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FIVE DIOPHANTINE EQUATIONS

J. H. E. COHN

1. Introduction.

In a previous paper [2] we discussed the first four equations of Sec-
tion 4 below (the fifth had no solutions) in the case in which the equation
X?2—dY?%= —4 had solutions for at least one of which X and Y were
both odd. This paper deals with the same problems for those values of
d for which

X?-dY? = —4

has no such solutions, but for which
X2_dY2 =4

has at least one pair of solutions X, Y both of which are odd. It follows
immediately that only values of d for which d=5 (mod8) can be covered
by this discussion. However, there are values of d which satisfy this
condition and are covered neither by [2] nor by this paper, for example
d=37. However, our discussion does yield results for many new values

of d.

2. Preliminaries.

We first show that in the case we consider here, X2—~dY2= —4 has
no solutions at all. For, since d =5 (mod8), if there are any solutions X
and Y must be either both even or both odd; since we suppose that there
are no solutions for which X and Y are both odd, it follows that for any
solution X =2z, and Y =2y,. Then z,>—dy,?= —1. Thus one of z;,y,
is even and one odd. Now let X =z, and Y =y, be both odd and satisfy

2 —dy,? =
and let
& = 2,23 +d Yy, Y, N = Z1Ya+XY; -

Then both & and # are odd and
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E—dn? = (z,°—dy,) (@2 —dy,?) = —4

which contradicts the assumption that X2—dY2= —4 has no solutions
for which X and Y are both odd. Thus we have

1) X2—dY? = —4 has no solutions
and in particular
(2) X%~dY?2 = —1 has no solutions .

Now suppose that X=a, Y =0 is the fundamental solution of
X?—dY%?=4. Then the general solution is given by

X+Yd* = 2{}(a+bdt)}".

Now if @ and b were both even, it would follow that for any solution X
and Y would both be even, which contradicts the assumption that there
is at least one pair of solution for which both X and Y are odd. Thus
at least one of @ and b is odd, and so since d=5 (mod8), it follows that
they are both odd. We shall retain the symbols a,b to denote this fun-
damental solution throughout the paper, and define

o« = }a+bdt); B = Ya-bd}).
Then

3) a+B=a, oaf=1.
We now define for all integers n
(4) %, = dHam—p"), v, =«"+p".

Then by (3) we have

(5) Uprg = Bl iy — Uy
(8) Untg = Wni1—Vp
(7) Uy = —Up

(8) V_p = Uy

Also uy=0, u;=b, vy=2, v;=a and so for all integers n, the numbers
u, and v, are integers; moreover they are positive for positive n, since
«>p>0. We also observe that since X2—dY2%= —4 has solutions for
d=5 and d=13, d=21, and so since a?=db2+ 4,

(9) @

v

5.

Calculation gives the following values
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n o, v,

0 0 2

1 b a

2 ab a*—2

3 (a2-1)d a®-3a

4 (a®-—-2a) at—4a2+2

5 (a*—3a2+1)b a5 —5a3+5a

6 (a®—4a%+3a)b a®—6a*+9a%—2.

We also obtain, using (3)-(8)

(10) 2Up i = Uy Vp+Up VU
(11) 2V in = QU Uy, + 0,0,
(12) 4 =v,%2—du,?
13 oy, = V,%—2

)

) 2|u, < 2jv, < 3|n
(15) (#p,v,) =1 unless 3|n

) (up,v,) = 2 if 3|n

) V46 = ¥, (Mod8).

Throughout %4 will denote an even integer not divisible by 3. Then by
(13) and (14) we have

(18) v, = 7 (mod8).

Also we have using (10)-(13)

(19) 2Up oy = —2u, (modvy)
(20) 2V 08 = — 20, (modoy)
(21) 2008y = 29, (moduy)
and so by (18)

(22) Upror = — Uy, (modwy)
(23) Vppyok = —U,, (modwy) .

In particular, taking N=1 in (20) and (21),

(24) if niseven v, = (—1)"2 (moda)
(25) if niseven v, = 2 (modb) .
Thus by (18) and (24) we have

(26) (@lvy) = (=1la)(vi|a) = ((-1)¥+12]a)

and by (18) and (25)
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(27) (0lvg) = (—1[b)(w]b) = (—2[D) .
Now let a%—1=2%c, where ¢ is odd. Then by (21) and (8)
20, = 2054 = ... = 20, = 29, (moduy,)

or, since c|uz, 2{¢

v, = Uy (modc)
= a?—2 (modc)
= —1 (modc).
Thus,
(@—1v) = (2%]|ve)(c|vy)
= 1-(=1le)(we|c) by (18)
= (—7c)
= (1]¢)
or,
(28) (a2=1jv,) = 1.

Finally we observe that if 2« =a+ bd! is the fundamental solution of
X2—-dY2=4, then o3 is the fundamental solution of X2—-dY2=1, since
both @ and b are odd. Thus we have the general solution of

(29) X—dY?=4is X =9, ¥ =u,
the general solution of
(30) X2—dY:=1i8 X = }v,,, ¥ = }u,, .
3. The Fundamental Theorems.
In this section we shall prove four theorems which enable us to say

for what values of n, u,, v,, 3w, and }v, can be perfect squares. In
each case the proof is in several parts.

THEOREM 1. The equation v, =x® has no solutions, except if a is a per-
fect square, when there are the solutions n= + 1 and no others.

Proor. (i) If » is even, by (13)
v, = vin—2 + 22,
(ii) If n=3 (mod6), then by (17),

v, = v; (mod8)
—2a (mod8)

]l

hence 2|v,, 4fv, and so v, +22%
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(iii) If n= + 1 (mod6), then by (8) and (17)
v, = v,y = a (mod8)

and so v, 2?2, except possibly if a=1 (mod8).

(iv) If a=1 (mod8) and » is odd, then by (8) it is sufficient to con-
sider only n=1 (mod4). Then if n+1 we may write n=1+2-3"-k where
r=20, 2|k and 3t k. Then by (23)

v, = (=1)¥v, (modv,)

= —a (modvy,) .
Thus
(Vnlvg) = (—alvy)
= —(a]v) by (18)
= —(£2]a) by (26)
= —1 since ¢ = 1 (mod8).

Hence v, + 22, except possibly for n= +1 and this occurs if and only if
a=v, is a perfect square.
This concludes the proof of the theorem.

THEOREM 2. The equation v,, = 2x2 has the solution n=0, and for d="125
the solutions n= + 8, but no other solutions.

Proor. (i) By (14), v,, =222 is possible only if n=23m and so we have
222 = VU3 = vm(vmz—s) by (3) and (4) ’

and (v,,,v,2—3)=1 or 3. Now v,2%2—3=2x,2 or 3,2 is impossible as can
be seen considering residues modulo 8, and so we have

either v,2—3 = z,%, v, = 22,%;

the former requires v, =2, which implies n=0,
or v,2-3 = 6x2 v, = 3z,2,

where z, is odd. Thus we must have v,,=3 (mod8). But, by (8) and (17),
if m is even v, =v, or v, (mod8), that is, v,,=2 or 7 (mod8), which is
impossible. If m is odd we have similarly v,,=v, =a (mod 8) (since v, is
even and v, is not) and so the only possibility apart from n=0, is »
odd and a=3 (mod8).

(ii) Suppose now that » is odd and ¢=3 (mod8). Then as before, it

is sufficient to consider only n=3 (mod4). Then if n+3 we may write
n=3+2-3"-k where 2|k, 31k. Thus by (23)

v, = —v; (modv,) .

Math, Scand. 21 — §
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Now }vy;=1 (mod4) since a=3 (mod8) and so by (20)

Vp = —Upg = ... = 0,5 = +v, (mod}vy).

Thus

(2o, |v) = (—2v5]|v)
(3vs|ve)(—4|v)
= —(vz]4vg) by (18)
= —(£0,|4v,)
= —(a%—2|}(a®—3)a)
= —(a*—2|a)(a?—2|}(a®-3))
= —(=2]a)(1]}(a*-3))

= —~1 since @ = 3 (mod8).

Il

Thus v,, % 222 for n odd, except possibly for n= 4+ 3 and a=3 (mod8).
(iii) Suppose now that 22?=a(a*—3)=v_,3. Then as before we must
have a=3z,% a%—3==6x,2 or

(31) 22,2 = 3z,0—1.

Now this equation has by [1] only the positive solutions z;=1 or 3,
yielding a =3 or 27. Of these the former must be rejected in view of (9)
and we obtain db?="725 so that d="725 or 29. But d=29 must also be
rejected since 22—29y%*= —4 has odd solutions.

This concludes the proof of the theorem. Of course, we could have
quoted the result concerning (31) in part (i) of the proof of the theorem,
thereby shortening the proof considerably; however, we have sought the
best result using only elementary means.

TuarorEM 3. The equation u,=x? has the solutions

(a) n=0

(b) if b=DB2% n=1

(c) if a=A2% and b=DB?2, n=2

(d) if b=3B2, possibly the solution n=3

and no other solutions.

Proor. (i) If b=1 or 3 (mod8) and n=1 (mod4). Then if n+1 we
may write n=1+2-37-k where 2|k, 31 k. Then by (22)

u, = —u; = —b (modvy) .
(—blv)
—(blw) by (18)

—(-2[b) by (27)
= -1 since b = 1 or 3 (mod8).

Thus

I

(un l vk)
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Thus %, + 2% except possibly for =1 in this case. If u, =22, then b is a
perfect square.

(ii) If =1 or 3 (mod8) and n=3 (mod4), then if n+3 we may write
n=3+2-3"-k where 2|k, 3tk and so by (22)

u, = —uz (modvy).
Thus
(alvg) = (—13]0;)
—(b(a?—1) ;) by (18)
= (b]vp)(a®—1]vy)
—(—2]d) by (27) and (28)
= -1 since b = 1 or 3 (mod8).

Thus in this case u,+2? except possibly if n=3. Now uz=b(a?—-1)=
b(db%+3) and so uz=x? implies

either b = x,%, a?—1 = z,?
which is impossible since a+1
or b= 3B2% a?-1 = 3z,2.

Thus u;=2? is possible only if b=3B2
(iii) Now suppose b=5 or 7 (mod8) and n odd. Then if n=1 (mod4),
u_g<0, whereas if n$ —3, let n=—3+2-37-k where 2|k, 3tk. Then
by (7) and (22)
U, = —U_g = Uy (modvy) .
Thus

(un]vr) = (ug|y)
= (blvg)(@®—1|v)
(—2[d) by (27) and (28)
= -1 since b = 5 or 7 (mod8).

Thus %, +2? in this case.
Similarly, if n=3 (mod4) then u_; <0 whereas if n+ —1, let n=
—1+2-37-k where 2|k, 3tk. Then by (7) and (22)

U, = —u_y = b (modvy).
Thus
(V) = (bvg)
= (-2]b) by (27)
= -1 since b = 5 or 7 (mod8).

Thus once again %, +22 This concludes the discussion of » odd.
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(iv) Now suppose that n is even and w, =22 Then by (10) 2®=1wu,v,,.
Thus by (15) and (18) we have
either uy, = 2,2, vy, = x,?.

By Theorem 1 the latter is possible only for n= +1. The number
in= —1 does not satisfy the former, and so we have the solution n=2
if and only if u,=b and v;=a are both perfect squares,

or Uy, = 2x% vy, = 2x,%.

By Theorem 2 the latter can be satisfied only for n=0, 6 and —6. Of

these values the first always satisfies the former equation and the last

never. If n=6 we should have to have u;=2z,2, v;= 22,2 By Theorem 2

the latter can only hold for d="725 and for this value wu,=7284 2z,2.
This concludes the proof of the theorem.

THEOREM 4. The equation u, = 2x* has

(a) the solution n=0
(b) if b= B2 possibly the solution n=3

and mo other solutions.

Proor. (i) Since by (18) (2|v,)=1, it follows exactly as in the proof
of Theorem 3, that with the exception of n=1or 3 and b=1 or 3 (mod8),
for each odd n we can find % such that (2u,|v,)= —1 and so u, + 222

Also u,=0b42x2, and so the only possibility for odd = is n=3. Now
if 222=uy=0(a?—1)=>b(db?+ 3), then we must have

either b = 3x,2, db%+3 = 6,2, 3dx,? = 22,21,
which is impossible as is seen by considering residues modulo 3,
or b=2z? a?—1 = 2z,2,
This concludes the discussion of » odd.

(ii) Now suppose that = is even. Then if u,=2x2? it follows from (14)
that 3|n. Also by (10) 22%=wu,v,, and so by (15) and (16) we must have

either  wuy, = 22,3, vy, = 2
which is impossible for » divisible by 3, by Theorem 1,
or Uy, = X%, vy, = 22,2

Now by Theorem 2 the latter is satisfied by }n=0 and also if d="725
by in=+3. Now jn=0 satisfies the former, and if d="725, u 5=
+ 728 +,°.

This concludes the proof.
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4. The Equations.

As a corollary to the results of § 3, we now deduce some results con-
cerning the following Diophantine equations. Of course d is restricted
to the values mentioned in the introduction. We consider only non-ne-
gative solutions.

EqQuartion 1. y2=dx*+1 has apart from x=0 at most one solution.

For, by (30), 2= }u,,, and so by Theorem 4, we have n=0 yielding
=0 and possibly n=1.

Equation 2. dy2=a%—1 has the solution x=1 and, except for d="125,
=99, no other.

For, by (30), 2= }v,,,, and so by Theorem 2, the result follows.

EqQuaTioN 3. y%?=4dz*+ 1 has apart from x=0 at most one solution.

For, by (30), 22%=}u,,, i.e. us,=(2x)2 This has the solution n=0,
yielding =0, and by Theorem 3 it may also have the solution n=1.

EquaTioN 4. y?=dx*+4 has apart from x=0 at most two solutions.

For, by (29), 22=wu,,. By Theorem 3, this is satisfied by n=0 which
gives =0, and by at most two of the values n=1, 2, and 3.

EqQuaTioN 5. dy?=1x*—4 has at most one solution.

For, by (29), 2*=v, and by Theorem 1, this can only be satisfied by
n= +1, giving z=ak.

For the sake of completeness, we should like to point out that the six
equations
dy? = 424+1, dy? = 2*+1,
Y2 =dat—-1, dy?=42*-1,
Y2 =dxt—4, dy*=2'+4

all have no solutions for the values of d considered. This may be shown
similarly to those above, or deduced by simple modulus arguments
combined with (1) and (2). We observe that our method together with
that of [2] deals with all values less than 200 of d =5 (mod 8) except 37,
101, 141, 189 and 197.

5. A Different Approach.

Until now, we have generally assumed that d is given first, and that
a and b and thus all the u, and v, are determined from d. Let us now
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consider an odd value, z, of a. Then if we take d =22—4, we see that
the equation X2—dY?=4 has odd solutions, since one of them is X =z,
Y =1. It is clear that this is the fundamental solution. Moreover, pro-
vided =5, it may be shown without difficulty that the equation
X2-dY2%= —4 has no solutions. Thus there are infinitely many values
of d which satisfy our condition, and we may choose for a any odd value
25, and b=1. Thus as in [1], we may define polynomials p,(x) and
¢, (x) of degrees (n—1) and n respectively, by the relations

(32) Po(x) =0, py(x) =1, gqol@) =2, ¢y(x) ==
(33) Pr+2(®) = TPp41(T) — Py()
(34) In+2(%) = 2Gp41(%) — g, (2)

and then we obtain immediately from Theorems 1-4 four results of
which the following is typical: ‘“The equation y*=p,(x) has for n=3
no solutions in which =5 is odd.” We may ask about the values =1,
2=3. Now for =1, the problem is trivial since it can easily be seen
that p,(1) and ¢,(1) can take only the values 0, +1 and + 1, + 2 respec-
tively. For =3, we can easily show that p,(3)=F,, and g¢,(3)=L,,
where F,,L, are respectively the Fibonacci and Lucas numbers. Thus
using Theorems 1-4 and the results in [3] we obtain

TaEOREM 5. The equation y?=p,(x) has for n =3 no solution in which
x=3 18 odd, except x=3, y=12, n=6.

THEOREM 6. The equation 2y®=p,(x) has for n> 3 no solution in which
x =3 1s odd.

THEOREM 7. The equation y*=q,(x) has for n>1 no solution in which
=3 18 odd.

TurorREM 8. The equation 2y%=gq,(x) has for n> 0 no solution in which
=3 is odd, except x=3, y=38, n=3 and =27, y=99, n=3.
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