SLICE ALGEBRAS OF BOUNDED ANALYTIC FUNCTIONS

FRANK T. BIRTEL

1.

For function algebras A and B, let S(A,B) denote the function algebra of all continuous functions f on the product $\mathfrak{M}_A \times \mathfrak{M}_B$ of the maximal ideal spaces of A and B, respectively, which satisfy

$$egin{aligned} f(\,\cdot\,,N) \in \widehat{A} & ext{ for each } & N \in \mathfrak{M}_B \ , \ f(M,\,\cdot\,) \in \widehat{B} & ext{ for each } & M \in \mathfrak{M}_A \ . \end{aligned}$$

Here \widehat{A} and \widehat{B} as usual denote the isomorphic Gelfand representations of A and B as function algebras on \mathfrak{M}_A and \mathfrak{M}_B . During the discussion of [1] at the Tulane Symposium on Function Algebras, 1965, H. Rossi suggested comparing the λ -tensor product $H_\infty \otimes_\lambda H_\infty$ of the algebra of bounded analytic functions on the disc with the algebra $S(H_\infty, H_\infty)$ and the algebra $H_\infty(D \times D)$ of bounded analytic functions on the unit polydisc $D \times D$ in C^2 . In [2], the relation between $H_\infty \otimes_\lambda H_\infty$ and $H_\infty(D \times D)$ is extensively investigated. The purpose of this note is to relate $S(H_\infty, H_\infty)$ to $H_\infty(D \times D)$ and the results of [2]. Our main result characterizes $S(H_\infty, H_\infty)$ as the subalgebra of $H_\infty(D \times D)$ consisting of those functions having continuous extensions to $\mathfrak{M}_{H_\infty} \times \mathfrak{M}_{H_\infty}$. In two complex dimensions the algebra $H_\infty \otimes_\lambda H_\infty$ will then play a role with respect to $H_\infty(D \times D)$ analogous to the role of the boundary value algebra with respect to H_∞ in one complex dimension.

2.

The algebra $S(H_{\infty}, H_{\infty})$ restricted to $D \times D$ is clearly contained in $H_{\infty}(D \times D)$, since each function f in $S(H_{\infty}, H_{\infty})$ is bounded on $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$, which contains $D \times D$, and is separately, hence jointly, analytic there. Also each f in $S(H_{\infty}, H_{\infty})$ is uniquely determined by its restriction to $D \times D$ and sup norms taken on $D \times D$ and $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ agree. Thus,

Received September 5, 1966.

Research supported by the U.S. National Science Foundation under grant NSF GP3917.

via restriction to $D \times D$, the algebra $S(H_{\infty}, H_{\infty})$ is isometrically isomorphic to a sub-algebra of $H_{\infty}(D \times D)$.

3.

Let T denote the unit circle. $H_{\infty}(D \times D)$ corresponds isomorphically and isometrically to the subalgebra $H_{\infty}(T \times T)$ of $L_{\infty}(T \times T)$ determined by the boundary values of functions in $H_{\infty}(D \times D)$. See [5]. By $L_{\infty} \otimes_{\lambda} L_{\infty}$ we mean the subalgebra of $L_{\infty}(T \times T)$ which is isometrically isomorphic, via the Gelfand representation, to $C(X \times X)$ where X is the maximal ideal space of $L_{\infty}(T)$. Alternatively, it can be described as the completion in $L_{\infty}(T \times T)$ of the algebra of elements of $L_{\infty}(T \times T)$ of the form

$$(s,t) \rightarrow \sum \alpha_i(s)\beta_i(t)$$

with Σ denoting a finite sum. Let A be the closed subalgebra $H_{\infty}(T \times T) \cap L_{\infty} \otimes_{\lambda} L_{\infty}$ of $L_{\infty}(T \times T)$. Every function in this algebra can be represented as a continuous function on $X \times X$.

Theorem 1. The algebra $A = H_{\infty}(T \times T) \cap L_{\infty} \otimes_{\lambda} L_{\infty}$ is isometrically isomorphic to $S(H_{\infty}, H_{\infty})$.

PROOF. Let $S_y = \{f_y \colon X \to C \mid f_y(x) = f(x,y), f \in A\}$. Since

$$H_{\infty} \otimes 1 \subset L_{\infty} \otimes_{\lambda} L_{\infty} \cap H_{\infty}(T \times T)$$
 ,

 $\widehat{H}_{\infty} \subset S_{y}$. Let \overline{S}_{y} denote the completion of S_{y} in the sup norm on X. Suppose $\overline{\imath}$ denotes the $L_{\infty}(T)$ -function

$$\bar{\imath}(t) = -t \qquad (z \to \bar{z}).$$

Let $\bar{\imath}$ be represented by $\hat{\bar{\imath}} \in C(X)$; if $\hat{\bar{\imath}} \in \bar{S}_y$, then there exists a sequence $f_y^{(n)} \in S_y$ such that

$$||f_{y}^{(n)} - \hat{i}||_{\infty} \to 0$$
 as $n \to \infty$

(sup norm computed on X). Now $S_y \otimes 1 \subseteq A$ and

$$||f_{v}^{(n)} \otimes 1 - \hat{i} \otimes 1||_{\infty} \to 0 \quad \text{as} \quad n \to \infty$$

on $X \times X$. This implies $\hat{i} \otimes 1 \in A$, which is a contradiction, since $\hat{i} \otimes 1 \notin H_{\infty}(T \times T)$. Then, since $\hat{i} \notin \bar{S}_y$ by [3, p. 193.], we have $\bar{S}_y = \bar{H}_{\infty}$. So

$$\hat{H}_{\infty} = \bar{S}_{y} \supset S_{y} \supset \hat{H}_{\infty}$$

implies $f_y \in \hat{H}_{\infty}$. Similarly, $f_x \in \hat{H}_{\infty}$. Thus A consists of all continuous functions f such that $f(x,\cdot)$ and $f(\cdot,y)$ are boundary values of H_{∞} on T.

Thus every function $f \in A$ can be extended to a function on $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$. To see this, choose measures M(dx) and N(dx) on X representing the multiplicative functionals M and N in $\mathfrak{M}_{H_{\infty}}$. Then define f on $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ by

$$\hat{f}(M,N) = \int_{X\times X} f(x,y) \ M(dx) \times N(dy).$$

We next show that $M(dx) \times N(dy)$ is a multiplicative measure on A. Let $f, g \in A$,

$$(fg)^{\hat{}}(M,N) = \int\limits_{X\times X} (fg)(x,y) \ M(dx) \times N(dy)$$

$$= \int\limits_{X} \left\{ \int\limits_{X} f(x,y) \ g(x,y) \ M(dx) \right\} N(dy)$$

$$= \int\limits_{X} \left\{ \int\limits_{X} f(x,y) \ N(dy) \int\limits_{X} g(x,y) \ N(dy) \right\} M(dx) ,$$

since $f(x,\cdot)$ and $g(y,\cdot)$ are in \hat{H}_{∞} . Now consider

$$x \to \int\limits_X f(x,y) \ N(dy)$$
.

This function corresponds uniquely to a function

$$t o \int\limits_X f(t,y) \ N(dy)$$

in $L_{\infty}(T)$. To show this function is actually in $H_{\infty}(T)$, we compute its negative Fourier coefficients:

$$\int_{T} \int_{X} f(t,y) N(dy) e^{int} dt = \int_{X} \left(\int_{T} f(t,y) e^{int} dt \right) N(dy) = 0$$

for n > 0. Thus

$$x \to \int\limits_X f(x,y) \ N(dy)$$

is in \hat{H}_{∞} and, similarly, so is

$$x \to \int_{Y} g(x,y) N(dy).$$

Therefore,

$$\int_{X} \left\{ \int_{X} f(x,y) \ N(dy) \int_{X} g(x,y) \ N(dy) \right\} M(dx) \\
= \int_{X \times X} f(x,y) \ N(dy) \times M(dx) \int_{X \times X} g(x,y) \ N(dy) \times M(dx) .$$

As a consequence we have

$$(fg)^{\hat{}}(M,N) = \hat{f}(M,N) \, \hat{g}(M,N) .$$

To recapitulate, we now have:

- (i) Every multiplicative linear functional on $H_{\infty} \otimes_{\lambda} H_{\infty}$ (that is, every element of $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$) extends to a multiplicative linear functional on A.
- (ii) $f \in A$ implies $\hat{f}(\cdot, N) \in \hat{H}_{\infty}$ and $\hat{f}(M, \cdot) \in \hat{H}_{\infty}$ for each $M, N \in \mathfrak{M}_{H_{\infty}}$.

It remains to establish:

- (iii) $f \in A$ implies $\hat{f} \in C(\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}})$.
- (iv) $S(H_{\infty}, H_{\infty})$ can be identified with a closed subalgebra of A.
- (iii) is verified by showing that the weakest topology τ on

$$\{M(dx) \times N(dy): M, N \in \mathfrak{M}_{H_{\infty}}\} \subset M(X \times X)$$

which renders $(M,N) \to \hat{f}(M,N)$ continuous for each $f \in A$ coincides with the weak* topology on $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ determined by $H_{\infty} \otimes_{\lambda} H_{\infty}$. Certainly τ is coarser than the weak* topology. And the sub-basic neighborhood of $M_0(dx) \times N_0(dy)$ given by

$$\left\{ M(dx) \times N(dy) : \left| \int f(x,y) \ M(dx) \times N(dy) - \int f(x,y) \ M_0(dx) \times N_0(dy) \right| < C\varepsilon \right\}$$

contains

$$\begin{split} \left\{ M(dx) : \left| \int f(x, y_i) \ M(dx) - \int f(x, y_i) M_0(dx) \right| < \varepsilon \right\} \times \\ \times \left\{ M(dy) : \left| \int f(x_i, y) N(dy) - \int f(x_i, y) N_0(dy) \right| < \varepsilon \right\} \end{split}$$

where

$$\{f(\cdot,y_i): i=1,2,\ldots,n\}$$
 and $\{f(x_i,\cdot): i=1,2,\ldots,n\}$

are each ε -dense in $f(X, \cdot)$ and $f(\cdot, X)$. A straightforward process of estimating yields this assertion. Thus each $f \in A$ determines a continuous function $(M, N) \to \hat{f}(M, N)$ on $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$.

For (iv), use the comments of Section 2, and the representation of elements in A by continuous functions on $X \times X$.

COROLLARY 1. Let $\mathscr{L}^K(L_1(T)/H_1^0, H_\infty)$ denote the compact linear operators from $L_1(T)/H_1^0$ into H_∞ where $L_1(T)/H_1^0$ is the quotient space of L^1 whose dual is H_∞ . Then $S(H_\infty, H_\infty)$ is isometrically isomorphic to $\mathscr{L}^K(L_1(T)/H_1^0, H_\infty)$.

PROOF. By the above theorem and Theorem 2 of [2] Corollary 1 follows.

Although we defined the slice algebra $S(H_{\infty}, H_{\infty})$ by restricting to slices of $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$, for the proof of the theorem it is only necessary to require continuous representations of functions in $H_{\infty}(D \times D)$ on $X \times X$. Of course, this is because $X \times X$ is the Šilov boundary of $S(H_{\infty}, H_{\infty})$ and $H_{\infty} \otimes_{\lambda} H_{\infty}$.

Thus far we have been unable to prove $S(H_{\infty}, H_{\infty}) = \hat{H}_{\infty} \otimes_{\lambda} \hat{H}_{\infty}$, but if this were not the case — as indicated in [2], the Banach basis problem would have a negative solution.

4.

Let \mathfrak{M} be the maximal ideal space of $H_{\infty}(D\times D)$. \mathfrak{M} is not homeomorphic to $\mathfrak{M}_{H_{\infty}}\times \mathfrak{M}_{H_{\infty}}$, the maximal ideal space of $H_{\infty}\otimes_{\lambda}H_{\infty}$. For, if it were, every function in $H_{\infty}(D\times D)$ would induce a compact operator from $L_1(T)/H_1^0$ into H_{∞} by the Corollary, since $H_{\infty}(D\times D)$ would then coincide with $S(H_{\infty},H_{\infty})$. In [2], a large class of functions in $H_{\infty}(D\times D)$ which do not determine compact operators is exhibited. Also, L. Stout communicated a more direct proof of the fact $\mathfrak{M} \neq \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ based on an observation about products of interpolating sets of $H_{\infty}(D)$ being interpolating sets for $H_{\infty}(D\times D)$.

Let $\pi: \mathfrak{M} \to \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ be defined by $\pi(\varphi) = \varphi \mid H_{\infty} \otimes_{\lambda} H_{\infty}$. π is certainly continuous, $\pi(\mathfrak{M})$ is compact and $\pi(\mathfrak{M}) \supset D \times D$. Thus by Carleson's corona theorem

$$\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}} \supset \pi(\mathfrak{M}) \supset \overline{D \times D} \supset \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}.$$

THEOREM 2. The mapping π defined above is a continuous map of \mathfrak{M} onto $\mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$. Over $D \times D$, the mapping π is one-one and π^{-1} maps $D \times D$ homeomorphically onto an open subset of \mathfrak{M} .

PROOF. The first statement follows from the discussion which preceded the Theorem, so we turn to a proof of the remaining claims. Suppose $\varphi \in \mathfrak{M}$ and $\pi(\varphi) = \varphi(0,0)$. The argument when $\pi(\varphi)$ is point evaluation

other than at the origin can be reduced to this case or treated in a similar fashion. Let f be a bounded analytic function on $D \times D$ which vanishes at the origin and set

$$F = f - f(0, \cdot) - f(\cdot, 0) + f(0, 0)$$
.

It will suffice to show $\varphi(F) = 0$, for then $\varphi = \varphi(0,0)$. On $D \times D$,

$$F(z,w) = \sum_{i,j\geq 1}^{\infty} a_{ij} \, z^i w^j \,,$$

where $\{a_{ij}\}$ are the coefficients of the power series expansion of f. Convergence is uniform on compact subsets of $D \times D$. Thus

$$F(z,w) = z w g(z,w)$$

with $g \in \text{Hol}(D \times D)$. Trivially, g is bounded on the complement in $D \times D$ of a neighborhood of

$$\{(z,w): |w|=1, z=0\} \cup \{(z,w): |z|=1, w=0\},$$

and, in fact, g is bounded on the trace of this neighborhood on $D \times D$. To see this we examine the growth of g near points where z=0 and $0 < r \le |w| < 1$, the other case being similar:

$$g(0,w) = \lim_{z \to 0} \frac{F(z,w)}{z \, w} = \frac{1}{w} \frac{\partial F}{\partial z}(0,w) = \frac{1}{2\pi i w} \int_{|\xi|=1} \frac{F(\xi,w)}{\xi^2} \, d\xi$$

and the integral implies

$$\left| rac{\partial F}{\partial z} \left(0, w
ight)
ight| \leq \left| \left| F
ight|
ight|_{\infty} \quad ext{for all} \quad w \in D \; ,$$

which shows that $z^{-1}w^{-1}F(z,w)$ is uniformly bounded near these points. Thus $g \in H_{\infty}(D \times D)$. Therefore,

$$\varphi(F) = \varphi(z) \varphi(w) \varphi(g) = 0 \cdot \varphi(g) = 0.$$

That π^{-1} is a homeomorphism is a direct consequence of the fact that

$$H_{\infty}(D \times D)|K \cong H_{\infty} \otimes_{\lambda} H_{\infty}|K$$

for every compact subset K of $D \times D$.

Theorem 3. Let $f \in H_{\infty}(D \times D)$ and let $(M,N) \in \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$. Let (z_{δ},w_{δ}) be a net in $D \times D$ converging to (M,N), and suppose that $\vartheta = \lim f(z_{\delta},w_{\delta})$ exists. Then there is a multiplicative functional $\varphi \in \pi^{-1}(M,N)$ such that $\varphi(f) = \vartheta$.

PROOF. Let J be the set of functions g in $H_{\infty}(D \times D)$ for which $\lim g(z_{\delta}, w_{\delta}) = 0$. Then J is an ideal in $H_{\infty}(D \times D)$ and therefore is contained in the kernel of a multiplicative functional $\varphi \in \mathfrak{M}$, that is, $\varphi(g) = 0$ for each $g \in J$. Observe that

$$\{\hat{f} - \hat{f}(M,N) : f \in H_{\infty} \otimes_{\lambda} H_{\infty}\} \subset J \quad \text{ and } \quad f - \vartheta \in J \ .$$

Thus $\pi(\varphi) = \varphi(M, N)$ and $\varphi(f) = \vartheta$.

If the closure of $D \times D$ in \mathfrak{M} exhausts \mathfrak{M} (i.e., the Corona conjecture is true for $H_{\infty}(D \times D)$), then we would be able to conclude immediately that $S(H_{\infty}, H_{\infty})$ "is" precisely those functions in $H_{\infty}(D \times D)$ which are constant on all fibers $\pi^{-1}(M, N)$ with $(M, N) \in \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$. (For example, see [4].) Without the benefit of a two complex dimensional Corona theorem, however, we do have:

THEOREM 4. Every function \hat{f} in $H_{\infty}(D \times D)$ which is a constant on all fibers $\pi^{-1}(M,N)$ for $(M,N) \in \mathfrak{M}_{H_{\infty}} \times \mathfrak{M}_{H_{\infty}}$ is an extension of a function f in $S(H_{\infty},H_{\infty}) | D \times D$.

PROOF. If f is constant on $\pi^{-1}(M,N)$ for every $(M,N) \in \mathfrak{M}_{H\infty} \times \mathfrak{M}_{H\infty}$, then the last theorem shows that $\widehat{f} \mid D \times D$ has a continuous extension to $D \times D \cup \{(M,N)\}$. If $\widehat{f} \mid D \times D$ extends continuously to $D \cup X \times X$, the theorem of Section 3 suffices for f to correspond in a natural fashion to an element of $S(H_{\infty}, H_{\infty})$.

Remark. Certainly, every $f \in H_{\infty} \otimes_{\lambda} H_{\infty}$ is constant on each fiber $\pi^{-1}(M,N)$ when regarded as an element \hat{f} of $H_{\infty}(D \times D)$. Therefore, either of the two results

(1)
$$S(H_{\infty}, H_{\infty}) = H_{\infty} \otimes_{\lambda} H_{\infty}$$

 \mathbf{or}

(2) the Corona theorem for $H_{\infty}(D \times D)$

would provide the converse of the last theorem.

REFERENCES

- F. Birtel, Products of maximal function algebras, Proc. Tulane Symp. on Function Algebras, 65-69, Chicago, Ill., 1966.
- F. Birtel and E. Dubinsky, Bounded analytic functions of two complex variables, Math. Zeitschr. 93 (1966), 299-310.
- 3. K. Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N. J., 1962.
- F. Quigley, Phragmén Lindelöf theorems, Proc. Tulane Symp. on Function Algebras, 36-41, Chicago, Ill., 1966.
- R. Ryan, Boundary values of analytic vector valued functions, Nederl. Akad. Wetensch. Proc. Ser. A 65=Indag. Math. 24 (1962), 558-572.