REMARKS ON THE IRRATIONALITY AND TRANSCENDENCE OF CERTAIN SERIES

WOLFGANG SCHWARZ

1. Introduction.

Applying a method of Chowla [1] and Erdös [2], Golomb [4] showed the irrationality of

$$G(t^{-1}) = \sum_{n\geq 0} (t^{2^n} - 1)^{-1}$$

for t=2,3,..., by using the representation of this number as a t-adic fraction. But the result may be more easily deduced by using the large growth of the numbers t^{2^n} $(n \to \infty)$. We show:

THEOREM 1. Let k, t and b be integers satisfying the inequalities

$$k \ge 2$$
, $t \ge 2$, and $0 < b < t^{1-1/k}$.

Then the number

$$G_k(bt^{-1}) = \sum_{n\geq 0} b^{k^n} (t^{k^n} - b^{k^n})^{-1}$$

is irrational.

Remarks. The irrationality of $G(t^{-1})$ implies the irrationality of

$$\sum_{n\geq 0} (t^{2^n}+1)^{-1};$$

compare Golomb [4]. The irrationality of

$$\sum_{n\geq 0} b^{k^n} (t^{k^n} + b^{k^n})^{-1}$$

for k > 2 is unsettled.

Erdös and Strauss [3] proved very general irrationality criterions, which include the special case b=1 of theorem 1.

By using the Thue-Siegel-Roth theorem (Roth [6]), it is not difficult to show the following two theorems.

THEOREM 2. For k > 2, $t \ge 2$ and $0 < b < t^{1-5/2k}$ the number $G_k(bt^{-1})$ is transcendental.

Received January 14, 1966; revised January 8, 1967.

THEOREM 3. Let $0 < n_1 < n_2 < \dots$ be a sequence of integers, such that infinitely often we have $n_{r+1} - n_r \ge 2$. Then the number

$$H(t^{-1}) = \sum_{r \ge 1} (t^{2^{n_r}} - 1)^{-1}$$

is transcendental.

For instance both of the numbers

$$\sum_{n\geq 0, n \text{ odd}} (2^{2^n}-1)^{-1}$$
 and $\sum_{n\geq 0, n \text{ even}} (2^{2^n}-1)^{-1}$

are transcendental.

If one uses a sharpened version of Roth's theorem, one gets the transcendency of, say,

$$\sum_{n\geq 0} (2^{2^n} - 1)^{-1} 2^{-2^n};$$

but the method does not apply to $G_2(t^{-1})$. Of course one should conjecture: $G_2(t^{-1})$ is transcendental for $t \ge 2$. We are only able to show

Theorem 4. For $t \ge 2$ the number $G_2(t^{-1})$ is not algebraic of the second degree.

2. Proofs of theorems 1, 2, and 3.

PROOF OF THEOREM 1. We assume that $G_k(bt^{-1}) = a/q$ is rational and derive a contradiction.

For any integer $N \ge 1$ the numbers

$$D_1 = q(t^{k^N} - b^{k^N}) G_k(bt^{-1})$$

and

$$D_2 \, = \, q \, (t^{k^N} \! - b^{k^N}) \! \sum_{n \, \leq \, N} b^{k^n} (t^{k^n} \! - b^{k^n})^{-1}$$

are integers. For D_1 this is obvious from our assumption on $G_k(bt^{-1})$. The number $t^d - b^d$ divides $t^n - b^n$, if 0 < b < t and d divides n; therefore $t^{k^n} - b^{k^n}$ divides $t^{k^N} - b^{k^N}$ for $n \le N$, and thus D_2 is an integer. Hence the difference

$$D \,=\, D_1 - D_2 \,=\, q \, (t^{k^N} - b^{k^N}) \! \sum_{n > N} b^{k^n} (t^{k^n} - b^{k^n})^{-1}$$

is also an integer, and obviously we have $D \neq 0$; therefore $|D| \ge 1$.

But for sufficiently large N we have, since b < t,

$$(2.1) \qquad \sum_{n>N} b^{k^n} (t^{k^n} - b^{k^n})^{-1} = \sum_{n>N} (bt^{-1})^{k^n} (1 - (bt^{-1})^{k^n})^{-1}$$

$$\leq 2 \cdot \sum_{n>N} (bt^{-1})^{k^n}$$

$$< 2 \sum_{m>k^{N+1}} (bt^{-1})^m \leq 4(bt^{-1})^{k^{N+1}}.$$

Since $0 < b < t^{1-1/k}$, we conclude that

$$(2.2) 0 < D < qt^{k^N} 4(bt^{-1})^{k^{N+1}} < \frac{1}{2}$$

for sufficiently large N. This is a contradiction to $|D| \ge 1$. Consequently $G_k(bt^{-1})$ is irrational.

PROOFS OF THEOREMS 2 AND 3. The proof of theorem 2 uses the famous approximation theorem of Thue-Siegel-Roth (Roth [6]); we cite a version from Schneider's book ([7, p. 13]):

Let α be algebraic of degree s > 1. Let p_{ν} , q_{ν} , $\nu = 1, 2, \ldots$, be such pairs of integers that $0 < q_{\nu} \le q_{\nu+1}$ and $q_{\nu} = q'_{\nu} q''_{\nu}$, where q''_{ν} is a power of some integer q. Define η by

$$\eta = \lim \sup_{v \to \infty} (\log q'_v) / \log q_v$$

and let $\mu > \eta + 1$. Then the inequality

$$(2.3) |\alpha - p_{\nu}/q_{\nu}| < q_{\nu}^{-\mu}$$

is valid for at most a finite number of the p_{ν}/q_{ν} .

Roth's theorem is the special case g=1, $\eta=1$.

We have $\sum_{n\leq N}b^{k^n}(t^{k^n}-b^{k^n})^{-1}=a_Nq_N^{-1}$ with an integer a_N and with $q_N=t^{k^N}-b^{k^N}$; for q_N is the least common multiple of the numbers $t^{k^n}-b^{k^n},\ n=1,2,\ldots N$. For sufficiently large N we have by (2.1), k>2 and $0< b\leq t^{1-5/(2k)}$:

$$|G_{k}(bt^{-1}) - a_{N}q_{N}^{-1}| < 4(bt^{-1})^{k^{N+1}} \le 4t^{-5k^{N}/2} \le 4q_{N}^{-5/2}$$

and by Roth's theorem (with g=1, $\eta=1$, $\mu=5/2-\varepsilon$) the number $G_k(bt^{-1})$ is rational or transcendental, and hence theorem 2 is proved.

The proof of theorem 3 is analogous.

The transcendency of $\sum_{n\geq 0} (2^{2^n}-1)^{-1} 2^{-2^n}$ follows (with g=2, $\eta=\frac{1}{2}$) in a similar manner; only here one needs the cited sharpened version of Roth's theorem.

3. Proof of theorem 4.

First we state two simple lemmas:

LEMMA 1. If $2^n + 2^m > 2^K + 2^{K-1}$ with nonnegative integers n, m, K, then $2^n + 2^m \ge 2^{K+1}$.

LEMMA 2. If $2^n + 2^m \le 2^K + 2^{K-1}$ with nonnegative integers n, m, K, then $(t^{2^n} - 1)(t^{2^m} - 1)$ divides $(t^{2^K} - 1)(t^{2^{K-1}} - 1)$.

The proofs are left to the reader.

Now assume, that $\beta = G_2(t^{-1})$ is an irrationality of the second degree. Then integers a, h and q exist, such that

$$a\beta^2+q\beta=h$$
.

Since β is irrational, $a \neq 0$. Define δ_N by

(3.1)
$$\delta_N = (t^{2^N} - 1)(t^{2^{N-1}} - 1)T_N,$$

where

$$(3.2) \ T_N = h - a \sum_{\substack{m,n \geq 0 \\ 2^{n} + 2^m \leq 2^{N} + 2^{N} - 1}} (t^{2^m} - 1)^{-1} (t^{2^n} - 1)^{-1} - q \sum_{n \leq N} (t^{2^n} - 1)^{-1} .$$

By lemma 2, the number δ_N is an integer. On the other hand, since $h = a\beta^2 + q\beta$, and

$$\beta^2 = \sum_{m \geq 0} \sum_{n \geq 0} (t^{2^m} - 1)^{-1} (t^{2^n} - 1)^{-1} ,$$

we have

$$(3.3) T_N = a \sum_{\substack{m,n \ge 0 \\ 2n+2m>2N+2N-1}} (t^{2^m}-1)^{-1}(t^{2^n}-1)^{-1} + q \sum_{n>N} (t^{2^n}-1)^{-1}.$$

Using lemma 1 it follows that

$$\begin{split} \sum_{\substack{m,\,n \geq 0 \\ 2^{n}+2^{m}>2^{N}+2^{N}-1}} & \leq \sum_{\substack{m,\,n \geq 0 \\ 2^{n}+2^{m}>2^{N}+2^{N}-1}} 4\,t^{-2^{m}-2^{n}} \\ & \leq \sum_{\substack{m,\,n \geq 0 \\ 2^{n}+2^{m}>2^{N}+2^{N}-1}} 4\,t^{-2^{m}-2^{n}} \\ & \leq \sum_{\substack{m,\,n \geq 0 \\ m>2N \text{ or } n>2N}} 2\,t^{-2^{m}} \cdot 2\,t^{-2^{n}} \\ & \leq 16\,N^{2}\,t^{-2^{N}+1}\,+\,2\,\left(4\,\sum_{\substack{u \geq 2^{2N}+1 \\ v \geq 0}} t^{-u}\,\sum_{\substack{v \geq 0 \\ v \geq 0}} t^{-v}\right) \\ & \leq 32\,N^{2}\,t^{-2^{N}+1}\,. \end{split}$$

By (2.1) with b=1, k=2 we obtain from this estimate and (3.3) that

$$|T_N| \leq 32 N^2 t^{-2^{N+1}} (|a| + |q|)$$

and

$$|\delta_N| \leq 32 N^2 t^{-2^{N+1}} (|a| + |a|) t^{2^N + 2^{N-1}}$$

Since δ_N is an integer, we have $\delta_N = 0$ for all sufficiently large N, say for $N \ge N_0$. Hence we have by (3.1) for all $N \ge N_0$

$$(3.4) T_N = 0.$$

Consequently $T_{N+1} - T_N = 0$ for $N \ge N_0$, and by (3.2) we obtain

$$(3.5) -a\left\{\sum_{m,n\geq 0}^* (t^{2^m}-1)^{-1}(t^{2^n}-1)^{-1}\right\} = q(t^{2^{N+1}}-1)^{-1}.$$

The * indicates the condition $2^N + 2^{N-1} < 2^m + 2^n \le 2^{N+1} + 2^N$; therefore n and m take the values n = N + 1 and m = 0, 1, ..., N, or n = N and m = N, or n = 0, 1, ..., N and m = N + 1. Hence we obtain from (3.5) for $N \ge N_0 + 1$:

$$(3.6) a\left\{2\sum_{0\leq m\leq N}(t^{2^m}-1)^{-1}+(t^{2^{N+1}}-1)(t^{2^N}-1)^{-2}\right\}=-q.$$

Using (3.6) twice (with N and N+1) we infer by subtraction:

$$a\{2(t^{2^{N+1}}-1)^{-1}+(t^{2^{N+2}}-1)(t^{2^{N+1}}-1)^{-2}-(t^{2^{N+1}}-1)(t^{2^{N}}-1)^{-2}\}=0,$$

hence, after a bit calculation,

$$1-t^{2^N}=0.$$

This contradicts t > 1. Hence β cannot be a quadratic irrationality.

4. p-adic analogues.

THEOREM 1a. Let $k \ge 2$, $t \ge 2$ be integers, p a prime dividing t. Then the p-adic number

$$\varrho = \sum_{n>0} t^{k^n} (t^{k^n} - 1)^{-1}$$

is irrational.

Remark. The series for ϱ is (p-adic) convergent, since $|t|_p < 1$, $|t^{k^n} - 1|_p = 1$. — Some knowledge of p-adic numbers is presupposed.

PROOF. Without loss of generality, we take t squarefree, $t = \prod_{1 \le \lambda \le l} p_{\lambda}$ with different primes p_{λ} (the details are a bit more complicated if t is not squarefree). We assume, that $\varrho = a/q$ (with integers a, q) is rational. Let $N \ge 1$, $Q = t^{k^N} - 1$. The p-adic number

$$A = q \varrho Q - q \sum_{n \le N} t^{k^n} Q (t^{k^n} - 1)^{-1}$$
$$= q Q \sum_{n > N} t^{k^n} (t^{k^n} - 1)^{-1} \neq 0$$

is a rational integer. Further the p_{λ} -adic value of A is

(5.1)
$$|A|_{p_{\lambda}} = |q|_{p_{\lambda}} \left| \sum_{n > N} t^{k^{n}} (t^{k^{n}} - 1)^{-1} \right|_{p_{\lambda}} = |q|_{p_{\lambda}} p_{\lambda}^{-k^{N+1}}.$$

The absolute value of A is obviously estimated by

Math. Scand. 20 - 18

$$|A| \leq |a|t^{k^N} + |q|(N+1)2t^{k^N} \leq \gamma N t^{k^N}$$
,

with a constant $\gamma > 0$, independent of N. Since (by the product formula)

$$\prod_{1 \le \lambda \le l} |A|_{p_{\lambda}} \ge |A|^{-1} ,$$

we obtain

(5.2)
$$\prod_{1 \leq \lambda \leq l} |A|_{p_{\lambda}} \geq (\gamma N t^{k^N})^{-1}.$$

But by (5.1) we have

(5.3)
$$\prod_{1 \le \lambda \le l} |A|_{p_{\lambda}} = \prod_{1 \le \lambda \le l} |q|_{p_{\lambda}} t^{-k^{N+1}},$$

a contradiction to (5.2) for sufficiently large N. Hence ϱ cannot be rational.

Using the p-adic analogue of Roth's theorem (Ridout [5]), one proves easily

THEOREM 2a. Let k > 2, $t \ge 2$, p be a prime dividing t. Then the p-adic number

$$\varrho = \sum_{n\geq 0} t^{k^n} (t^{k^n} - 1)^{-1}$$

is transcendental.

REFERENCES

- S. Chowla, On series of the Lambert type which assume irrational values for rational values of the argument, Proc. Nat. Inst. Sci. India 13 (1947), 171-173.
- P. Erdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. 12 (1948), 63-66.
- P. Erdös and E. G. Strauss, On the irrationality of certain Ahmes series, J. Indian Math. Soc. N. S. 27 (1963), 129-133.
- S. W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math. 15 (1963), 475

 –478.
- D. Ridout, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika 5 (1958), 40-48.
- 6. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20.
- Th. Schneider, Einführung in die transzendenten Zahlen, Berlin · Göttingen · Heidelberg, 1957.

UNIVERSITY OF FREIBURG, GERMANY