nAVp(t) = 3 (0= 05 ) V).
Now » -
t ot t
|%<>|dt§ﬁle < e TnlOl
t 0 t
0 0
= § (9]
= B3 | =l [t
m=0 0
Since

S los— 0l < o,
m=0

by hypothesis, it is sufficient to show that

A
6[ | t(t)

dt < co, uniformly inm .

Now

llm
= O[j(m"‘t""l+l )dt

+ 0[ f ta—ﬁml+a—ﬂdtl

1/m

This completes the proof of Theorem 2.

8.

Proor or THEOREM 3. Without loss of any generality we can assume
that in this case 0 <« < 8 < b+ 1, where b is the greatest integer not greater
than «. Then
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(¢
(p ) sin (n+ )¢ g(t) sin(n+4)t
2 sin ¢

Writing 7,7 for the n-th Cesiro mean of order f of the sequence
{n((8,—s)/n)} and K, F(t) for that of the sequence {D,(t)}, where

D) _sin(n+1‘¢)t
n(f) = 2sin}t ’

we have

TS - o x0a
44

[2(— H«D(t)( ) 1K,f'<t>]"+
- s

b (1P [ 8000 (5) Ewa
0

=FE,+F,, say.
Now
h+1 ot d\e-1 . s
B =3 (- ‘I’v‘”){(d“t) ', (t)L p—
Hence
|, s ,
Z = 0 {3 n*?-1} = 0(1), since f>«.
Also
" d\r+1
Da)|5) KL()de
[0 (Z)
h+1
m—-——;j¢ (w) duf(t—u)h-“( t) K A(t) dt
Wf@ (w) Pln,u) du ,
where

P(n,u) = j:(t—u)“-“ (%)MK,,ﬂ(t) d

u4n—1 n
= f + f = F+F,,, say.

% u+n—1
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Now
u4n—1
F,= f (t— )P~ O[n?+2 {min (1, (nu)-#-1)}] dt
(8.1) = O(n*+!) min {1, (nu)-f-1} .

Applying the second mean value theorem and Lemma 9, we have

PP N ¥e
Fn2=n“—"f (Zl;) KA dt, wu+nl<é<am,

utn=l
(8.2) = O(n**!) min {1, (nu)-f-1} .
Therefore from (8.1) and (8.2) we obtain

O(n*+1),
P(’l’b,’ll/) = {O(na—ﬁu—ﬂ-—l) .

Hence
B 1 lpa(®)] P (n I 1w
25 5T I'(1+h— ocf'(oc+lf LD
Now
P(n
= 3 0(n*) + X Onsr-1y-r-1)
= O(u—=-1) + O(u—*-1) = O(u—*"1).
Hence

IFo [ le)l |
Pt 0{0f~—u—du} - 0(1),

n

by hypothesis. Thus
IT,f]
n

)3

If 4,7 is the n-th Cesaro mean of order 8 of the series (2.1), then T’ f=
n(8,f—55_;). It, therefore, follows that the series (2.1) is summable

|C.Bl, B> «.
This completes the proof of Theorem 3.

< o0
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