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SLICE ALGEBRAS OF BOUNDED ANALYTIC
FUNCTIONS

FRANK T. BIRTEL

1

For function algebras 4 and B, let S(A4,B) denote the function alge-
bra of all continuous functions f on the product M 4, x M5 of the maximal
ideal spaces of A and B, respectively, which satisfy

f(-,N)ed foreach NeMy,
f(M,-)eB foreach Me9,.

Here A and B as usual denote the isomorphic Gelfand representations
of A and B as function algebras on I, and M. During the discussion
of [1] at the Tulane Symposium on Function Algebras, 1965, H. Rossi
suggested comparing the A-tensor product H ®,H, of the algebra of
bounded analytic functions on the dise with the algebra S(H,H ) and
the algebra H_(D x D) of bounded analytic functions on the unit poly-
dise D x D in C2. In [2], the relation between H &,H,. and H (D x D)
is extensively investigated. The purpose of this note is to relate
S(H,H,) to H (D x D) and the results of [2]. Our main result charac-
terizes S(H,H,) as the subalgebra of H (D x D) consisting of those
functions having continuous extensions to My, x My, . In two com-
plex dimensions the algebra H ®,H, will then play a role with respect
to H_ (D x D) analogous to the role of the boundary value algebra with
respect to H_ in one complex dimension.

2

The algebra S(H,.,H,) restricted to DxD is clearly contained in
H_(D x D), since each function f in S(H,H,) is bounded on Mz x
Mz, which contains D x D, and is separately, hence jointly, analytic
there. Also each fin S(H,H ) is uniquely determined by its restriction
to D x D and sup norms taken on Dx D and My x My, agree. Thus,
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via restriction to D x D, the algebra S(H , H ) is isometrically isomorphic
to a sub-algebra of H (D x D).

3

Let T denote the unit circle. H (D x D) corresponds isomorphically and
isometrically to the subalgebra H (T x T') of L (7' xT) determined by
the boundary values of functions in H (D x D). See [5]. By L &;L,
we mean the subalgebra of L (7 x T') which is isometrically isomorphie,
via the Gelfand representation, to C(X x X) where X is the maximal
ideal space of L (7). Alternatively, it can be described as the comple-
tion in L (T x T) of the algebra of elements of L (7 x T') of the form

(8,8) > 2 a(8)Bilt)

with 3 denoting a finite sum. Let A4 be the closed subalgebra H (T x T)n
L ®,L, of L. (T xT). Every function in this algebra can be represented
as a continuous function on X x X.

TrEOREM 1. The algebra A=H (T x TYnL ;L is isometrically iso-
morphic to S(H,,H_).

Proor. Let S, ={f,: X -~ C | f,(x)=f(x,y),fe A}. Since
H ®l <L L, nH(TxT),

ﬁmCS,,'. Let S, denote the completion of S, in the sup norm on X.
Suppose 7 denotes the L (T)-function

= -t (z->3.

Let 7 be represented by ie C(X); if ie S,, then there exists a sequence
f,™ e 8, such that

I, =Tl >0 a5 n— o
(sup norm computed on X). Now §,@1<4 and
£, "Rl @1, >0 as n->oo

on X xX. This implies %@1 € A, which is a contradiction, since
Q1 ¢ H (T xT). Then, since §¢§u by [3, p. 193.], we have §y=ﬁm.
So

A,=8,>8,> 18,

implies f, € A . Similarly, f,e H,. Thus A consists of all continuous
functions f such that f(z, -) and f(-,y) are boundary values of H,, on T



56 FRANK T. BIRTEL

Thus every function f € 4 can be extended to a function on My x My . .
To see this, choose measures M(dz) and N(dx) on X representing the
multiplicative functionals M and N in My . Then define f on
My X My, by
farm) = [ fwy) M) x Ndy).
XxX

We next show that M(dzx)x N(dy) is a multiplicative measure on A.
Let f,ge A,

o) LN = | (fpley) M(de) x Ndy)

XxX

| [ [ 7(e.9) 9(@,9) 2(ax) lN(dy)
X X

= f{ff(w,y) N(dy) fg(x,y) N(dy)]M(dw),
x x b¢
since f(x,-) and g(y, -) are in ﬁw. Now consider

2 [ f@.y) Ndy) .
X

This function corresponds uniquely to a function

e [fit.y) Nidy)
X

in L (T). To show this function is actually in H_(7T'), we compute
its negative Fourier coefficients:

[ [ren @y emar - | ( [rew ewdt) N(dy) = 0
T X X T
for n>0. Thus
z - [ f(@,9) Ndy)
X

isin A_, and, similarly, so is

z [ glay) Ndy).
X

Therefore,
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| { [ @) ¥ay) [ gl Ny } M(d)
X X X

= [ Sy Ny x M@ | gy Ny < Mda) .

X xX XxX

As a consequence we have
(f9)" (M, N) = J(M,N) §(M,N).
To recapitulate, we now have:

(i) Every multiplicative linear functional on H_®,H (that is, every
element of My  x My ) extends to a multiplicative linear func-
tional on A4.

(ii) fe A implies f(-,N)e H,_ and f(M,-)e A, for each M,Ne
Mo -

It remains to establish:

(i) fe A4 implies f € O(Mz x My, )-
(iv) S(H.,H,) can be identified with a closed subalgebra of 4.

(iii) is verified by showing that the weakest topology t on
{M(dx)x N(dy): M,N e My, } < M(X xX)

which renders (M, N) - f(M,N) continuous for each f € A coincides with
the weak* topology on My  x My, determined by H, Q,H,,. Certainly
7 is coarser than the weak* topology. And the sub-basic neighborhood
of M(dx)x Ny(dy) given by

{31d0) % () | [ o) M) x (@) — [1.9) Moty < Nt | < |

contains
{atao) - | [ o) i) - [ o M) | < o x

|« | [ ren) ¥~ [ean Vo)<
where
{fC,y): i=12,...,n} and {f(z;-): 1=1,2,...,n}

are each e¢-dense in f(X,-) and f(-,X). A straightforward process of
estimating yields this assertion. Thus each f € 4 determines a continuous
function (M,N) — f(M,N) on Mere X My -
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For (iv), use the comments of Section 2, and the representation of
elements in A by continuous functions on X x X.

CoroLLARY 1. Let LX(L,(T)/H,% H,,) denote the compact linear opera-
tors from L,(T)[H,® into H,, where L,(T)[H,® is the quotient space of L*
whose dual is H,. Then S(H.,H,) is isometrically isomorphic to
"?K(LI(T)/HIO’H&)°

Proor. By the above theorem and Theorem 2 of [2] Corollary 1 fol-
lows.

Although we defined the slice algebra S(H,H,) by restricting to
slices of My, x My, for the proof of the theorem it is only necessary
to require continuous representations of functions in H_(Dx D) on
X xX. Of course, this is because X x X is the Silov boundary of
S(H,,H,) and H ®,H_,.

Thus far we have been unable to prove S(H,H )=H_®,H.,
but if this were not the case — as indicated in [2], the Banach basis
problem would have a negative solution.

4.

Let M be the maximal ideal space of H (D x D). I is not homeo-
morphic to My, x My, the maximal ideal space of H, ®,H,. For,
if it were, every function in H_(D x D) would induce a compact operator
from L,(T')/H,° into H_, by the Corollary, since H_(D x D) would then
coincide with S(H,H,). In [2], a large class of functions in H_(D x D)
which do not determine compact operators is exhibited. Also, L. Stout
communicated a more direct proof of the fact M+My x My based
on an observation about products of interpolating sets of H (D) being
interpolating sets for H (D x D).

Let : M — My x My, be defined by n(p)=¢|H Q,H,. = is cer-
tainly continuous, =(M) is compact and =(M)>D x D. Thus by Carle-
son’s corona theorem

Mpreo X Marg, 2 (M) > DxD > My x My, -

TeEOREM 2. The mapping n defined above is a continuous map of M
onto My xMy,,. Over Dx D, the mapping 7 is one-one and n~! maps
D x D homeomorphically onto an open subset of IN.

Proor. The first statement follows from the discussion which preceded
the Theorem, so we turn to a proof of the remaining claims. Suppose
g e M and 7(p)=p(0,0). The argument when m(p) is point evaluation
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other than at the origin can be reduced to this case or treated in a similar
fashion. Let f be a bounded analytic function on D x D which vanishes
at the origin and set

F =f—-f(0,") = f(-,0) + f(0,0) .
It will suffice to show @(F)=0, for then ¢ =¢(0,0). On D x D,
Fz,w) = 3 a;ztud,
Wwj=1
where {a;;} are the coefficients of the power series expansion of f. Con-
vergence is uniform on compact subsets of D x D. Thus

F(z,w) = zwg(z,w)

with g € Hol(D x D). Trivially, g is bounded on the complement in
D x D of a neighborhood of

{(z,w): |w|=1, 2=0} U {(z,w): |2|=1, w=0},

and, in fact, g is bounded on the trace of this neighborhood on D x D.
To see this we examine the growth of g near points where z=0 and
0<r=|w| <1, the other case being similar:
F(z, 10F 1 F(&,
(2,w) B J‘ (&, w) e

09 = ]-i = - 09 = .
9(0,w) zﬁlo zw w 92 (0,20) 2miw &

and the integral implies

oF
—a~(0,w) < ||Fll, forall welD,
2

which shows that z-1w~1F(z,w) is uniformly bounded near these points.
Thus g € H, (D x D). Therefore,

¢(F) = ¢(z) p(w) p(g) = 0-p(g) = 0.
That 7! is a homeomorphism is a direct consequence of the fact that
H (DxD)K ~ H ,Q,H, K
for every compact subset K of D x D.

THEOREM 3. Let fe H (DxD) and let (M,N)e WMy, xMy,,. Let
(25, w;) be a met in Dx D converging to (M,N), and suppose that &=
limf (z,,w,) exists. Then there is a multiplicative functional ¢ € n~2(M,N)
such that ¢(f)="7.
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Proor. Let J be the set of functions ¢ in H_(D x D) for which
limg(zs,w;)=0. Then J is an ideal in H (D x D) and therefore is con-
tained in the kernel of a multiplicative functional ¢ € IR, that is, ¢(g)=0
for each g e J. Observe that

{(f-f(M,N): fe H ,®,H)<=J and f-ded.

Thus n(@)=¢(M,N) and ¢(f)=">.

If the closure of D x.D in IR exhausts M (i.e., the Corona conjecture
is true for H_(D x D)), then we would be able to conclude immediately
that S(H,,H,) ‘““is” precisely those functions in H (D x D) which are
constant on all fibers n~Y(M,N) with (M,N)e My, xMy. . (For ex-
ample, see [4].) Without the benefit of a two complex dimensional
Corona theorem, however, we do have:

TrEOREM 4. Every function f in H (D x D)* which is a constant on all
fibers i~Y(M,N) for (M,N) e Mg, x My, is an extension of a function f
in S(H.,H,)|DxD.

Proor. If f is constant on n~*(M,N) for every (M,N) € My X Mpoos
then the last theorem shows that f|.D x D has a continuous extension
to DxDu{(M,N)}. If f|D x D extends continuously to DuX x X, the
theorem of Section 3 suffices for f to correspond in a natural fashion to
an element of S(H_,H,).

REMARK. Certainly, every fe H ®,H, is constant on each fiber
a~Y(M,N) when regarded as an element f of H_(Dx D)". Therefore,
either of the two results

(1) S(Hoo’Hoo) =H00®AH00
or
(2) the Corona theorem for H (D x D)

would provide the converse of the last theorem.
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