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ON THE THEOREM OF SZEGO-SOLOMENTSEV

MAURICE HEINS

An important theorem of G. Szeg6 [4] concerning Hardy classes states
that a function f belonging to the Hardy class H,, on the open unit disk,
0<p= + oo, admits a representation of the form

(1.1) f=gb,

where
1,0 +2z

lz2| <1,

o) = exp[ f log|f*(e)] -

f* being the Fatou radial limit function of f, and b is a bounded analytic
function on the open unit disk having Fatou radial limits of modulus 1
p.p.! The equality (1.1) taken with the fact that g is also a member of H,
and has a Fatou radial limit function having the same modulus as f*
p.p. yields the maximal principal of Szegé which may be formulated
as follows: the function g, which is determined by log|f*|, is a member
of H, whose modulus is maximal among the moduli of those members
of H,, whose Fatou radial limit functions have the same modulus as f*
p.p. The treatment of Szegt makes use of the theory of Toeplitz forms.

A theorem given subsequently by Solomentsev [3], which pertains to
a class of subharmonic functions in the open unit ball in n-dimensional
euclidean space, implies the theorem of Szego as an immediate corollary.

The theorem of Solomentsev may be stated as follows: Suppose that
% is a subharmonic function (= —oo) in the open unit ball in #-dimen-
sional euclidean space and that ¢ satisfies the condition stated below in
Section 4. If pou has a harmonic majorant, then (1) so does , (2) the
least harmonic majorant of w admits a representation as a Poisson
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1 Szegd proved this result for p=2 in the cited paper [4]. The general case was trea-
ted by F. Riesz (cf. Collected Works, Vol. 1, pp. 616—624, 645—-653) with the aid of the
theorem of F. and M. Riesz.
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integral with respect to a measure whose singular part is non-positive,
and (3) the least harmonic majorant of pow is given by the Poisson—
Lebesgue integral with boundary function gowu*, u* being the Fatou
limit function of « (only finite limits being taken into account).

The result of Solomentsev was rediscovered by Garding and Hor-
mander [1]. In their short elegant paper they noted that the theorem
of F. and M. Riesz was readily obtained as a consequence of the
Solomentsev theorem. It should also be noted that Privalov treated
a special case of the Solomentsev theorem [gp(x)=(r*)* 1<a< + o],
and that Privalov and Kuznetsov extended the work of Solomentsev
to the case of regions in euclidean space having a reasonably regular
character. I am indebted to Professor Lars Garding for these historical
indications.

The object of the present note is to formulate and establish a theorem
of Solomentsev type for Riemann surfaces. However we proceed inter-
nally without invoking ambient boundary aspects of the problem be-
fore we reach the stage of showing that the Solomentsev theorem fol-
lows in a straightforward way from the one we shall give. It will be seen
that the possibility of an exclusively internal argument is made available
by use of the notions of quasi-bounded and singular non-negative har-
monic functions given by Parreau in his thesis [2]. The following point
is to be emphasized. We may certainly obtain our theorem in the non-
trivial cases with the aid of the original Solomentsev theorem as stated
by Garding and Hérmander together with uniformisation methods. On
comparison it becomes clear that the present arguments are simpler and
appeal to a more primitive aspect of proof. It is also to be noted that
our arguments apply, mutatis mutandis, for the case of regions in ar-
bitrary euclidean spaces as well as for the case of Green spaces. While
it is not excluded, of course, that the general theorem may be established
by boundary considerations reminiscent of those given for the case of
the unit ball, it is not to be expected that such access to the question
could equal in simplicity an internal argument.

The theorem of Section 5 (infra), which is a special case of one due to
Parreau- [2, Th. XIV], plays an essential role.

In what follows S will denote a Riemann surface.

2. Harmonic majorants.
We recall that a family @ of subharmonic functions on S is called a

Perron family provided that it is closed with respect to the taking of the
maximum of two members and to the taking of a Poisson modification



ON THE THEOREM OF SZEGO-SOLOMENTSEV 283

of a member. Central in the study of Perron families is the trichotomy
theorem which states that the upper envelope of a Perron family on S
is one of the following: the constant — oo, the constant + oo, a function
harmonic on 8.

Suppose now that u is a subharmonic function on S, not the constant
— oo, and that % is a harmonic function on S dominating «, that is, satis-
fying hzu. Let @ denote the smallest Perron family containing » and
lett ¥ denote the set of subharmonic functions on S dominated by A.
Then @< ¥. The upper envelope of @ is harmonic and is dominated
by k. We conclude that if % is a subharmonic function on S, not the
constant — oo, and % has a harmonic majorant, then % has a least har-
monic majorant, in fact the upper envelope of the family @ just intro-
duced. We denote the least harmonic majorant of v by LHMu. The
corresponding notions prevail dually for superharmonic functions and
we are led to the existence of the greatest harmonic minorant (GHM)
of a superharmonic function on 8, not the constant + oo, possessing a
harmonic minorant.

3. Quasi-bounded and singular non-negative harmonic functions.

The notions in question are due to Parreau [2]. A non-negative har-
monic function p on 8§ is termed quasi-bounded provided that there
exists a never decreasing sequence (b,) of non-negative bounded har-
monic functions on § such that

P = limn—-»oo bn;

p is termed singular provided that the only non-negative bounded har-
monic function on S dominated by p is the constant 0. A fundamental
decomposition theorem states that a non-negative harmonic function p

on S admits a unique representation of the form
(3.1) p=q+s,

where ¢ is a quasi-bounded and s is a singular non-negative harmonic
function on S. For the sake of completeness we indicate the argument.
Indeed, it is easy to show that with b,=GHM min {p,n} we have a de-
composition of the desired type when we take

q= hmn—)oobn

and s=p—q. Indeed g is by its very definition quasi-bounded. Let b
denote henceforth a non-negative bounded harmonic function on 8. If b
is dominated by s and the constant taking the value m, a positive integer,
then
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b+b, < min{p,m+n},

so that b+b,<b,,,,. On taking the limit, we are led to the conclusion
that b=0. Hence ¢ is singular. Uniqueness: Suppose that p=g¢;+s,
where ¢, is quasi-bounded and s, is singular. If % is dominated by g,
then b<b,, n large. We conclude ¢, <q. If b is dominated by ¢, we have
(b—q)t<s,. Hence LHM(b—¢q;)*=0 and b<¢q,. We conclude ¢=<¢q;
and thereupon ¢=g¢,. The representation (3.1) is unique.

It is immediate that if ¢, and ¢, are quasi-bounded, then so is ¢; +¢5.
If s, and s, are singular and b=<s;+s,, then (b—s;)*<s,. Hence
LHM (b—s,)+=0, so that b<s, and consequently b=0. We conclude
that s, +s, is singular. We are led to the following important lemma.

Lemma. If p and p, are non-negative harmonic functions on S and
D1 < p, then the quasi-bounded (resp. singular) component of p dominates
that of p,.

The proof follows on considering the decompositions of p, and of p—p, .

In order to see the connection between the results which we shall prove
and the Solomentsev theorem it will be convenient to have available the
well-known characterizations for quasi-bounded and singular non-
negative harmonic functions on the open unit disk. The quasi-bounded
(resp. singular) are precisely those given by Poisson integrals taken with
respect to non-negative absolutely continuous (singular) measures.

4.

We consider a function ¢ with domain {—oco <% < + oo} which is as-
sumed to take non-negative real values and to satisfy the following con-
ditions:

(a) @ is continuous,

(b) the restriction of ¢ to the real line is convex,

(c) limx->+oo(p(x)/x= +oo.

Let m denote the maximum of the z satisfying ¢(x)=¢(— o). The
restriction of ¢ to {m <& < + oo} is increasing. We denote its inverse by .

When m > — oo, y is concave on its domain. When m = — oo, the restriction
of p to {p(—o0) <x < + oo} is concave. The following equalities hold:

Ply()] = =, P(—o0)Sx< 4 00;
ylp()] = max{r,m}, —ocoZx<+00.
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5.
We consider first a non-negative harmonic function p on § and show

THEOREM. If @op has a harmonic majorant, then p and LHMgop are
quasi-bounded [Parreau].

Proor. Let s denote the singular component of p. Let 4 denote a
positive number. There exists a positive number B such that

(5.1) Az £ ¢(x) + B
for all real x. Hence
As £ Ap < LHM pop + B.

Applying the lemma of Section 3 we obtain
As < LHM gop,

and hence conclude, given the arbitrariness of 4, that s is the constant
zero. Consequently, p is quasi-bounded.

We let (b,) denote a monotone never decreasing sequence of bounded
non-negative harmonic functions on § having limit p. We have

(Pobn = (pobn+1 - LHM¢°p ’

n=0,1,...; whence

LHM @ob, < LHM pobd,,, < LHM pop,
n=0,1,.... We observe that
(5.2) lim, ., . LHM ¢ob,,

which is dominated by LHM @o p, is harmonic. Since (5.2) dominates
®ob,,, m=0,1,..., it dominates pop. We conclude that
LHM gpop = lim, , LHM @ob, .

Hence LHMgo p is quasi-bounded. This conclusion can be inferred, of
course, once it is known that LHM@op is dominated by the quasi-
bounded (5.2).

6.

We suppose now that u is subharmonic on § but is not the constant
—oo and that pow has a harmonic majorant. Using

pxt) < p(x) + @(0)

we see that gou+ has a harmonic majorant and from (5.1) that u+ has
a harmonic majorant. We denote LHM « by v and LHM u* by w.
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In the theorem that follows the concavity property of v plays an essen-
tial role.

THEOREM. (a) gow has a harmonic majorant. (b) The equalities

(6.1) LHM pou = LHM pow
and
(6.2) LHM pout = LHM pow
hold.

Proor. Starting from
LHM pout 2 pout
we obtain
(6.3) yo(LHM pout) = ut.

Since the left hand side of (6.3) is superharmonic, we have

po(LHM gpout) 2 w,
and hence
LHM gout = pow.

Consequently @ ow has a harmonic majorant and
LHM gout 2 LHM pow .

The equality (6.2) follows. It is to be noted that the fact that »+ has a
harmonic majorant may be inferred directly from (6.3). The proof of
(6.1) follows that given for (6.2) with u replacing u*.

Using the theorem of Section 5 we see that w and LHM gpow are
quasi-bounded. Hence LHM gou* and LHM pou are quasi-bounded.

7.

If a harmonic function » on § is dominated by a non-negative har-
monic function on 8§ or — what is equivalent — it is representable as
the difference p, — p, of non-negative harmonic functions p, on S, then &
admits a representation as such a difference for which the component
terms are least. Indeed, the representation in question is obtained by
taking p,=LHM &+ and p,=p,—h.

We represent v of Section 6 in this way and we note that LHM v+ =<w
go that LHM v+ is quasi-bounded. We conclude that

(7.1) v=0Q-—s,

where @ is the difference of quasi-bounded harmonic functions and s is
singular. A representation of the form (7.1) is unique.
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Keeping in mind the interpretation of the notions ‘‘quasi-bounded”
and ‘“‘singular’ in terms of Poisson integrals for the case of the open unit
disk (ball), we see that (7.1) implies that the singular component of the
measure yielding v as a Poisson integral is non-positive. Further the
results of Sections 5, 6 imply that the measure do yielding LHM gou
as a Poisson integral is absolutely continuous. These two statements
comprise part of the theorem of Solomentsev as stated by Garding and
Hoérmander [1]. In addition, there is also established there that do is
simply ¢[Q@*(e*)]d0 (mutatis mutandis for the higher dimensional case).
Here Q* denotes the Fatou boundary function of @; only finite radial
limits are taken into account.

We shall now prove in the setting of the theorem of Section 6 that

(7.2) LHM pou = LHM @o @ .

This result together with the Riesz representation theorem for subhar-
monic functions applied to po@ yields the above equality for do. One
can also prove this formula for do by establishing the mean convergence
(order 1) of @[Q(re?®)] as r tends to 1, using the device of Gérding and
Hormander. Cf. (2) of [1]. '

We turn to the proof of (7.2). To that end let ¢ be a positive number.
Let ¢ be a positive number satisfying

¢ + ylp(—o) + €] > 0.
We proceed from the observation that z <y[p(x)] and obtain

Q@—s < yo[LHM pov +¢] .
We conclude

c+q; £ 8+ gy + [c+ GHM yo (LHM gov +¢)],

where ¢, and g, are quasi-bounded non-negative harmonic functions on §
satisfying Q@ =¢, —¢,. Applying the lemma of Section 3 we conclude the
inequality

Q= 'qpo(LHM Qov -+ €),
whence

¢o@Q < LHM gpov +¢.

On taking the least harmonic majorant of o @ we are led at once to
(7.2), given the arbitrariness of e.

8. Some remarks.

It was observed by Garding and Hérmander (op. cit.) that the theorem
of F. and M. Riesz concerning the Hardy class H, is readily derived with
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the aid of the theorem of Solomentsev. Their argument uses implicitly
the Lebesgue decomposition of a measure. The fact that the boundary
measure of a quasi-bounded harmonic function on the open unit disk is
absolutely continuous may be proved without reference to the Lebesgue
decomposition (thanks to the Fatou theorem for bounded harmonic
functions). We may establish the theorem of the Riesz brothers starting
with an internal argument as follows. If f belongs to the class H, on
the open unit disk, then ¢=LHM |f| is quasi-bounded as follows on
considering u=1log|f|, ¢(xr)=expx and applying the last sentence of
Section 6 in the non-trivial case where f is not the constant zero. Since
0=Ref+g=2q, we see that Ref is the difference of quasi-bounded har-
monic functions and hence admits a Poisson-Lebesgue integral represen-
tation. The same remark applies to Imf. We conclude that f admits a
Poisson-Lebesgue integral representation. The remaining statements of
the theorem of the Riesz brothers follow from this fact.

Szego’s theorem. We return to the Szegd theorem cited at the outset
of this paper and show that it is a theorem of Solomentsev type in a
function-theoretic setting and thereupon that there is a general maximal
theorem of Szego type in the subharmonic theory. Thus to obtain the
representation (1.1) we note that we may put aside the trivial case where
[ is the constant zero and that we may assume that p=+ + 0. We take

u = log|f| and ¢(z) = exp(px).

Applying (7.1) and the fact that v —log|f| is a sum of Green’s functions
(= +o0), we are led to the representation (1.1) when we note that a sum
of Green’s functions (= + co) on the open unit disk has Fatou radial
limit equal to 0 p.p.

In the general setting when § is hyperbolic for non-trivial » the Riesz
representation theorem and (7.1) yield

(8.1) u=0Q — (s+@),

where ¢ and s are as in (7.1) and @ is a Green’s potential on S generated
by a non-negative measure (the total mass of which may be + ). The
equality (8.1) replaces (1.1). In it the terms @,s,G are uniquely deter-
mined. When S is parabolic, % is necessarily constant.

On specializing S to the case of the open unit disk we see that the
Fatou radial limits of v and @ agree p.p. on the unit circumference.
Since po@ has a harmonic majorant, we conclude that all the sub-
harmonic functions on the open unit disk, not the constant — oo,
satisfying the Solomentsev condition for a given ¢ and having equivalent
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Fatou radial limit functions, have a common @ and that this @ is the
maximal such function.

It is now possible given ¢ to characterize a function U on the unit
circumference which agrees p.p. with the Fatou radial limit function of
a subharmonic function % on the open unit disk, not the constant — oo,
where u satisfies the Solomentsev condition relative to the given ¢. We
obtain a generalization of the corresponding theorem for Hardy classes
— a result closely connected with the Szegd theorem. It is clear that a
necessary condition for such a U is that both U and ¢o U be integrable,
(p being extended in definition by ¢(+ oco0)= +o0). This condition is
also sufficient. Indeed, if we take u as given by the Poisson-Lebesgue
integral with boundary function U, by the Jensen inequality gowu is
dominated by the harmonic function % given by the Poisson-Lebesgue
integral with boundary function ¢o U. Since u is a harmonic function
on the open unit disk satisfying the Solomentsev condition for the given
@ and having Fatou radial limit function agreeing p.p. with U, it follows
that the stated condition is sufficient.

For given U satisfying the stated condition, »=LHM ¢ ou for all sub-
harmonic % on the open unit disk satisfying the Solomentsev condition
for the given ¢ and having Fatou radial limit function agreeing p.p. with
U. This fact follows from the part of the Solomentsev theorem treated
in Section 7. It also follows on noting that

pou £ LHM pou = h,

so that LHM pou is quasi-bounded and has the same Fatou radial
limits p.p. as A.
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