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PAST AND FUTURE

HENRY HELSON and DONALD SARASON

Professor A. M. Yaglom calls attention in his paper [7] to a natural
problem in the theory of stationary stochastic processes. The problem is
to characterize the spectrum of a strongly mixing process, or, in other
words, to tell from the covariance function whether the distant past and
distant future of the process are nearly orthogonal. In the present paper
we shall solve this problem, in the sense that other second-order prediction
problems have been solved, by giving an analytic condition on the co-
variance function that is necessary and sufficient for the process to be
strongly mixing. Our condition has a rather different character from a
necessary condition recently found by I. A. Ibragimov [4], [5]. It is not
known whether Ibragimov’s condition is sufficient. Although we are
able to derive from our condition a number of Ibragimov’s secondary
results, we do not fully understand the relation between his main result
and ours.

In [2], G. Szegd and one of us studied a related prediction problem,
that of determining when the past and future of a process are at positive
angle. The techniques we develop below enable us to extend the results
of [2]. This extension will be discussed at the end of the paper.

2.

Let u be a finite positive Borel measure on the unit circle in the com-
plex plane. Let y be the function on the circle defined by yx(ef®)=e®.
For each integer n we form in the Hilbert space L*(u) the subspace #,,
spanned by the functions y», y*+1, *+2,. .., and the subspace &, spanned
by the functions y™,y"1,%"2,.... The subspace %, is called the future
and Z_; is called the past in L?(u).

For any two subspaces .# and 4" of a Hilbert space we can define a
number ‘ ’

oM A') = sup|(£,9)]
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where f and g range over the unit balls of .# and 4", respectively. Evi-
dently o cannot exceed 1; if 9 <1 we say that .# and A" are at positive
angle. In the present context we define

On = Q('@O”g‘n), n=1,2,- oo »
If p and ¢ are any positive integers with sum equal to n we have also
on = 02 1 F)

because multiplication by #? is a unitary operator in L%(u) that carries
ZP_, onto #; and F, onto F .
The problem we study is this: which measures u have the property that

o, tends to 0 as n tends to infinity ?

3.

The search is narrowed by pointing out some necessary conditions
that follow from known results. If x is not absolutely continuous there
are nonnull functions in the intersection of every &, with £,, namely
the functions carried on the support of the singular part of u [3, p. 58].
Then g, =1 for every n. Thus we need only consider measures of the
form du=wde, where o stands for normalized Lebesgue measure on the
unit circle and w is a nonnegative function in L!(¢). Furthermore, we
may assume logw is summable, because otherwise all the subspaces &,
and 2, coincide with L*(w) [3, p. 114], and once more g, =1 for all n.

Let W stand for the collection of all nonnegative summable functions
w such that p, tends to 0 in L%w). (We exclude the null function.)
Each such function w is |k|? for an outer function % in H2 [3]. This b is
uniquely determined if we require h(0) to be positive. Let ¢(z) be the
argument of A(z), determined so that ¢(0)=0, with ¢(ei*) defined almost
everywhere as the radial limit of ¢(z). The function ¢(e*) is the conjugate
function of } logw. Whenever they are mentioned, » and ¢ will be related
in this way to the weight function w under consideration.

4.
We begin by following an idea of [2]. In L%w) we have

(1) On = sup“fgx"w dvl,

where f and g are polynomials in y subject to the conditions -

flfl”wda =1, flgl’w doe 1.
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Now (1) can be written

(2) @n = SUup

[ gy yme—siv do .

As f and g vary in their prescribed way, fh and gh range over a dense
subset of the unit ball of H?, and their product ranges over a dense
subset of the unit ball of H'. Thus (2) expresses g, as the norm of
y"e2%% ag a linear functional on H1.

By the Hahn-Banach theorem this quantity is equal to

3) inf [y e~ — Al = inflle=*¢—y=" A, ,

where A ranges over the functions in H*® with mean value zero. The
functions y~™4 in the second expression are arbitrary sums P+ A4, where
P is any trigonometric polynomial with frequencies lying above —=,
and 4 is in H®. The limit of (3) as » tends to infinity is

inf [le~%% — (P + 4)]l

where P ranges over all trigonometric polynomials and 4 over H®™.
Thus we have this characterization of the elements of W:

THEOREM 1. A weight funciion w is in W if and only if its logarithm
18 summable and e=2% can be approximated uniformly by functions P+ A,
where P i3 a trigonometric polynomial and A is in H*.

5.

Let R be the uniform closure of the set of functions P+ 4. Evidently
R is a closed subspace of L™, containing all continuous functions as well
as H*®. But the product of two functions P+ 4 has the same form again,
so that R is a Banach algebra. From this observation we can deduce a
result of [6]: if w is continuous and strictly positive, then w is in W.

For the proof write
e—ziqn — elogw e-—log w—2ip

The first factor on the right is continuous. The second factor is 22 and
belongs to H*. Since each factor is in R, the product is too, so w is in
W by Theorem 1.

The fact that R is an algebra shows furthermore that the product of
two functions from W is in W, provided only this product is summable.
We shall prove later that the product is indeed always summable.

The algebra R has presented itself in other connections [1], and it
would be useful to have a simple criterion by which to identify functions
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in R. In this direction we can only offer the following remark. Let C
be the space of continuous complex valued functions on the circle.

THEOREM 2. R s equal to C+H®, the set of all sums f+g where f is
in C and g is in H*®.

By definition C+ H* is uniformly dense in R; the point is that this
set is actually closed. Denote by Z the intersection of C with H*. By
the F. and M. Riesz theorem, the dual of C/Z is H,! (the subspace of H!
consisting of the functions with mean value zero). The space H! has
L®[H* ag its dual, and so the latter is the second dual of C/Z. The
canonical map of C/Z into L*/H® carries f+ Z to f+ H®, and the range
of this map is closed. Hence the inverse image of this range in L*,
under the canonical projection of L® onto L®[H®, is closed, and this
inverse image is exactly C+H®™.

6.

We cannot develop the criterion of Theorem 1 further, on account of
lack of information about R. Instead we go back to (3) to get this
ungainly proposition.

THEOREM 3. In order for w to belong to W it is necessary and sufficient
that for each positive number ¢ there exist a function A in H* and a positive
integer n such that

(4) —¢ < arg(4h*)™) < ¢ (mod2xn), and —e <logld] < ¢
almost everywhere on the circle.
Proor. Modifying (3) a little we have
on = inf|[l — Ae** x|,

where A4 ranges over the functions in H* with mean value zero (a qualifi-
cation that is without importance). For the norm on the right to be
small it is necessary and sufficient that |4| be uniformly close to 1, and
that Ah?y—" have argument close to 0. The assertion of the theorem is
now obvious.

Let W, be the set of weight functions w with the following property:
for every positive ¢ we can find real functions 7, s, ¢ such that

(5) logw = r+8+t¢

with |jr|l, <&, § conjugate to s and ||s]|, <&, and ¢ continuous.
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Actually in (5) ¢ could be a trigonometric polynomial; for we can ap-
proximate a continuous function by a trigonometric polynomial and add
the remainder to » without increasing its bound beyond e. By taking
conjugates of each element of (5) we see that 2¢ (and thus ¢ itself) admits
such representations if logw does, and conversely. Let us also mention
that w-1 belongs to W, with w; and both are summable to every power,
because exp |3/¢| is summable as soon as ||s|,, < en/2.

THEOREM 4. W, is conlained in W.

This is part of our main result, and is only stated independently for
convenience. The proof is simple if we start from the following

Lemma. Every continuous real function on the circle can be approximated
uniformly by functions —argBy—", where B is a Blaschke product with
exactly n zeros and n is variable.

Taking the lemma for granted, we prove that an arbitrary element w
of W, belongs to W. As mentioned above we can find representations
(6) 20 = F+s+t
where r, s are bounded real functions with bounds less than ¢ and ¢ is a
real trigonometric polynomial. If we set

A = exp(—r—1i7),
an analytic function that satisfies the second condition of (4), then the
meaning of (6) is
argdh? = s+t.
Now let By~ be a function given by the lemma whose argument ap-

proximates —¢:
arg(ABh?*y—") = s+t +argBy ™.

The right side is bounded by ¢ if the approximation is good enough, and
80 (4) is established with AB in place of 4. That proves Theorem 4.

The lemma is elementary. The functions B-!y™ whose arguments are
involved are, explicitly,

" l—-&y " l—-a;y
kxn EALIN A ___l:_
I;I X—&; I;Il"‘"jl

where «,,...,x, are complex numbers in the open unit disk (not neces-
sarily distinct) and & has modulus 1. So
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(7) —argBy™ = argk + 2arg [] (1-&;%),
1

in other words, the functions with which we are trying to approximate
are precisely those of the form 2 argP(e**), where P(z) is a polynomial
having no roots in the closed unit disk and having modulus 1 at the
origin.

Let @ be any polynomial whose real part vanishes at the origin. The
partial sums P, of the Taylor series for exp@ are polynomials having
modulus 1 at the origin; they converge uniformly to exp@ on the closed
unit disk and therefore have no zeros in the closed disk for n sufficiently
large. Hence for n sufficiently large the functions 2 argP,(ei®) are of
the form (7). These functions evidently converge uniformly on the unit
circle to twice the imaginary part of Q(e®*), which is an arbitrary real
trigonometric polynomial. As every real continuous function on the
circle can be uniformly approximated by real trigonometric polynomials,
the lemma is proved.

7.
Here is our main result.

THEOREM 5. W is exactly the collection of all functions |P|2w,, where P
18 a polynomial and w, belongs to W .

If P is a polynomial then the weight function |P|% is in W, because
for this weight function we have g, =0 as soon as n exceeds the degree
of P. Thus, if wis in W then |P|?w is the product of two functions in W
and so is itself in W. This proves one half of the theorem.

To prove the other half of the theorem we need a simple lemma about
analytic continuation.

LemMA. Let the function S be analytic in the unit disk except for a pole
of order n (perhaps zero) at the origin. Assume 2*S 1is in the space H* of
the unit disk, and that S is real valued and nonnegative almost everywhere
on the unit circle. Then S can be continued analytically across the circle.

We shall derive this from another continuation principle, which is
well-known and which we therefore do not prove: If a function in the
space H! of an annulus 0< R < |z| <1 18 real valued almost everywhere on
the unit circle, then it can be continued analytically across the circle.

Let S satisfy the hypotheses of the lemma. Then there is a factoring
8=28,8;, where S, and 2"S, are in H! of the unit disk and |S,|= |8,
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almost everywhere on the unit circle. This means that ;=28 on the
circle. Thus §8,+ 8, and ¢(8; ~S,) are real valued on the circle, and so,
by the H! continuation principle stated above, they can be continued
analytically across the circle. Hence §; and S, can themselves be con-
tinued across the circle, and therefore so also can S.

We remark that the conclusion of the lemma no longer holds if, instead
of assuming 2”8 is in H?, one assumes only that it is in H? for 0<p< 3.
The function — (1 +2)?/(1—2)? furnishes a counter example (with n=0).

We now complete the proof of Theorem 5. Let w be a function in W
and ¢ a positive number less than $z. By Theorem 3, there is a function
A in H*®, a nonnegative integer n, and a real function s in L™ such that
almost everywhere on the unit circle,

—£ < 8 < & —e < logld| < ¢,
8 + arg(4h®y—") = 0 (mod2xn) .

The last condition means that the function
(8) S = Ah2y-ne-d+is

is nonnegative almost everywhere on the unit circle. The function
exp(—3+1s) is in H' (and in fact in HP for p<n/2¢). Also h® is in HY,
and thus 2» S is in H}. Applying the continuation principle proved above,
we may conclude that S can be continued analytically across the unit
circle. The reflection principle tells us that S is actually analytic in the
entire plane except for poles at 0 and oc. Thus § is a polynomial in 2z
and z~!. Restricted to the unit circle, S is a nonnegative trigonometric
polynomial, so it has there a representation S=|P,? with P, a poly-
nomial in z.

Let P, be factored into a product PQ, where P is a polynomial with
roots only on the unit circle and @ is a polynomial with no roots on the
unit circle. Define the functions r and ¢ on the circle by

r= —log|d4] and ¢ = 2log|@|.
Then, taking absolute values in (8) and rearranging, we obtain
(9) w = |h|2 = |P|2 er+i+t,

What we have proved is this: for every ¢ between 0 and 3 the function
w has a representation (9), where P is a polynomial with roots only on
the unit circle, and 7, s, ¢ are real functions with |||, < ¢, ||8]l, <¢, and ¢
continuous.
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To complete the proof it remains to show that the polynomial P one
obtains in this manner is independent of e. For this we use an argument of
Ibragimov’s. Notice that the functions w/|P|? and |P|?/w are both sum-
mable. Thus, if P, and P, are the polynomials that result from two dif-
ferent choices of ¢, then

[Py do = [ (1Pulfwh) e 1Py) do
< ( [1Py2p do)*( [ w/|P2lzda)* < o,

and so P, divides P,;. The same reasoning shows that P, divides P,,
and thus P; and P, are identical except for a multiplicative constant of
no importance.

The proof of Theorem 5 is complete.

8.
We list informally some consequences of our representation theorem.

If w is in W,, then w™ is summable for every positive and negative n.
If wis in W, then w" is summable for every positive n. The first statement
has already been justified, and the second one follows by Theorem 5.
(Ibragimov’s Sledstvie 3 [5, p. 115; Corollary 3 in Amer. Transl., p. 106]
is a consequence of the second statement.)

W is closed under the formation of products. For now we know that the
product of functions in W is always summable, and that is all that was
needed.

Incidentally, W is closed under the formation of sums. This fact is easy
to prove directly from (1).

A function in W cannot have a simple discontinuity. (This is due to
Ibragimov [5, p. 114].) Suppose on the contrary that w in W has a simple
discontinuity at a point €. Then 14w is a function in W, with the
same discontinuity, and log(l+w) possesses representations (5). On
the other hand we can write log (1 +w) as the sum of a function f having
a jump matching that of log(1+w) at ¢™°, but smooth everywhere else,
and a function g continuous at ¢ and vanishing there. Thus we can
write
(10) - ' f=r+8+t-g.

Let t be a trigonometric polynomial; take the conjugate of (10):

(11) f=F+s+t—-g+c,
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where ¢ is some real constant. Now f is asymptotically equal to
klog|x—x,| as x tends to x,, where k is a nonzero constant depending
only on the jump of f at ¢®**. Hence there is an integer n, depending only
on the jump of f, such that expnf is not summable on any interval con-
taining ¢’®, But by taking ¢ small enough we can make every term on
the right of (11) exponentially summable to as high a power as we please,
at least in some neighborhood of ¢™. Indeed s is bounded, # is the con-
jugate of a function with bound as small as we please, £ is continuous,
and § is the conjugate of a function that is as small as we please in a
sufficiently small neighborhood of ™. So the Schwarz inequality implies
expnf is summable over an interval containing ¢’ (depending on n),
for arbitrarily large |n|. This contradiction proves the assertion.

If w is in W then the indefinite integral of logw is a uniformly smooth
Sfunction, in other words,

z+4 -
f logw do— flogwda:o(&) as 8 >0,
z x-3

uniformly in x. Take ¢> 0 and write logw=r+3+t with ||r||, <&, ||slle <&
and ¢ continuous. The indefinite integral of ¢ is obviously uniformly
smooth, and the indefinite integral of » is Lipschitzian with Lipschitz
constant e. The indefinite integral of § is the conjugate of a Lipschitz
function with Lipschitz constant e, and this implies that

x40 x

f&da—ﬁ_fd§da

x

lim sup -1
60

< Ce

uniformly in #, where C is an absolute constant [8, Chap. VII, Sec. 5].
The assertion about logw follows.

If w is a bounded function in W, then the indefinite integral of w is uni-
Jormly smooth. This will follow from the preceding result if we can show
that e is in W. But e¥ is the uniform limit of the series 33°w"/n!, and
the partial sums of this series are in W by our earlier results. From the
definition of W it is easily proved that a weight function which is bounded
from zero and uniformly approximable by functions in W is itself in W;
hence e* is in W.

The last italicized statement is an easy consequence of Ibragimov’s
condition, and it is the closest we have been able to come to his condition
with our methods.

We seem confronted with three classes of functions: the class S, of
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functions » + & where % and v are real continuous functions on the circle;
the class log W, of functions logw with w in W,; the class S of real !
functions whose indefinite integrals are uniformly smooth. The inclu-
sion log W,<8 is proved above, and the inclusion S,<log W, is trivial.
It is natural to ask whether both inclusions are proper. We do not
know the answer.

9.

In [2] an analytic condition on w was found for &, and &, to be at
positive angle in L*w). The question of finding a similar condition for
2, and Z, to be at positive angle, when 7 is larger than 1, was raised
but not completely answered. The method of analytic continuation
used in this paper leads to such a condition. We have indeed the fol-

lowing result.

TaeoreM 6. In order for P, and F,, to be at positive angle in L*(w) it i3
necessary and sufficient that w have the form
(12) w = |P|2er+d,

where P is a polynomial of degree less than n, r is a real bounded function,
and & is the conjugate of a real function with bound strictly smaller than .

From (3) we have
en = inf[[l — deeyi-—n||,

where A ranges over all the functions in H* (and not merely those with
mean value zero). This quantity is less than 1 if and only if for some
positive ¢ and 4 in H* we have almost everywhere

(13) larg(4h%x1—")| < dm—e (mod2x), and [4] > ¢.

This condition from [2] is analogous to (4).
Suppose (13) holds, and let s be the function bounded by 4z — & such that

8 + arg(4h%*1-n) = 0 (mod2x).

Then the function
(14) S = Ahle—n e—8+is

is analytic in the circle except at the origin (and even there if n=1),
and of class Ht when the pole is removed. The boundary values of S
are positive almost everywhere. By the continuation principle, § is
analytic everywhere in the plane except for poles at the origin and
infinity of order at most n—1. Therefore on the circle 8 has the form
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8=|P|? for a polynomial P of degree less than n. Finally, taking the
modulus of (14) and setting r= —log|4| gives

w = [hf? = [P[rer+s,
as desired.

In the other direction, let w be a weight function (12). If P has zeros
inside the unit circle we remove them from P and incorporate the cor-
responding trigonometric polynomial (which is bounded from zero) in
the factor e”. This will reduce the degree of P, leading to a stronger result
about w. With this done, we assume that P has degree exactly n—1
and has no zeros inside the circle.

Now given (12) we define S to be |P|?2 and A to be the outer function
with modulus e-*. Then we have

(15) xn—lgei-is = Ah?,

at least if we incorporate in 4 the proper multiplicative constant of
modulus 1. Indeed 4*-18 is an analytic trigonometric polynomial whose
extension inside the unit circle has no zeros; such a function is outer.
Therefore the left side of (15) is an outer function in H?Y, and the same is
obviously true of the right side. The two sides have the same modulus,
and an outer function is determined up to a constant factor by its modu-
lus, so (15) follows.
Thus the argument of
S = AR2yi-n g-ivis

is zero almost everywhere on the circle, and (13) holds.
This completes the proof of Theorem 6.
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