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CHARACTERIZATIONS OF A CLASS OF CONVEX SETS

VICTOR KLEE and CZESLAW OLECH

Introduction.

Suppose the real vector spaces £ and F form a dual system with
respect to a bilinear form (-, ). For each subset X of £ and each point
y of F the y-support of X is defined as the set

S(X,y) = {wek: (w,y)=supP,ex{z,9)} -
Note that S(4,y)=0, while S(X,y)=E when y=0 and X +0 as well as
when sup,.x{x,y)=occ. If these cases are excluded and (-,-) is an
inner product then S(X,y) is the smallest closed halfspace which contains
X and has y as an outer normal.

For Y<F, a subset X of E will be called Y-convexr provided that X
is the intersection of its ¥-supports; that is, X =, S(X,y). When Y
is symmetric (¥ = — Y) this amounts to saying that each point of £ ~X
is strongly separated from X by a hyperplane determined by some
member of Y. Asis well known, X is F-convex if and only if X is convex
and is closed for the weak topology w(E,F).

In connection with a problem from control theory, we became inter-
ested in characterizing those proper subsets X of £ such that X is Y-con-
vex for every dense subset Y of F (relative to a given admissible topology
for F). When £ is finite-dimensional they are exactly the closed convex
sets which contain no line. When F is a locally convex barrelled space,
a proper subset X of F* is Y-convex for all dense Y < F if and only if X
is convex, contains no line, and is closed and locally compact for the
weak* topology w(F*,F). These characterizations are corollaries of the
more general results obtained below.

Statements of theorems.
A class &7 of subsets of £ will be called admissible provided that it
satisfies the following conditions:
(Al) Every member 4 of &7 is w(#, F)-bounded; that is, sup, 4{a,b)
<oo for all be F.
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(A2) & includes the convex hulls, the w(E,F)-closures, and all sub-
sets of its members.

(A3) The union of any two members of &7 is a member of 7.

(A4) If A € &/, p € E, and 1 is a nonzero real number, then p+14 € &.

(A5) E is covered by /.

With «/ as described, J, will denote the topology (for F) of uniform
convergence on members of &/. Thus (F,7 ) is a locally convex space
in which a basis for the neighborhoods of the origin 0 is formed by the
class of all polars

A° = {beF : sup, ,4{a,b)=1}

of members A4 of /.

In the proofs below, conditions (Al)—(A5) are used freely without
explicit reference. The space E is always equipped with the weak to-
pology w(E,F) and F with the admissible topology J_,.

THEOREM 1. Suppose that the real vector spaces E and F form a dual
system, w(H, F) is the associated weak topology for E, o7 is an admissible
class of subsets of K, and T, is the topology (for F) of uniform convergence
on members of &Z. Then the following five conditions are equivalent for any
proper subset X of E:

(D) X is Y-convex for every I ,-dense subset Y of F.

(D') X is F-convex; there is a point p € E ~X such that for every T -
dense symmetric subset Y of F, p is strongly separated from X by a
hyperplane determined by some member of Y.

(P) X is F-convex and the polar X° has nonempty J_,-interior.

(L) X ts F-convex; there is a w(H,F)-closed halfspace H such that X’s
intersection with any translate of H is a member of <.

(L') For each point p € E ~X there is a w(E, F)-closed halfspace H such
that p is interior to H, H 1is disjoint from X, and X’s intersection
with any translate of H is a member of <.

THEOREM 2. If o is the class of all w(E,F)-bounded subsets of E then
the five conditions of Theorem 1 are all equivalent to the following:

(D) X is Y-convex for every ubiquitous symmetric subset Y of F.

(A subset Y of F is called ubiquitous provided that Y is dense in the
very strong sense that each point of ¥ is a point of ¥ or an endpoint
of an open line segment contained in Y.)

TaEOREM 3. If all members of o are w(E,F)-relatively compact then the
five conditions of Theorem 1 are all equivalent to the following:
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(L") X 18 F-convex and contains no line; each point of X admits a
w(E, F)-neighborhood (relative to X) which is a member of <.

Proof of Theorem 1.

(D) = (D'). This is obvious.

(D") = (P). Let X and p be as described in (D’), and suppose that the
interior of the polar X° is empty. Then for each 5> 0 the set

Y,=F ~nX°u-X°)
= {bEF: supxeX<x!_b>>77<supzex<x:b>}

is a dense symmetric subset of F. Using this fact, we shall produce a
dense symmetric subset ¥ of F such that p e N, S(X,y), thus contra-
dicting (D’) and showing that (D’) implies (P). For each point g of F let

G(g) = {beF: (p,b)<(p,g)+1 and {p, —b)<(p,—)+1},
an open neighborhood of ¢ in F, and let

7(g) = max({p,p+1, {(p,—g)+1) > 0.

Then G(g)n Y, is a dense subset of G/(g) and from the relevant definitions
it follows that p € S(X,y) whenever y or —y is a member of G(q)nY ,.
Thus the desired end is achieved by defining

Y = quF(G(q) n Yr;(q)) u —(G(Q) n Yr,(q)) .

(P) = (L). Suppose (P) holds and let ¢ be an interior point of X°.
Then for each A>0 the origin is interior to the convex hull
con(X°u{—Aq}), which therefore contains a set of the form 4,° for some
A,e . We may assume without loss of generality that 4, is convex,
closed, and includes the origin, whence A4,°°=4,. It then follows that

4, = A,°° > (con(X°u {—1q})°
=Xn{-2¢}°> X n{wek: {w,—q)s1/A},

whence the final intersection is a member of &7 and the desired conclu-
sion follows.

(L) = (L'). Suppose (L) holds and consider an arbitrary point
peE~X. Since X is F-convex there exists yeF such that
Sup,. x{x,¥) <{p,y>. And by the second part of (L) there exists ze F
such that for each real A the set {reX : (x,2)=1} is a member of <.
This implies sup,, x{x,z) <o and hence for a sufficiently small x>0 it
is true that

supxex<x’y+.uz> < <p’y+/‘z> .
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Let f be a number strictly between those on the two sides of this in-
equality and let
H = {weE: (w,y+uz)2p}.

Then H plainly satisfies the first two parts of condition (L). For the
last part, note that if x € X and (x,y+ uz) 2y then
=@y v={p.y)

I p

(w2 2

Thus each set of the form
{zeX : (z,y+pz)2y}
is contained in a set of the form
{zeX : (x,2)21},

and since the latter is a member of &7, so is the former. This shows that
X's intersection with any translate of H is a member of 7.

(L') = (D). Consider an arbitrary dense subset Y of F and point p
of ¥ ~X. Let H be as described in (L’), whence there exist geF' ~{0}
and real numbers o and § such that

(1) H = {(weE: {w,q)=0o+6}
and sup, x{z,q)=0< 0+ <{(p,).

Choose

(2) zoe X with (z,q) > o—1
and define

) Xy={zeX: {x,¢d=0-1}, H' = {weE: {(w,q)20-1},

so that both X, and XnH' are members of &/. For notational con-
venience assume z,=0, as can be done without loss of generality. Then

SupzeXg(‘”)Q) <o—-1< (xo’Q> =0z SupxeXnII’<x’Q>
=0 <o+ <{p,P.
Let G denote the set of all g € F such that
(4) SupxeXg)(x:g) < %(o‘_l) <0< Supxean'<x:g> <o+7y < <p’g> .

Since ¢ € @, and since the sets X,, XnH’, and {p} are all members of <7,
G is a nonempty open subset of ' and hence intersects ¥. Forge Y nG
we have p ¢ S(X,g), as follows from (4) in conjunction with the fact that

(5) X c(XnH)U[0,00[X,.
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Since p was an arbitrary point of E ~X it follows that X =,y S(X,y).
We have now proved that (L') implies (D) and have thus completed the
proof of Theorem 1.

Proof of Theorem 2.

Plainly (D) implies (D’’). Now suppose that &/ is the class of all
bounded subsets of £ and that (L) fails for some pe E ~X. We shall
produce a ubiquitous symmetric subset ¥ of F such that p € N,y S(X,y),
whence (D’’) is contradicted and it will follow that (D'’) implies (L').
For an arbitrary point q of F, consider the following three possibilities:

(i) peS(X,q)n8(X, —q);
(i) p ¢ 8(X,q);
(iil) p ¢ S(X, —q) .

When (i) holds let Y(¢)={—g¢,9}.

When (ii) holds there exist o, 6, H, z,, X, and H’ such that conditions
(1)-(3) above are satisfied. If the set XnH' is bounded, then so is X,
and with the aid of (5) above it can be seen that X’s intersection with
any translate of H is bounded. As this contradicts the assumption about
P, we conclude that XnH’ is unbounded and hence there exists z € F
such that sup,.xng (*,2)=o00. Let g=inf, 5 z.{(x,2) and

<p,q>—0'
——— >0 when p>(p,2),
(6) e={0—<(»2) ¢
o when o <{p,z).
Let

Y() = {—q—uz: O<u<etu{g+puz: O<pu<e},

a symmetric union of open segments or open rays havings —¢q and ¢
among their endpoints. To see that p € S(X,q+ uz), note that the func-
tion {-,g) is bounded below on the set X nH’, while (-,z) is unbounded
above there, and consequently

SUP, e (T, 0+piZ) = o0
To see that p e S(X,—q—puz) for 0<p<e¢, note that

(p,—q—pz) = —{p,O—pP,2) < —o—pp
by (6), while
—0—pg = —SUPgexap (%, 9D — p infye xnp {%,2)
= infzeXnH' <x: —9>+.u 5upa:eXnH’<x: _z>
= Supa:eXnH'«x’ - +ulE, —2)) = 8UP,e x {7, —q—puzy.
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The procedure for (iii) is essentially the same as that for (ii), and
finally, having defined Y(g) for every g€ F, we set Y=U_Y(q). The
set ¥ will then have the desired properties and the proof of Theorem 2
is complete.

Proof of Theorem 3.

Before proving Theorem 3 we shall describe an example to show that
condition (L'’) is not always equivalent to those of Theorem 1. Let E’
be an infinite-dimensional normed linear space, L a line through the ori-
gin in £, and X’ the set of all points of E’ at distance <1 from L. Let
P’ be a closed linear subspace supplementary to L in E’, so that the
cylinder X’ has bounded intersection with any strip consisting of all
points between two translates of the hyperplane P’. Let F’ be the con-
jugate space of E’, and let &/’ denote the set of all w(X’, F’)-bounded
(equivalently, norm-bounded) subsets of E’. Then X' is F’-convex and
each point of X' admits a w(E’, F')-neighborhood (relative to X’) which
is a member of &7’. Now let E be a norm-dense linear subspace of E’
such that EnL={0}, and let X=X'nE. Let F be the conjugate space
of ¥ and & the set of all w(&, F)-bounded subsets of £. Then X contains
no line and hence satisfies condition (L"’). However, X does not satisfy
condition (L). For, consider an arbitrary closed halfspace H in E whose
interior includes the origin. The closure of H in E’ is a closed halfspace
in E’, and the closure of XnH is X'nH’'. But X’'nH' is unbounded, for
it contains at least a ray from the line L, and hence the set X nH is also
unbounded.

Theorem 3 is based on the following result, which does not require
any additional assumption about the class /.

ProrosiTioN. If X is a convex subset of E and some point x, of X admits
a w(E, F)-neighborhood (relative to X) which is a member of </, then every
w(E, F)-bounded subset of X s a member of /.

Proor. Without loss of generality we may assume x,=0, whence by
hypothesis there are points y;,. . .,¥, of F and positive numbers ¢,,. . ., ¢,
such that the set

N = {zeX: {x,y)<e; for i=1,...,n}

is a member of .«Z. Now consider an arbitrary w(E, F)-bounded subset
W of X, and for 1<i<n let

0y = SupweW<w’yi> < ™.
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Let
o = max(o,/ey,. ..,0,/e,) -

Then N is a member of 7, and since X is convex it can be verified that
W<oN. This implies W e .

To prove Theorem 3, note first that (L) implies (L'’) without any
additional assumption about &/. For the reverse implication, assume
that (L) holds and the members of &/ are all w(E,F)-relatively com-
pact. Then X is w(X, F)-locally compact. Since X is F-convex and con-
tains no line, a theorem of Klee (3.2 of [2]) guarantees the existence of a
w(E, F)-closed halfspace H such that X’s intersection with any translate
of H is w(&, F)-compact and hence of course w(#,F)-bounded. It then
follows from the Proposition that each such intersection is a member
of &/, whence condition (L) is satisfied.

For a special case of the relationship obtained here between conditions
(P) and (L"), see Fan (Theorem 1 of [1]).

Corollaries.

For the first corollary below, let o7 be the class of all w(E, F)-bounded
sets contained in finite-dimensional subspaces of Z. For the second, let £
be the conjugate space F'* of F, & the class of all w(&,F)-compact sub-
sets of F, and note that (when F is barrelled) J, is identical with the
original topology of F.

CoroLLARY. Suppose that the real vector spaces E and F form a dual
system, and X is a proper subset of E. Then X is Y-convex for every
w(F,E)-dense subset Y of F if and only if X 18 a finite-dimensional closed
convex set which contains no line.

CoroLLARY. For a locally convex barrelled space F, a proper subset X
of F* is Y-convex for every dense subset Y of F if and only if X is convex’
contains no line, and is closed and locally compact for the weak* topology
w(F*, F).
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