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REMARKS ON THE IRRATIONALITY
AND TRANSCENDENCE OF CERTAIN SERIES

WOLFGANG SCHWARZ

1. Introduction.

Applying a method of Chowla [1] and Erdos [2], Golomb [4] showed
the irrationality of
G = 3 " -1)

n20

for ¢=2,3,..., by using the representation of this number as a t-adic
fraction. But the result may be more easily deduced by using the large
growth of the numbers 2" (n — o0). We show:

THEOREM 1. Let k, t and b be integers satisfying the inequalities
kz2 t22 and 0 <b<ti-Vk,

Then the number
G(btY) = 3 b*" (tF" — k)1
n20
18 srrational.

REMARKs. The irrationality of G(#-1) implies the irrationality of
2 " +1)7
nz0
compare Golomb [4]. The irrationality of
> bE" (" 4 br")-1
n>0
for k> 2 is unsettled.
Erdés and Strauss [3] proved very general irrationality criterions,
which include the special case b=1 of theorem 1.

By using the Thue-Siegel-Roth theorem (Roth [6]), it is not difficult
to show the following two theorems.

THEOREM 2. For k>2, t22 and 0<b<t1-52% the number G, (bt1) is
transcendental,
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THEOREM 3. Let 0<ny<ny<... be a sequence of integers, such that
infinitely often we have n, ,—mn,22. Then the number
Hit) = 3 (2 1)

18 transcendental. ral

For instance both of the numbers

ano,n 0dd(22"_ 1)_1 and 27&20,% even (22”'— 1)_1

are transcendental.
If one uses a sharpened version of Roth’s theorem, one gets the tran-
scendency of, say,
S (2 1)12-";
nz0
but the method does not apply to G,(t-'). Of course one should con-
jecture: G,(t-1) is transcendental for ¢ > 2. We are only able to show

THEOREM 4. For t>2 the number Gy(t~1) is not algebraic of the second
degree. :

2. Proofs of theorems 1, 2, and 3.

Proor or THEOREM 1. We assume that G (bi~!)=a/q is rational and
derive a contradiction. :
For any integer N >1 the numbers

Dy = q(t" —b%") G (bt1)
and
D, = q(t" —br") 3 bk" (K" — b1
nsN

are integers. For D, this is obvious from our assumption on G (bt!).
The number ¢ -2 divides i»—b", if 0<b<t and d divides n; therefore
tK" — b%" divides t*" —b" for n < N, and thus D, is an integer. Hence the
difference
D = D, — D, = q(t&" —p*") 3 k" (tK" — p¥")-1
n>N
is also an integer, and obviously we have D =+ 0; therefore |D|>1.
But for sufficiently large N we have, since b <t,
(2.1) > B (KT —bE") = 3 (bR (1 — (bE-1)R")2
n>N

n>N

<23 (bt
n>N

<2 3 (bt < 4(bt-ryEtt,

mgklv+l
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Since 0< b <117k we conclude that
(2.2) 0 < D < gt 4(Bt1)x" < 1

for sufficiently large N. This is a contradiction to |D| = 1. Consequently
G, (bt~1) is irrational.

Proors or THEOREMS 2 AND 3. The proof of theorem 2 uses the famous
approximation theorem of Thue-Siegel-Roth (Roth [6]); we cite a ver-
sion from Schneider’s book ([7, p. 13]):

Let x be algebraic of degree s> 1. Let p,, q,,v=1,2,..., be such pairs of
integers that 0<q,<q,., and q,=q. q. , where ¢, is a power of some integer
g. Define n by

n = lim sup, , (logg,)/logg, ,

and let u>n+1. Then the inequality

(2.3) v = pJg,| < ¢,
18 valid for at most a finite number of the p,[q,.

Roth’s theorem is the special case g=1, y=1.

We have ¥, yb*"(t*"—b")1=ayqy~' with an integer ay and with
qy=1t"—b"; for gy is the least common multiple of the numbers

" — %" n=1,2,....N. For sufficiently large N we have by (2.1), k>2
and 0<b < 1-5/¢2k)

|04(B8Y) — aygyl| < 4B < 405872 < 4y,

and by Roth’s theorem (with g=1, #=1, u=5/2 —¢) the number
G, (bt1) is rational or transcendental, and hence theorem 2 is proved.
The proof of theorem 3 is analogous.

The transcendency of 3,.0(2%" —1)-12-2" follows (with g=2, n=4) in
a similar manner; only here one needs the cited sharpened version of
Roth’s theorem.

3. Proof of theorem 4.
First we state two simple lemmas:

Lemma 1. If 274 2m> 2K 4 9K-1 ywith nonnegative integers n, m, K,
then 27 4-2m > 2K+1

LemmA 2. If 204 2m< 2K 4 2K-1 with nonnegative integers n, m, K,
then (12" —1)(82"—1) divides (2% — 1)@ —1).

The proofs are left to the reader.
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Now assume, that f=G,(t-') is an irrationality of the second degree.
Then integers a, h and g exist, such that

api+qf = b
Since B is irrational, a#0. Define dy by
(3.1) oy = (@ =)@ =1)Ty,
where
32 Ty=h-a 33 (E"-1)E"-1)1—g¢3 @ -1)71.
m,n=0 nsN

niom<oN  oN-1

By lemma 2, the number dy is an integer. On the other hand, since
h=ap?+gp, and
=3 I @E-1)("-1)71,
m=0 n=0
we have
(33) Ty=a 33 (@E"—13@"-1)14g 3 @"—1)7.
n>N

m,n=0
oniomoN o N-1

Using lemma 1 it follows that

>y @"-nreE-1)t
m,nz0
onyom>oN oN-1 < Z z 4¢-2m-2"
m,nz=0
onjom>oN oN-1

DID I L ahi S 3 ST 2t o
20

m,n<2N m,n
m>2N or n>2N

16 N2 42" 4 2 (4 3t zt—v)

uz22V+l  p20

IA

IIA

< 32 N2g-2",
By (2.1) with b=1, k=2 we obtain from this estimate and (3.3) that

Ty < 32 N2t-2"*'(la| +1q|)
and
[By] < 32 N2t-2"*1(|a| + |g]) 2" +2"

Since dy is an integer, we have 8, =0 for all sufficiently large N, say for
NzN,. Hence we have by (3.1) for all N> N,

(3.4) Ty=0.
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Consequently 7'y, —Ty=0 for N2 N,, and by (3.2) we obtain
*
(3.5) —al 3 @ -1 " —1)-1{ = g2 = 1)1,
m,n=0

The * indicates the condition 24 2N-1<2m. 20 < 9N+14 9N therefore
n and m take the values n=N+1 and m=0,1,...,N, or n=N and
m=N, or n=0,1,...,N and m=N + 1. Hence we obtain from (3.5) for
Nz=N,+1:

(3.8) al2 S -1t 4+ @@t -1)2 = —q.

0smsN
Using (3.6) twice (with V and N + 1) we infer by subtraction:
a{2(@" —1)1 4 " e -2 - (@™ " - 1)-2) = 0,
hence, after a bit calculation,
1-2" = 0.

This contradicts ¢>1. Hence 8 cannot be a quadratic irrationality.

4. p-adic analogues.

THEOREM la. Let k=2, t =2 be tntegers, p a prime dividing t. Then the
p-adic number

o= X" —-1)1
18 trrational. n20

Remark. The series for ¢ is (p-adic) convergent, since [¢,<]1,
|t¥" —1|,=1. — Some knowledge of p-adic numbers is presupposed.

Proor. Without loss of generality, we take ¢ squarefree, =TT,_,<; P,
with different primes p, (the details are a bit more complicated if ¢ is
not squarefree). We assume, that p=a/q (with integers a, ¢) is rational.
Let N1, Q=t*"—1. The p-adic number

A =qeQ-q 3 Q" -1)71
ns<N
=¢Q 3 (" ~1)"1 £ 0
n>N
is a rational integer. Further the p;-adic value of 4 is
(5.1) ’Alm = lq,m z tkn(tkn"l)-l = IQIp;. pz—kN+1 .
n>N D2

The absolute value of 4 is obviously estimated by
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4] < lalt*" + |g|(N+1)26" <y N&+",
with a constant y > 0, independent of N. Since (by the product formula)

11 141, =z 14171,
1=4=1
we obtain
N
(5.2) II |41, = GN#"),
1=4sl
But by (5.1) we have
(6.3) II 141, = TI lgly, %",
1A=l 1=isl

a contradiction to (5.2) for sufficiently large N. Hence g cannot be
rational.

Using the p-adic analogue of Roth’s theorem (Ridout [5]), one proves
easily

THEOREM 2a. Let k>2, t22, p be a prime dividing t. Then the p-adic

number
0= @ 1)
n=0
18 transcendental.
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