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INEQUALITIES FOR THE GREEN FUNCTION AND
BOUNDARY CONTINUITY OF
THE GRADIENT OF SOLUTIONS OF ELLIPTIC
DIFFERENTIAL EQUATIONS

KJELL-OVE WIDMAN

1. Introduction.

In the first part of this paper we establish various inequalities for the
Green function of Laplace’s operator in a Liapunov-Dini region 2 <R,
n2 3. In the case of Liapunov regions in R3 they were previously known,
see [6] and [4], but apart from being more general, our derivation seems
easier and more natural.

As a consequence of these inequalities we can give an elementary
proof of a theorem of Schauder [7], assuring the Holder continuity of
the gradient of a harmonic function in 2, given that » has Hélder continu-
ous tangential derivatives on the Liapunov surface 2. In fact we shall
establish a more general theorem involving Liapunov~Dini surfaces and
Dini continuity instead of Holder continuity, and by an easy example
we show that this condition is the right one to ensure boundary con-
tinuity. One should also compare the situation in two dimensions.

In the second part the corresponding theorem for solutions of a rela-
tively wide class of semi-linear second order elliptic equations is proved.
This class contains e.g. the uniformly elliptic equation

au, + btu, + cu = f,
(%] ()

where ¥ are boundary Holder continuous and where b%, ¢, and f are
measurable with a limitation of their growth near the boundary. For
details, see Section 3 and Theorem 3.1. A somewhat wider class of elliptic
equations was considered in [9], and we shall use several results and
methods from that paper.

The literature dealing with the boundary behavior of solutions of
elliptic equations is rather formidable. We refer the reader to the funda-
mental work of Agmon, Douglis, and Nirenberg in [1] and [2], where
also extensive bibliographies can be found. However, to the author’s
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18 KJELL-OVE WIDMAN

knowledge the results in this paper are more general than existing ones
for the case of second order operators, since we have considerably weaker
regularity assumptions on both the coefficients and the boundary. A
comparative discussion will be found at the end of Section 3.

Since we believe that the first part of this paper might be of interest
to a wider audience, we have tried to include more details there, in con-
trast to the second part, where the proofs are more sketchy.

The author would like to acknowledge several interesting discussions
on these matters with professors Lennart Carleson and Yngve Domar.

Norations. We place ourselves in RB*, n >3, the points of which are
denoted by X,Y,..., and X=(z,,...,2,), X'=(2,...,2%,.1)- The Eu-
clidean distance (x,2+ ... +x,2)! is denoted |X|. Integrals over n-dimen-
sional regions will be denoted by [(-) dX, over (= — 1)-dimensional surfaces
by [(-)dS, dS being the surface element.

By a Dini function we shall mean a non-negative, monotonic, continu-
ous function &(¢), ¢ > 0, having the properties that ¢(¢)/¢ is also monotonic
and

fﬁ‘(i)dt<oo.
t
0

The important property here is of course the integral condition, the
other ones being introduced for technical reasons. A common type of
Dini functions are ¢(f)=t*, 0<a<1.

A Liapunov-Dini surface is a closed, bounded (n — 1)-dimensional sur-
face § satisfying the following conditions:

1°. At every point of S there is a uniquely defined tangent (hyper-)
plane, and thus also a normal.

2°, There exists a Dini function &(f) such that if 8 is the angle between
two normals, and r is the distance between their foot points, then the
inequality 8 <e(r) holds.

3°. There is a constant ¢ >0 such that if 2, is a sphere with radius ¢
and center X, € S, then a line parallel to the normal at X, meets S at
most once inside 2.

A Liapunov-Dini surface is called a Liapunov surface if ¢(¢)=kt”,
0<a< 1. Liapunov-Dini and Liapunov regions are regions bounded by
Liapunov-Dini and Liapunov surfaces respectively. For the properties
of Liapunov regions see Giinther [5]. Important properties are carried
over to Liapunov-Dini surfaces; in particular the Green formula is valid
in a Liapunov-Dini region.
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The boundary of any set D is denoted by 2D, and D is the closed hull
of D. The distance from X to oD is denoted by §(X).

K denotes a generic constant changing its value from one occurrence
to another, and w,, is the area of the n-dimensional unit sphere.

2.

We start with a lemma on the Green function for the Laplacian in a
half space. Since this function is explicitely known and has a very
simple form, the following estimates follow without difficulty with ele-
mentary methods.

Lemma 2.1. Let G(X,Y) be the Green function for x,>0. Then for
i.5,k=1,2,...,n,

XY@,
HX,Y) s Ky, | X-Y['",
Kz,y, X-Y|™
9 E|X—¥[in,
2 x, 1) <
DS (ke xp
& K|X-TY|~,
GX,T)| <
ox; 0x; ( )= {Kyan—- Y|-1-=,
s &
|-- Gx,7)| < K|X= ¥
0y, 0x; 0x;

In the next theorem we consider a region D of special form: Let
@(t) = [te(s)ds. We note that ¢(f) is convex and that }ie(t) <e(t) <te(t),
a fact we shall use several times. Now D is defined by

D= {(X| |X'|<1, —p(IX']) <z, <2}

In D we define a harmonic function » by requiring that » be equal to
zero on o'D=0Dn{|X’|<1,z,<0} and equal to one on §"D=9D\9'D.

THEOREM 2.2. If u is defined as above, then
«(0,...,0,z,) £ Kz,,
where K depends on ¢ and n only.

Proor. We construct the region D, by taking away from D its inter-
section with the ball

n—1
Z xi2+ (xn + r)z é 2
=1
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and denote the harmonic function that is one on &"’D, and zero on &'D
by u'.

The regions D, have the following property: If we shrink D, by a
length factor 16, say, and denote this region by D,’, and place a region
D, ,, congruent to D,’, with the node of &'D, , at (X', —2¢(s)), |X'|=s,
and its axis parallel to the x,-axis, then 9D, , will not intersect o'D,
(see Fig. 1). This follows by using elementary geometric considerations
and the fact that ¢(2f) < 2¢(¢).

r

Dy

Fig. 1.

Now we note that — K <ou’/on <0 on &’D.n{x,>0}, K independent
of r, and represent u”(0,...,0,y,) by using the Green function G of
{#,>0} in D.n{x,>0}. We get, if Y =(0,...,0,y,),

0@ our 0 , , ,
o, ur(Y) = f —w-G-dSx+ f s, O T (X)) X
2D n{zp>0} le]=1
Using the estimates of Lemma 2.1 and
lwf| =1, |ow'fon| = K,

we see that the first integral is less than Ky,, K independent of r.
Next by using the maxium principle, we see that for s small enough
u"(X') is less than the corresponding function in D, ,, with s=|X’|. Hence
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w(X') £ u(0,...,32 ¢(|X']) .
In the second integral we use this estimate to conclude

u(0,...,32 (| X))

ax’ .
X'—Y|

w(Y) £ Ky,+Ky,
| X’]=1

Now put
m, = SUPy_y, oo u"(0,. . Y)Y -

Since %" is certainly less than y, times a constant depending on r, m, is
finite for every r>0. We get, with |u"| =1,

m, (| X’|) aXx’
<K+K f RR Al Y ¢ il
meE AT o T X1
(X|=a as|X’|=1
&
. K
§K+Km,ff(t—)dt+—.
0 !

Obviously we can choose an ¢, independent of r such that

L (el
Aof_t-_dt <.

Then
m, £ K + Kle; .

Since the right hand side is independent of r it follows that
u(o" . "yn) = Kyn

either by letting r - 0 and noting that %" — u or by the maximum prin-
ciple. The theorem is proved.

TureoreM 2.3. Let 2 be a Liapunov—Dini region. For X,Y eld,
1,J=1,2,...,n, the Green function G(X,Y) of Q2 satisfies

) FX, Y)=KéX)|X-Y -,

(ii) E%G'(X, Y)' <K|X— Y[t

(i) 5% OX.7)| SKo(T)IX - Y|,

R
iv) | Z-Zex, Y)l < K|IX— Y|,
0x; 0y,

where K depends on Q only.
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Proor. Let the diameter of £ be d. There is some s,< 1 such that
regions congruent to D shrunk by a factor 1/s can be placed at every
point of 92 in such a way that the bent part intersects 62 at this point
only, and the symmetry axis is along the normal, for all s<s,.

Now let Y be fixed. If 6(X)=s, we have

X)) =52 Kdz K| X-7|
and hence
G2 |X-Yp" < K§X)|X- Y.
The same type of argument holds if
8X) <s, but |X-Y| < 26X).
Thus it is sufficient to consider the case
0(X) < 8, 6X)< 3 X-7].

Let X* € 02 be such that §(X)=|X*-X|. At X* we place a region D’
congruent to D shrunk by a factor

4IX-Y| i |X-7Y]| < 4s,,

ls = 1/s, otherwise .

It is easy to see that the distance from Y to 9D’ is greater than | X — Y|/4,
which means that

G(Z,Y) s K| X-Y||*™ for ZedD .
By the maximum principle and Theorem 2.2 we find
G(X,Y) S KX)s | X-Y2"» = K§X) | X-Y]
if | X—Y|<4s,, and

KX,Y) < K 8(X) s, X~ Y|2-n
< K§(X)d-1 | X - Y < K §(X) | X - Yi-n

in the opposite case, and (i) is proved.

To prove (ii), if 6(X)<|X — Y| represent G by its Poisson integral
over a sphere with radius }4(X) and use (i) after having differentiated
under the integral sign; if | X — Y| < 6(X), take a sphere of radius { | X — Y|
and use the inequality G(X,Y)<|X — Y|?-".

To prove (iii) we first show that for fixed X € £,
0
5——G(X,Y)-—>O as Y — 0Q.
Ty

When Y is on a sphere around X with radius g, we have G(X,Y)2
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1| X —Y* if g is small enough. Now let 2 be a vector with length
< 4po. The difference quotient satisfies

G(X+hY)-}(X,Y)
|P|

< |X—Y"K < Ko'&(X,Y)

for |[X — Y|=p. Since the difference quotient is zero on 02 the stated
inequality between the quotient and G holds in £ minus the sphere.
After fixing ¥ we let 2 — 0 and see that
0
ox;

K]

(X,Y)~>0 as §Y)->0.

Now, using (ii), (iii) follows as in the proof of (i), and then (iv) follows
from (iii) as (ii) followed from (i).
The theorem is proved.

REMARK. (i) was proved in [6] with n=3 for Liapunov regions, and
in [8] for regions with stronger regularity but for general n. (ii) was
proved by Eidus in [4] for Liapunov regions in R3, with the help of
integral equations.

THEOREM 2.4. Let w be a harmonic function in a Liapunov-Dini
region 8, continuous in Q, and with the property that to every X,e 02
there is a linear polynomial Lx (X) such that

[(X) - Lgy(X)| £ &(|X—X,]) [X-X,|, Xed,

where the Dini function &(t) satisfies the additional condition that e(t)[t is
monotonic for some y, 0<y<1.

Then oujox; are continuons in .

In partioular, if Q is a Liapunov region and &(t)=kt*, then the functions
oufox; are a-Holder continuous in £.

RemARrk. It is clear that Dini or Holder continuity of the tangential
derivatives of w on 82 implies the respective conditions in the theorem.
It is also clear that the additional requirement on the Dini function is a
fairly mild one.

Finally, we remark that the o appearing is the same as in the defini-
tion of the Liapunov surface; if the Holder exponent of the function is
smaller than that of the surface, we can always diminish the latter.

Proor or THEOREM 2.4. It is easy to see that the coefficients of Lx (X)
can be chosen so as to be uniformly bounded on 0£2.
Our first step will be to prove that |gradu| is bounded in Q.
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"~ Let Y be an arbitrary point with §(Y) small, say < lp, where p is the
number appearing in the axiom 3° of Liapunov-Dini surfaces. If

Y*caQ, |Y-Y* =4Y),

let X be the intersection of 2 with a ball of radius }¢ and center Y*.
To simplify notations we assume that

Y* =0, Y=(0,....9), ¥.>0.

Since the coefficients of the linear polynomials are uniformly bounded
we may subtract L, from « and assume that u satisfies

lw(X)| £ K|X|e(|X]), XeoR.
Put
ul = w(Xy,. .., Ty 1,%,+1), t>0.

Then grad«! is continuous in 2 and if Q2 is given by «, = ¥(X') we repre-
sent Du! in

r=Xn{z,>t+¥PX")}, >0
as follows:

w, DY) = f {u‘(X)D;;;G(X, Y)— a% WH(X)DG(X,T) dSy +

2XTnx

+ [ (rasx,

oz nex

where D denotes differentiation with respect to any Y-variable and G
is Green’s function for 2. Now for fixed ¥ and ¢ we let v — 0. DoG[on
tends in weak (L2) sense, say, to some function on 02'nof2 satisfying the
same inequalities as D8G/on. Since u' and gradw' are continuous in X
no other convergence problems arise here. We observe that the second
term in the first integral disappears after this operation.

In view of Theorem 2.3 and the elementary inequality

lgradv/(X)| = K Mé-YX), M = max|u|,

where K is independent of f, there is no difficulty involved in letting
t—>0. We get

w, Du(Y) = f wX) D ‘%G(X, Y)dSy +

exno

2 2
+ f {u(X) D 6(X,¥)- —uX)DA(X, Y)} Sy .

oxnQ2
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Now
o1 X)X, e,
[ (rasx|sk i X' s K[La <K <o,
2 na0 1X’|< $e 0
s
f ()dSx < KM f ﬁ§KM9~1=K< .
PZNQ 1 X|=%e |

The next step will be to prove that
(2.4.1) |D2u(X)| £ Ke(6(X)) 6-4X) .

To do that construct an egg-shaped region E the boundary of which
consists of the part of the surface x,=Fkq(|X’|) that lies below z,=s,
plus a cap put on top so as to make E convex, of diameter 2s, say, and
symmetric with respect to the x,-axis. If k is large and s small enough,
a region congruent to F can be placed inside 2 at every point of 62 in
such a way that the symmetry axis lies along the normal, and the node
of F is the only point common with 0Q.

Keeping the notation, we take ¥ =(0,...,y,), Y*=0, and represent
u(Y) by its values on 0, using the Green function G of z,>0. After
having differentiated twice we get

0 0
w, D*u(Y) = f {u(X) D —G(X,Y)- —EDzG(X, Y)rdSy,
oA on on

D? denoting any second derivative with respect to the Y-variables. In
order to estimate the first term in the integral we note that on 0E

(X)) = (X)) — w(X*)] + [u(X¥)]

<
< K|X - X*+ K¢(|X*))|X* = Ke(|X])|X]

which follows since |gradu| is bounded and we have assumed that the
linear polynomial is already subtracted from ». Now we divide the domain
of integration into three parts:

0B, = 0B n Yz, <8} n {|X'| <yn,}

0E, = 0B n {z, <8} n {|X'| >y,}
0B, = 9E n {x,>s} .
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(|1 XD X
f w(X) D?— G(X Y)dSg| < K f ll(fl l;'ﬂ'l .
ok |
<k [ gs - Reya,
Yo" |xi<yn
&(1X1) 1 X
f( ) dSx <Kf|x Ynit X
ok,
<KJW)
/:'In 8(?] t)
= Ky, ™ f tn
1
< Ky, te(y,) f tr2dt < Ky, e(y,) ,
1
f(-)dSX < K(s) max|u] .
ol,

The second term is estimated similarly, using the boundedness of du/on.

The continuity of gradu in 2 is a trivial consequence of (2.4.1) since
then gradw is continuous with the same modulus of continuity along
every normal onto 022, and since the direction of the normals is a continu-
ous function on 99.

In the case of Liapunov surfaces and &(¢)=kt*, the Holder continuity
follows with a similar argument.

The theorem is proved.

Remarxk 1. That the Dini condition is actually necessary to ensure
even boundedness of the gradient is seen from the following example.

Let &(t) be a highly regular function on R*\{0}, satisfying the require-
ments of a Dini function, except that

0

Put
¢

o(—t) = &) and f(t) = f o(s) ds .

0
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1f u(x,y) is the harmonic function in y > 0 having f as its boundary func-
tion, gradw is not bounded in a neighborhood of the origin, because

1
&(t)

> dt—KZKf———dt—I» .

= fy+t2 - ¢ £ >0 y=0

—u(Oy

REMARK 2. It is possible to avoid the limiting process involving 7 in
the proof above by first proving that the derivatives of the Green func-
tion are continuous in 2, since in this case we know that |grad@| is
bounded by Theorem 2.3, and then we can apply the argument with the
region F immediately.

THEOREM 2.5. Let G(X,Y) be the Green function of a Liapunov—Dini
region Q. Then for fixed Y € Q2 there is a constant C >0 such that

2 ex,7) 2

3nX

Proor. Consider the egg-shaped region £ of the proof of Theorem 2.4,
and let
X =1(0,...,2,), Y =(0,...,4,), y,>2x,.

If G*(X,Y) is the Green function of {z,>0} and G that of K, then

1 0
H(X,Y) = G¥X,Y) - — f GHT.X) - G(T,Y) dSy .
Py T

It is easy to check that there is a constant C'> 0 such that
G*X,Y) 2 Cx, | X-Y'» if |X-Y|>y,/2.
Moreover from Theorem 2.3

oq

1Y) £ K|IT-Y", < Ky, |T-Y|".
Uz

This gives us for a>0

Kax ¢
GHT.X) - G(T V)dSy| S 5y 3 f Pt
|T"|<a <a
Kz, J‘s(r) dr |
TIX- Yl"'1
ax(7,X) i G(T,Y)dSy| = K(a) 2, ¥, -
|T|>a anT
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Now choose a so small that
f f@ dr < s

and then y, so small that
y," K(a) < 3C.

Then
K(a)y, = K(2)2(y,—=,) £ 1C|Y - X|**
and hence
Cez, K.z, [5e(r)[r dr
Y) > n __1"nlJo _ ,
AXY) 2 gy~ g~ K@ w,
Cx,
>
T 2| X-Y|»1

With z, - 0 we get

0
—Q0,Y) 2 §0/| Y| 1.
ong
The theorem then follows with the maximum principle and Harnack’s
inequality.

REMARK 1. The proof of Theorem 2.5 is actually independent of the
rest of the paper; in fact, the only use of the earlier parts made were the
inequalities for 9G//on,. But since E is convex, these follow immediately
with the maximum principle.

ReEmark 2. The integrability condition on £(¢) is necessary. To see
that assume that for fixed Y

0Glongy 2 C >0, Xedk.
Here E is defined using &(f) as above. Put

z,+1
[ X'+ (w0, + )24

u(X) =
Then

1 oG
w(¥) = - [ 22 (X,7) u(X) dSx
T o8 nx

z,+1t
— ds
n,,,£[|X't2+<x,.+t)2]*" *




INEQUALITIES FOR THE GREEN FUNCTION ... 29

IX’| (| X)) is
[X7 2+ (ke(|X )| X' + | X/ |)2gin X

[\%

K

2En {s12]X" |2t}
Tn<sg

e
r
?__Kfe—dr» 00, t—->0,
r
t

1

!ﬂ})dr=oo,

whilst on the other hand

REMARK 3. The inequalities for the Green function obtained in Theo-
rems 2.3 and 2.5 are of course valid for the Green function of any second
order homogeneous elliptic operator with constant coefficients. If we
consider a class of such operators the ellipticity constants of which are
all bounded below by A > 0, the constants in the inequalities can be chosen
uniformly with respect to the class, and depend only on 4 and n. To see
that we check that the only difference in the proofs will be the constants
in the inequalities for the Green function of a half space, and these con-
stants can be chosen uniformly with respect to the class, since the dila-
tation of distance is bounded above and below by A-! and i when ap-
plying a linear transformation which takes a given operator into the
Laplacian.

3.
In this section we study solutions of the equation

*) a9 X)ug; = F(X,w,0;u;)

in a Liapunov region £2. Apart from measurability, we shall make the
following assumptions on a® and F':

la¥i(X)—a¥(Y) < K|X-Y|*, XeoR, Ye@, O<a<l,
)'|§|2 é aij(X) Stsj é l—llélz’ XEQ, 5‘:(517' * ~)£n):'=031>09
a¥ = ait

|F(X,w,wg,%5)] £ KO%X)|uy| + K6*Y(X)|w,| +
+ Ke(8(X))0~1(X) lul + Ke(8(X))07HX)

where &(t) is a Dini function satisfying
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&(t)/t” decreasing for some y < 1.

We shall think of a solution » as a function with two continuous deriva-
tives in the interior of £, although it is possible to relax this condition
(see [9, p. 487]). We construct a regularization of (*) by taking functions
@* belonging to C*(Q) and %), and satisfying % =a% on 00,

lgrada¥| £ Ké*1YX).
A solution %(X) of (*) will then also be a solution of
a9 X)uy; = F(X,u,ug,u;) + [a9(X)—a¥(X)Juy; .

For the construction of the functions @/, see Lemma 3.9 of [9].

In [9, p. 523] a mapping was constructed which maps a neighborhood
Z, of fixed size around any point X, € 92 onto a neighborhood of the
origin in such a way that the image of 2,092 lies in the plane y,=0 and
the image of X, contains a hemisphere {|X|<o, 0<y,}, and such that
to (*) corresponds an equation of the same type.

Before we continue with the theorem, we introduce some new nota-
tion. The integral [(-)dX, over a surface can be interpreted as
J(+) cosy; dS where cosy; is the scalar product of the ¢-th unit vector
and the normalized outer normal of the surface. By 0/o»v we denote the
conormal derivative a®/ cosy; 9/ox; where a®/ 92/ox,0x; is an operator with
constant coefficients with respect to which we use Green’s formula.

The summation convention is used freely.

THEOREM 3.1. Let u be a solution of (*) in a Liapunov region 2, continu-
ous in 2, and with the property that to every X, € 82 there is a linear poly-
nomial Lx (X) such that

[u(X) — Ly (X)| = o(|X —X)|[X—Xo|, Xeol,

where &(t) is a Dini function as above. Then the derivatives ou|ox; are
continuous in Q.
In particular, if e(t)=kt*, then dulox; are a-Holder continuous in Q.

REMARK. We have used the same function ¢() in the assumptions on u
and on the equation. This is of course not necessary, but can be
achieved by taking at each point the maximum of &(¢) and ey(t) and
taking the largest of the two y’s involved.

For the proof of the theorem we need some lemmata.

LemMA 3.2. Suppose u is a solution of (*) in a Liapunov region L2,
continuous in Q. Suppose also that
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[w(X)—uw(X*)] = KIX-X*f, 0<f<1.
Then for all p=1 and all y >0 we have
[ [ g7a-p-11) Tl +89(X) 712X < 0.

Q

Proor. It is sufficient to assume p>1 since the finiteness for p=1
then follows by Holder’s inequality.

For a fixed X,e 2 we put v(X)=u(X)—u(Xy*) and apply Lemma
3.7 (i) and (ii) of [9]. We get with I =< }d(X,)

r Jf |u;[PdX éIK

IX-Xol<s {lw(X) — u(Xo*) [P +L22(|F|P +
10 [ juyrdx gl X=Xl +[a¥(X) — a¥(Xy*)]uylP)} dX .
| X--Xo|<f

Now the proof follows the pattern of the proof of Theorem 4.1 in [9],
and since the modifications are obvious we omit the rest.

LemMMa 3.3. Assume u is a solution of (*), with &(t)=kt*, in a Liapunov
region Q. Suppose |gradu| is bounded, and that to every point X, e 02
there is a linear polynomial Ly (X) such that

[w(X)—Lx(X)] £ K|X-X, '+, 05f<a, Xe.
Then for every p=1 and every y>0
ff 61’(1—ﬁ)—1+7 |uij]p dX < o0,
Q

The proof is identical to that of Lemma 3.2, with the exception that
for a fixed X, we consider

o(X) = w(X)—Lg(X) -

Lemma 3.4. Let u be as in Theorem 3.1. Then

lgradu| £ Koé1(X)
for some y>0.

Proor. Choose Y € 2 with §(Y) small, say < }s. By the discussion in
the beginning of this section we can assume that Y*=0, that the inter-
section of 92 with a neighborhood {|X|<s} is plane, say, lies in z,=0,
and that the set
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D={X]| -s<ux;<s, i=1,...,n—1, O<z,<s}
is a subset of 2. We put
D =oéDn{x,=0} and 0”"D = oD\oD.

Now translate D along the positive z,-axis by ¢ to D,, take the Green
function of z,>¢ for the operator a'(0) &%/ox,0x; and apply Green’s
formula to it and % in D,, use the fact that » is a solution of

a(Ouy = F + (@ —a¥yu;; + [0¥(0)—a%(X)]uy ,
integrate partially in
DNX | IX=Y—(0,...,0)| <38()},

and let ¢ - 0 (cf. formulas 7.1.5-11 in [9]). After differentiating we get,
modulo signs,

9
o, 'a’y_k w(Y) = f w(X) g o G(X,7) dSx -

. a 0
- [ @) - X - o G, T) dXg +

k

y o 0 . d
+ f a9(X) u — — XX, Y) dXy—a9(X) u; — G(X,Y) dXy +
#D %y 0%; s

+ fD f @ikG(X’ Y) [F + (@ —a¥yu,;] dX +

. ) 9 2
+ f (@0 ~ a0 - a—ch:(x, Y)dX, —
| X-Y|=45(Y)

— [@%(X) —a¥(0)] u; 2 HX,Y)dX; +
Yy

2
+ f [64(X) —@9(0)] wy — G(X,Y) dX +
IX-¥is46D) s

+ f {[a”(X) — aH(0)] w —
Dn{| X—Y|>33(Y)}

7
+ @ u— -—G’(X Y)-aiu, ——~G(X Y)}dX
oYy, Ox;

82
8y8 0%,

dX,Y) +

By Section 2 of this paper we know that the first integral over &'D
is bounded, and since u is bounded it is easy to see that the second one
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is <Ky,*'. By Theorem 4.5 of [9] we know that |gradu|< Ké-1(X)
which implies that the integral over 9"’D is < K s-1. Using the bounded-
ness of « and the Holder continuity of @/ we see that the integral over
(X —Y|=8(Y)[2} is <Ky,

The integral over D we split into two parts:

. dX
Do} X—Y|Syn/2}

IIA

K[ 1X- Yot ax
|X=-Y|=yn/2

1/p
Ky, 4 g, o Tamip-nip [ f f 2 P gy 1o d X]
D

é K ynzx—l—y

I\

by Holder’s inequality and Lemma 3.2, where y is made arbitrarily
small by making p large enough.

aX

Dn{|X-Y|zyn/2}

] [ ][5

Ky,

Z
=K ffm {2+ @, uyl} X

IIA

IIA

The remaining two integrals are estimated in exactly the same way
as the first and second part respectively of the one just treated, and the
lemma is proved.

Proor or THEOREM 3.1. We need a more easily handled formula than
the one above, and we get one by omitting the extra partial integrations:
0

w, — u(Y)
3%

—f X) G(X Y)dsx+f X)~5—G(XY)dSX+

oY vx

; fo oy O ) (F +[a9(0) = (D} X .

Due to Lemma 3.3 and 3.2 where we now can take f=a—y>0, the
double integral converges, for any y > 0.

We first prove that |gradw| is bounded by first using Lemma 3.4 and
then make repeated use of Lemma 3.3 and 3.2 and estimations of the
double integral, successively getting

Math. Scand. 21 — 3
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lgradu| < K ém=r1(X),

m=1,2,...,N, where (N+1)x>1. In the next step the boundedness
follows. The estimations are similar to those of Lemma 3.4 and will not
be repeated.

In view of the boundedness of |gradu| the continuity and Hélder con-
tinuity of ou/oxz; is a purely local affair, i.e. we need consider
|0u(Y) [0z, — du(Z)[ox;| only when Z and Y are close to each other and the
boundary. Our first step will be to show that

|7-7|
E ¢
a1y | Z2m-Zavlsx [ Yo+ xiy-vo—
0x; ox; : ¢
for all y>0, and as usual we shall assume Y*=0, Y =(0,...,y,) so that

the formula above is valid. We define du/dz,(0) by putting ¥ =0 in the
formula; it is easy to check that the double integral so defined is conver-
gent.

Since by Section 2 the surface integrals present no problems we con-
centrate on the double integral and split the domain of integration by
taking away from D the set B={|X—Y|<2y,}. In D\ B we have

0 i K D. ¢
|- - axo| s [ 7
Z %Y Ky, X|",

whence
f f (F +[a%(0) — a¥(X)] uy} {i X, ¥) - a(x, 0)} ax
8 Wi %Y

ynxn
=% ff | X - Y|r+1 {znte(@p) + 2,571+ 1 XUy} 4X
B

(X - 7Y])

< 0
= Ky, |X = Y|n+

yns|X-Y|sd

Up ,A-V@-D|X|ea |
+ Ky, Uf R U dX] [ f f T X dX]
I X-Y|22yn

dX + Ky, f f |X - Y|*--1dX +
|X-Y|=22yn

s Ke(y,) + Ky,* + Ky,*™”

.'lne(t)
< Kf 2@t + Ky,
: t



INEQUALITIES FOR THE GREEN FUNCTION ... 35

f 2 &x,0) {F +[a9(0) + a¥(X)Ju;;} dX
) o,

s flzf;(—ﬂ—l”{xn“le(xn)-l'%“‘l'i'lxl“ luyl} dX

“Pe)
< Kf-—dt + Ky + Ky, .

0

The other integral over B is treated similarly, and (3.1.1) is proved.
‘We proceed to prove that if |[Z~ Y| < 16(Y), then
e,
(3.1.2) 5—u(Y)—~—(Z)‘<K|Z Y + K f y>0.
Yx
Since we still need consider the double integral only, we divide the domain

of integration and use the following estimates for the difference
/0y, G(X,Y)—0/02,G(X,Z) in the respective parts: In

(X-Y|<}Z-T)): K|X-Zp-+K|Z- Y],
(X-Z|s3Z-T}: E|X-Yp-+K|Z- Y],
(X-Z1X-Y|>}I1Z-¥],|X-Y|<}4D)}: K|¥-Z,
{IX-Y|>38(7)}: K| Z-Y||X-Y|™.

Now the inequalities (3.1.1) and (3.1.2) obviously imply continuity
in the general case and Holder continuity with exponent «—y for all
¥>0 in the case &(t)=Fk¢* (see also the proof of Theorem 2.4). To get
«-Holder continuity we apply Lemma 3.3 with f=x—y and use the
resulting inequality for the integrals containing u;; above, and the theo-
rem is proved.

ReMark. By considering the function

wX) =J'dyf8()dt+ K(@2-2,),
0

which is a solution of
|Aul = x”—l &(x,) ,

|[du| = K z,71 &(x,) |u] ,
and
|[du] = K z,7! &(x,) |w
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in 0<z,<1 we see that we cannot relax the hypothesis on &(t), since
Uy, —> © a8 T, > 0 if

1
t
ffﬁ)dt:oo,
t

0

despite the fact that « is constant on x, =0.

It is probable though that the Holder continuity of the a% can be
weakened to a Dini condition, and that a corresponding relaxation may
be made on the coefficient in front of |u,| in the assumptions on the equa-
tion.

The following theorem is proved with exactly the same method as
above. In fact, the proof is a subset of the proofs given and so it will be
omitted.

TaEOREM 3.5. Let u be a solution in a Liapunov region 2 of the equation
auy = F(X,u,u;%:)
where a¥ satisfy the same hypothesis as above, and F satisfies
|F| = K [67*X) + 0"%(X) |uf + 6*7H(X) |ug] + 6%(X) |uyl]

with 0<n<1. Suppose that w is continuous in Q and that the restriction
to 0Q of w is n-Holder continuous. Then w is n-Holder continuous in 0.

As mentioned in the introduction, results in this direction have been
obtained for higher order equations by Agmon, Douglis, and Nirenberg
in [1]. If Theorem 12.10 of [1] is specialized to the case of a second order
operator and compared to Theorem 3.1 of this paper, one finds that they
have assumed all the coefficients to belong to C'+* while we have second
order coefficients belonging to C*, roughly, and lower order coefficients
not even continuous, but with a limitation for their growth at the bound-
ary. Our regularity assumption on the boundary is also weaker than
theirs: C1** versus C?+*,

We would also like to mention a note by Browder [3] where he states
a theorem assuring the Hélder continuity of the gradient assuming the
coefficients to be continuous in the closed domain and the solution to be
zero on the boundary, but since he also requires the right hand side of
the linear equation to belong to L?, p>n, one has to assume higher
regularity than necessary of solutions which do not vanish identically
on the boundary. Browder also requires the boundary to be of C? regular-

ity.
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