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ON INTEGRAL REPRESENTATION OF
VECTOR VALUED MEASURES

ULF RONNOW

Introduction.

The purpose of the present paper is to establish some general condi-
tions for the existence of integral representations of Banach-valued meas-
ures and indicate their relation to the theory of Banach-valued martin-
gales.

The results are based upon two theorems which are stated in Section 1
together with some basic definitions: Theorem A concerns extension of
Banach-valued set functions to Banach-valued measures; Theorem B,
which was proved by S. D. Chatterji [4, Theorem 1], states a conver-
gence property of a class of Banach-valued martingales. See also [14].

In Section 2, a general condition is given in order that a Banach-
valued measure be an integral with respect to a positive measure.

In Section 3, results of R. 8. Phillips and S. D. Chatterji, for reflexive
Banach spaces, a general Radon-Nikodym property and a convergence
property for a certain class of Banach-valued martingales, respectively,
are shown to be equivalent for general Banach spaces.

An example is given to show that these properties are not possessed
by every Banach space.

Recently, S.D. Chatterji [13, pp. 55-61] has pointed out a similar con-
nection between a general Radon-Nikodym theorem for Banach spaces
and a point-wise convergence property of a certain class of Banach-
valued martingales.

Finally, we observe that the theory of martingales with values in a
topological vector space and Pettis integration is treated in the thesis
of M. Metivier [8]. See also A.I. and C. I. Tulcea [14], [15].

1. Preliminaries.

In the sequel & will denote a Banach space. The norm of x€ % is
denoted by |x|. A triple (S, 2, ) will denote a measure space, i.e. a system
which consists of a non-empty set S, a o-field 2 of subsets S such that
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S € X, and a measure u, which is assumed to be positive, defined on X
Set functions. We shall consider set functions whose values are points
in a Banach space &, and we shall say that they are Z-valued.
Let ¢ be a set function defined on a field I" of subsets of 8. Then for
every E e I" the total variation of ¢ on , denoted by v(¢p, E), is defined as

o(p.E) = sup 3 Ig(B)

=]

where the supremum is taken over all finite sequences {£;} of mutually
disjoint sets of I" with E;< E. The set function ¢ is of bounded variation
on E eI' if v(p,E) <. A countably additive Z'-valued set function defi-
ned on a o-field is called an Z'-valued measure.

THEOREM A. Let I' be a field of subsets of S and let X be the o-field
generated by I.

If @ is an additive set function of bounded variation defined on I, then
in order that there exist a countably additive extension v defined on X it is
necessary and sufficient that ¢ be countably additive.

If the condition is satisfied, the extension is unique and v(yp,-) is exactly
the extension of v(gp, ).

A convenient reference to this known theorem is [15, p. 119 and foot-
note (6)].

Martingales. Let (8,Z,u) be a finite measure space and let @ be a sub-
set of the extended natural numbers. Let {Z,}, n € @, be an increasing
sequence of sub-g-fields of X. Let f, e L,(S,%,,u) or L(S,%, u,%).
Then the system {f,,,Z,,n € @} is said to constitute a scalar-valued or
% -valued martingale, respectively, if

[ £ai6) ntds) = [ £.(6) utdo)
A A4

for mne@, msn, deZ,,.

TrEOREM B. Let (8,2,u) be a finite measure space, let {X,}, 1<n< oo,
be an increasing sequence of o-fields all contained in X, and let
feLy(8,2,u,%).

Then there exists a unique Z-valued martingale {f,,2,,1 <n < oo}, where
2y denotes the o-field generated by {Z,}, 1 <n < oo, such that

[1u0) wde) = [fe) uds), A€, 1snseo.
4 A4

Moreover,
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Ifiy £ el £ .00 = fl S Iflks
and
lim !f'n—fooll =0.

The notion of uniform integrability of a family of integrable functions
{f}=Ly(8,2,u,%), te T, p a finite measure, is defined as follows: For
every &¢> 0, there exists a number J> 0 such that

If(s)| pu(ds) < e forall teT.
{|fe| >0}

2. Integral representation of Z -valued measures.

The purpose of this section is to give an account of the conditions
required in order that an Z-valued measure ¢ may be represented as an
indefinite integral with respect to a measure u.

In the sequel we shall use the symbol 4, with or without suffixes, to
denote partitions of S into a finite number of subsets from X with posi-
tive measures.

The set {4} of all A’s is partially ordered by inclusion modu, that is,
A<A’ or A'>A if to each A € A’ there exists a set B e A such that
u(AN\B) =0, moreover, the family of A’s is a directed set, since to each
finite collection {A,} there always is a 4 such that 4>4, for all 4,.

Defining f,: § -~ % by

p(4)

fd(s) =A5A ;(—A'_) ZA(S) ’

the mapping 4 — f, becomes a generalized sequence in Ly(S, 2, u,%).
Tuaeorem 1. Let (S,X,u) be a finite measure space, and let ¢ be an

Z-valued set function defined on X.
In order that there exist a function fe L,(S,Z,u, %) such that

#4) = [fo) uds),  AeZ,
p: |

it is necessary and sufficient that @ be additive and that {f,} be a generalized
Cauchy sequence in Ly(S,Z,u,%).

If the condition is satisfied, then @ is countably additive, u-continuous,
of bounded variation, and

op,4) = [1f@) pids),  AeZ.
4
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Proor. First let us assume that

#d) = [f6) uds),  AeZ,
A

where f e L(8,2,u, &), and let us prove that {f,} is a generalized Cauchy
sequence, i.e. to an arbitrary e> 0 there exists a 4, such that

1) fa—fali < e

for any pair 4,4">A4,.
If this is not the case, there is an ¢,> 0 such that there exist for every 4
two partitions 4’ and 4" > 4 for which

(2) |far—Faly Z 26 .
Accordingly, applying the triangle inequality we obtain
max {|fp—falis [far—Fali} Z & -

Now we can prove by induction the existence of a martingale
{f4,, 21,1 Si < oo} for which

(3) ,fdi-l—l—fdill ; 80 fOI' 7:=1,2,..- .
We proceed as follows: For i=1,
@(8)
4, = {8}, fal =—=2g> and Z;={S}.
#(8S)

For i=n we assume the existence of the sequence
4, <4, < ... <4,,

such that (3) is satisfied for 1=1,2,...,n—1. Then there exists by the
preceding paragraphs A4',4” >4, such that (2) is satisfied, and thus
A4’ or A" may be chosen as 4,,, such that (3) is valid for 1=n. Let 2,
be the o-field generated by 4,,, Z =X, and f,_=f. Then {f,,Z,,1 <n < oo}
is a martingale such that

[76) wids) = [£6) nds), 42,
A 4

Therefore by Theorem B,
limn—»oo |fn_fooi =0,

which contradicts (3), so that {f,} is a generalized Cauchy sequence.
Conversely, let us assume that ¢ is additive and {f,} is a generalized
sequence. Then {f,} has a limit f in L,(8,2, 4, %), and we shall show that
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9(4) = [ f(5) uds)
A

It is clear that the map from L,(S,Z,x, %) into £ defined by

¢ [0 uds),  aes,
A

is continuous, so that

[ £16) mids) = tim, [ 1,06) utds) .
A |

But for any A4 containing A, that is, any 4> {4,8\4}

B BnA
[ a0 s = [ 3 2y wan = 5 ZE0 uiod) = pla).
4 4 €

ed

Therefore

#4) = [f&) uds), A,
A

The uniqueness of f is clear, and the last assertion of the theorem is
easily verified.

CoROLLARY. In order that there exist a function feL,(S,2,u,%) such
that

p4) = [f uds), dex,
A

the necessary and sufficient condition in Theorem 1 may be replaced by
each of the following two conditions:

(i) ¢ s additive and for every increasing sequence {A;} the sequence
{f4} 1 a Cauchy sequence in L,(S,Z,u,%).

(ii) The restriction of @ to any o-field generated by a countable subsystem
of X may be represented as an indefinite integral with respect to u.

ProoF. (i). The necessity is an immediate consequence of Theorem 1.
To prove the sufficiency assume that ¢ is not an indefinite integral. Then
according to the necessary condition in Theorem 1, there exists an increa-
sing sequence {4} and an g,> 0 such that

lfa,-"famh > &

which contradicts the assumptions and terminates the proof of (i).
(ii) In view of Theorem B the necessity is obvious. To prove the suf-
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ficiency of the condition, let {4,} be an arbitrary increasing sequence.
Obviously, I'=Ug , 4; is countable or finite and generates a o-field X,
which fulfills the condition in (ii). Therefore, there exists a function
foe Ly(S,24, 4, &) such that

o) = [fe) pids), A,
A

Then, according to Theorem B, the sequence {f,} is a Cauchy sequence,
and as a consequence of the sufficiency in (i) the existence of a function
feLy(8,2, u, &) is established such that

P) = [f) uds),  4eZ,
A

which terminates the proof of (ii).

3. & -valued martingales and the Radon-Nikodym theorem.

It is shown by R. S. Phillips [11; Theorems 5, 6] that if & is a reflexive
Banach space, then the following statement is valid:

I. Let (S,2,u) be a o-finite measure space, and let ¢: X~ Z be a
u-continuous, Z-valued measure of bounded variation.
Then there exists a unique function f e L,(S8,2,u,Z) such that

#4) = [f&) uids),  deZ.
Moreover v(p, S)=|fl,. 4

On the other hand S. D. Chatterji [2, Theorem 3,3,2], [4, Theorem 3]
has proved the following convergence theorem for any reflexive space Z :

II. Let (8,2,x) be a finite measure space and let {f,,2,,1<n< o}
be an Z-valued martingale in L,(8,2,u,%&). Assume that the functions
in the sequence {|f,()|} are uniformly integrable.

Then there exists a function f € Ly(8,Z, 4, %) such that

limn-—)oolfn_fooll = 0.

The following theorem will point out the relation between statements
I and II, when & is an arbitrary Banach space.

THEOREM 2. For an arbitrary Banach space & the statements I and II
are equivalent.
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Proor. Assume that Lis valid and let {f,, 2,1 <% < oo} be an Z-valued
martingale, where {|f,(-)|} consists of uniformly integrable functions.
Putting

Ir= U 2,
n=1
I becomes a field and we define ¢: I' > & by

#4) = [fuls) uds),  A€Z,.
A

Obviously, ¢ is an additive Z'-valued set function, and the uniform
integrability insures that v(p,S) is finite and that ¢ is u-continuous.
Consequently, ¢ is countably additive and, according to Theorem A, ¢ can
be extended to an Z'-valued measure of bounded variation. Statement I
implies the existence of a function fe L(S,2,u,Z), such that

#4) = [f©) uds),  AeZ.
A

By Theorem B there exists a unique martingale {f,’,%,,1 <%= oo} such
that

[1:6) wtdo) = [ wids), 4z,
A A

and
lim |fn’—foo| =0.
NnN—>o0
Since f,’(+) must equal f,(-) a.e., statement II holds.

Conversely, assume that IT is valid, and let ¢ : £ — Z be a pu-continuous
Z-valued measure of bounded variation. It is easy to verify that it is
sufficient to consider the case where (S,X,u) is finite. By a straight for-
ward application of the Corollary (i) to Theorem 1 it is possible to show
that there exists a function fe L,(S,Z,u,%) such that

v(4) = [f© uds),  AeZ.
A

It is known that the classical Radon-Nikodym theorem cannot be
extended to the case of a general Banach space. This fact implies, to-
gether with Theorem 2, the existence of an Z-valued martingale (for a
certain Banach space %) satisfying the conditions in II and not being a
Cauchy sequence. We shall give a simple example of such a martingale.
(An exercise concerning this problem is to be found in [1, exercice 17,
P- 92] and another example occurs in Chatterji [3].)
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ExampLE. Let S denote {s | 0<s<1}, X the Borel field generated by
the usual topology on S and let x4 denote the usual Borel measure.
Further let Z be the linear space c,, that is, the space of all bounded
sequences x={x,} of scalars converging to zero, which provided with
the norm
2| = sup;la,|

becomes a separable Banach space. Finally, put e,={d;,}, n=1,2,3,...,
where d;,=0 for %= and d,,,=1.
For every n, n=1,2,3,..., define

Apr = {s|(E-1)2" £ s < i[2}, =1,23,...,27,

and let 2, denote the o-field generated by {4}, 1=1,2,...,2". Defining
a sequence of functions {f,} in the following way:

fi(8) = (—1)e,, seAp, i=1,2,

fn'(s) = fu-1(8)+ (—=1)te,, se A, i=1,2,...,27,

we obtain a martingale {f,,2,,1<n <o} satisfying the conditions in
statement II, but not being a Cauchy sequence.
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