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DIFFERENTIABILITY OF
A FUNCTION AND OF ITS COMPOSITIONS WITH
FUNCTIONS OF ONE VARIABLE

JAN BOMAN

1. Statement of results.

Denote by C®(R%,R¢) the set of infinitely differentiable functions from
R? to Re.

The following theorem was conjectured by H. Radstrém in an un-
published work.

TurorEM 1. Let f be a function from Re to R, and assume that the com-
posed function fou belongs to C°(R,R) for every we C°(R,R%). Then
fe C®R4,R).

This paper contains a proof of Theorem 1 and of several more precise
results which are closely related to Theorem 1.

DerintTION 1. If 0 18 @ function from R, ={t; t>0} to R, such that
lim,_, 0(¢) =0, we denote by K(o) the class of functions f: R% — R with the
Sfollowing property: to each compact subset F <Re there exists a constant C
such that

[f(x+y)—f(x)] < Colc), when |y|<e, xeF, x+yckF.

If f € K(0) when o(e)=¢% 0< =<1, then we write f € Lip (o) and say that f
18 Lipschitz continuous with exponent o.

DEriniTION 2. If P is @ non-negative integer, we denole by CP or
C?(R4,R®), or sometimes by CP-0 or CP-%(R4,Re), the class of functions from Ré
to R® whose derivatives of order <p are continuous. Let C 2 or CP(R%,Re)
denote the class of those functions in CP(R%,Re¢) whose derivatives of order p
belong to K(a). Similarly, if 0<@<=<1, then CP-e or CP-o(R%,R®) denotes the
class of functions from R? to R¢ whose derivatives of order p are Lipschitz
continuous with exponent g.

We can now state our first generalization of Theorem 1.
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THEOREM 2. Let f be a function from R? to R, and assume that
fou e CP¢R,R) for every u € C°(R,R%), Then

J € CPe(R3R) if 0<p=1 or p=p=0,
and
feCPLYRIR) if =0 and p21.

The next theorem states that the conclusion of Theorem 2 can not be
strengthened to read f € C?:0 in the case ¢ =0, even if we strengthen the
assumption by taking u € C? instead of u € C*,

THEOREM 3. If p21 and d22, there exists a function f from R% to R
such that f & C?, but fou e CP(R,R) for every u € CP(R,R9).

In fact, the statement of Theorem 3 is true for every function f which is
homogeneous of degree p, belongs to C? outside the origin and is not a
polynomial.

Theorem 2 asserts in particular that f must belong to CP if there
exists ¢ > 0 such that fou € CP¢(R,R) for every 4 € C®(R,R%). It is natu-
ral to try to weaken the assumption fowu € CP-¢(R,R) here. The next
theorem gives a result of that kind.

TaEOREM 4. Let f be a function from RZ to R, and assume that there
exists a function o such that lim,  ,o(e)=0 and such that fou e CP(R,R)
for every u e C*°(R,R%). Then fe CP(RE,R).

From our proof of Theorem 4 one could deduce an estimate (depending
on ¢) of the modulus of continuity of the ptt derivatives of f. However,
using Theorem 1 in [1] in place of Lemma 7 below we can obtain a
better estimate of that kind. Writing

1

o(e) = ¢ (1 + t-2 o(t) dt)

min(s, 1)

we obtain in this way fe C;?(R4,R) in the conclusion of Theorem 4.
This application of Theorem 1 in [1] is discussed at the end of Section 3
below.

By letting u vary over a smaller class than C* we can obtain generaliza-
tions of Theorem 2 and Theorem 4. Let L={L.};>, be an increasing
sequence of positive numbers. Denote by CZ or CL(R,R%) the set of all
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functions u € C*(R,R?) such that to every finite interval F <R there
exists a constant C such that

supp |d*ufda*| £ Ck+1L%k  for every k .

The function % is said to have a zero of infinite order at the point t € R
if » and its derivatives of all orders vanish at t. The class CL is called
quasianalytic if no non-trivial function in CT has a zero of infinite order.
The Denjoy—Carleman Theorem states that CT is quasianalytic if and
only if 3% (L, is divergent. This shows in particular that the so-called
Gevrey classes G, — which are defined for a=1 by G,=C"**" _ are
non-quasianalytic when ¢ >1. When a=1, the class ¢, is the set of real
analytic function, which of course is quasianalytic. A quasianalytic func-
tion is a function which belongs to some quasianalytic class.

A strengthened version of Theorem 2 can now be stated as follows.

TaEOREM 5. Let L={L,}7, be an increasing sequence of positive num-
bers such that the class CT is non-quasianalytic, let f be a function from Ré
to R, and assume that fou € CP¢(R,R) for every u € CL(R,R%). Then the con-
clusion of Theorem 2 holds.

The assumption of Theorem 5 that CZ is non-quasianalytic can not be
omitted. This is implied by our next theorem.

THEOREM 6. If d =2, there exists a non-continuous function f from R
to R such that fou € C*(R,R) for every quasianalytic function u € C(R,R%).

A study related to ours has been made by Rosenthal [2]. However,
the latter author studies only the continuity of f (not the differentiability
properties of f). A function » € C*(R,R9) is called non-singular if |u'(t)| 40
for every ¢. Rosenthal proves the following. If fowu is continuous for
every non-singular function u € C*(R,R%), then f: R¢ — R is continuous.
He also shows that if d = 2 there exist non-continuous functions f: R¢ -~ R
such that fow is continuous for every non-singular u € C?(R,R9).

Recently we obtained the following generalization of Rosenthal’s
result.

Let us say that a function » € O™+ has a singularity of order m at ¢
(m=0), if w'(t)=...=um(t)=0, and um™+V(t) 0.

THEOREM 7. Let p=1 and let f be a function from RZ to R such that
fou is continuous for each function w € C?(R,R%) with singularities of order
at most p—1. Then f is continuous.

On the other hand, if d=2 and p2 1, there exists a function f: R* ~R
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such that f € C*(R%,R) and fou € CP(R,R) for each u € CP(R,R?) with singu-
larities of order at most p—1.

Moreover, if d=2 and p=2, there exists a mon-continuous function
J: R% =R such that fou € CP(R,R) for every u € CP(R,R%) with singularities
of order at most p—2.

The proofs of these results will be published elsewhere.

A few words should be said also about the situation when % varies
over some class of functions of more than one variable. In this case we
do not lose one degree of differentiability as we did in the case p=0 of
Theorem 2. This fact can be stated as follows.

THEOREM 8. Let f be a function from Re to R, and assume that fou e
C?(R%,R) for every uw € C°(R%,R%). Then fe C?(R%,R).

Proor. Using Theorem 2 with p=p=0, it is easy to prove Theorem 8.
Set
u(t) = tie;+w(ty) for E=(ly,t,) eR?,

where e; is the unit vector in the direction of the jth coordinate axis
in R?, and w € C*(R,R%). Then u € C*°(R%,R%), and hence by assumption
(o7/ot,P)(fou) exists and is a continuous function of ¢ e R2. Thus, in
particular (D;*f)(w(t,)) is a continuous function of #,. (Here D; means
0/0x;.) Since this is true for each w e C*(R,R9), the function D,/”f must
be continuous by the above mentioned special case of Theorem 2.

Again, we do not get the desired result if « is restricted to the class
of analytic functions. In fact, this is so even if u is a function of d—1
variables:

THEOREM 9. There exists a non-continuous function f from R? to R such
that fou € C*(R%-1,R) for every analytic function u from R¢-1 to R4,

Sections 2 and 3 below contain a complete proof of Theorem 5. The
reader who wishes to see the proof of Theorem 2 but not that of the
more general Theorem 5 may simply disregard Lemma 3. To obtain a
proof of Theorem 1 it suffices to combine the first part of Lemma 1
with Lemma 4 and Lemma 5.

2. Boundedness of the directional derivatives D,f.

If £ eRp, |£] %0, we set D, f(x)=lim, ,(f(x+t&)—f(x))/t, and similarly
we define D/%f(x) inductively by D/f(x)=D,D/*-'f(x)) when k> 1.

If the hypothesis of Theorem 2 (or Theorem 5) is fulfilled, it is obvious
that the derivatives D/%f(x) exist for each k£ < p, and that the restriction
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of the function D/f to any line parallel with £ is Lipschitz continuous
with exponent g. To see this we need only apply the hypothesis to the
function u(t)=z+1t&, x € R4, te R. Our first and most important step
towards proving that fe CP.¢ is to prove that these statements hold
with a certain uniformity with respect to the set of lines parallel to &.
To make the last statement precise we need the following definition.

DEriniTION 3. Let o be a function from R, to R, with lim,  ,0(c)=0,
and let & be a non-zero vector in RE. Then K(&,6) will denote the class of
Sfunctions from R to R with the following property: to each compact set
F <R there exists a constant C such that

[f(x+t&)—f(x)] = Co(e), when |t|<e, weF, x+téeck .
If a(e)=¢°% 0<p=1, then K(&,0) will also be denoted Lip (&,p).

The following is a simple consequence of the definition: if M is a set
of vectors which spans R¢, and f belongs to K(&,0) for each & € M, then
fe K(o).

We may always assume that o is subadditive and increasing. In fact,
if fe K(o), then there always exists a function o, such that o, is sub-
additive and increasing, o; <0, and fe K(o;). This is an obvious conse-
quence of the fact that

sup {|f(z+y)—f(@)|; xeF, x+yeF, ly|<e}

is a subadditive and increasing function of ¢ if F' is convex. In fact we
can always take

0y(e) = inf {22;1 o(e;) ZLl e 28 620},

which is the largest increasing and subadditive minorant of o.

If o(¢) is subadditive and increasing, we have the following in-
equality:
(2.1) o(ae) £ o((1+[al)e) = (1+a)a(e), e>0,a>0.

Here [a] denotes the integral part of a.

Lemma 1. If f is a function from R to R such that fou € CP(R,R) for
every w € C°(R,R%), then f is continuous and each derivative D2Pf is a locally
bounded function on R,

If, in addition, D?(fou)e K(o) for every ue C™(R,R9), then DPfe
K(&,0) for every E&.

For the proof of Lemma 1 we need the following trivial lemma.
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Lemma 2. Let L, be increasing and 3L, < co (that 1s, the class CT non-
quasianalytic). Assume that p € C°(R,R), that y(t) =0 for large t and that

|w(q)(t)| < Qe+t qu
for all g and t (that 18, p € CL). Set
wl(t) = (a-+2)p(t/T)

Jor all real t, where a,b € R% and 0<T < 1. Then there exists a constant C,,
which 18 independent of a, b, q, t and T, such that

(2.2) [w@()] = (la| +[b])T—2C2 L2 .
Proor. Differentiation gives
wD(t) = (a+tb) T2y Qt[T) + qbT-2+1ye-D(¢/T) .
Hence, if y(t)=0 when |{|> B, then
(2.3) |u@| < (la|+BJb|)T2C* L7 + q|b|T2CILL .
Since L, is increasing and 3L, <co, we have C,L,=q for some C,,
and hence q LZ:} < 02 Lq qu—l — 02 qu .
Combining this with (2.3) gives (2.2).

Proor or LemMma 1. We first prove that D,?f is locally bounded. Let
us assume the contrary, i.e. that D/ f is unbounded in each neighbour-
hood of some point, say the origin. Then there exists a sequence of
points 2 € R? such that 2| - 0 and DFf(2™)=F, tends to + oo or — oo,
say -+oo. Assuming this we shall construct a function u e C*(R,Ré),

which assumes infinitely many of the values z®, such that D?(fou) is
not locally bounded, which contradicts the assumptions of the lemma.

Let L, be any sequence satisfying the assumptions of Lemma 2 and
take ¢ € C* such that y(¢f)=1 when [t| <}, y(f)=0 when [{|> £, and

[¢@ < C+1L g2  for every q

(that is, y € CL). For example, we can take L,=q% Let T; be real num-
bers such that
0<T;<1 and 32,7T; < oo,
and set
b = 2250:1 Ty + T

Let r; be an increasing sequence of natural numbers and c; a sequence
of positive numbers, both of which will be chosen later. Set
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(2.4) uit) = (2" + Ec;(t—t;)) w((t—2))[Ty), teR,
and

u(t) = 2;";1 u(t) .

Since all the w; have disjoint supports, the sum is trivially convergent.
It is also clear that

weC® when ¢+t ,=1Nlm, 1%.
We shall now choose r; and ¢; such that
(ay) % € C*® in a neighbourhood of ¢,
(ag) Dr(fou)(t;) > +ooasj—»oo.
To do so we shall first take c; such that
(by) ¢T;4>0 asj—>oo foreverygq

(for example ¢;=T), and then choose r; such that

(by) |z £¢; for every j
and
(bs) ¢ F, > +oo a8 j— oo

That this is possible is obvious since [#"| - 0 and F, — + oo a8 n — .
It remains to verify that (a,) and (a,) are valid if r; and ¢; are chosen
so that (b,), (b,) and (b;) hold. To prove (a,) it is enough to show that

[u@(@E)] -0 as t—>1i,

for each g. In the interval {t ; |t—¢,| < T;} we have according to Lemma 2
and (b,):
(2.5) [w@()] = (Ja7] +|§le,) T~9C,#+ L2

=<
< (L+]&))e; T;2C@ L3 < ¢, T;4CaHL g,

which tends to zero as j— oo, for each ¢, by (b,). To compute
Dr(fou)(t;) we note that wu(f)=2a"+ &c,(t—t;) in a neighbourhood of ¢;.
Hence
Do(fou)ty) = ¢? DFf(a") = ¢ F, ,
which tends to infinity by (bg).
In the case p=0 we have to prove the stronger statement that f is
continuous. Assume the contrary, for example that

|z*| - 0 and lim,_  f(z") % f(0).

If we take ¢; and 7; according to (b,) and (b,) and define u(t) again by
(2.4), we obtain
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lim; , o, (fou)(ty) = lim, o, f(@") + f(0) = (fou)(t),

that is, fou is not continuous at ¢, contrary to the hypothesis. This
completes the proof of the first part of Lemma 1.

To prove the second part of the lemma it is enough to prove that
Dpf e K(&,0) in some neighbourhood of an arbitrary point z. As was
remarked after Definition 3 we can assume that ¢ is subadditive and
increasing. Assume that for some point z, say = (0,. . .,0), the assertion
is not true. Then there must exist B, , » and %, such that

B, > o, |2* >0, h,—0,
and
(2.6) |D#f (x4 &h,) — Dof(x™)| > B,o(lk,]), == 12,....

Define the function u(f) =3 u,(f) again by (2.4) and let the parameters
Ty, t; and ¢; have the same values as above. Choose r; such that again

(by) "] < ¢; for every j,

and such that

(bs") ¢PH1B, —~ o0 as j—> oo,
and
(ba) by < de;T.

Then as above u € C*. We shall show that with aj=h,]./cj we have, at
least for large j,

(2.7) \D2(fou)(ty+e;) — DP(fou)t)| > deP+1B, o(les]) -

In view of (by') this will complete the proof. To prove (2.7), first note
that
Since by (b,) we have |¢;| < $T';, we then obtain from (2.6):

(2.8)
|DP(fou)(t;+e;)— DP(fou)(t))| = le (DPf) (" +Ecse;) — o (DPf) ()]

= cjl’B,iG(c,- l&;])

Then by (2.1), if j is so large that ¢; <1,
This together with (2.8) proves (2.7).

Lemma 3. Let M={M 7, be an increasing sequence of positive num-

bers such that 332 (M, <oo, that is, the class CM is non-quasianalytic.
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Then all the assertions of Lemma 1 hold if we write uw € CM(R,R%) instead
of u e C™(R,R9),

Proor. To prove this lemma we have to improve the construction of
the function » in the proof of Lemma 1, so that we get 4 € CM instead
of just w € C*. Then first of all we must use the fact that every non-
quasianalytic class contains non-trivial functions with compact support.
(This is easy to prove using the fact that CT is closed under multiplica-
tion if L, is increasing.) Since 3 M,~! < oo, we can take L, such that L,
is increasing, 3 L,~! < oo, and 4,=M,/L, tends to infinity. Then CZ is
non-quasianalytic, and we can take p € C¥ such that y(f)=1 when |¢| <},
and y(f)=0 when |¢|>%. Define ¢, and T'; as above, and choose ¢; such
that
(by") ¢ £ (T;4,), j=12,..., ¢=12,....

That this is possible is clear since 4, > oo as ¢ > oo, and hence
(T;4,)7 - oo a8 ¢ - o for every fixed j. Then choose r; as above, and
define w=3u; again by (2.4). Since (b,’) implies (b;), » will have all
the previous properties, in particular u € C*. Moreover, u € CM, since
by (2.5) and (b,’) and the definition of 4,:

|lw@| < chj—quH qu < Aqull+l qu = (Qa+1 qu .

This completes the proof of Lemma 3.

3. Continuity of the derivatives.
In this section we will start with the directional continuity properties
of the directional derivatives D/?f and prove that all partial derivatives

of f of degree p have the corresponding continuity properties as functions
on R4,

DEriNITION 4. Let £ €RE, |£|+0. A function f: R% - R is said to be
continuous in the direction & if f(x+1t&) tends to f(x) uniformly for x in
compact sets as t tends to zero (t € R).

If fe K(&,0) and lim,_, jo(e) =0, then f is obviously continuous in the
direction &.

Lemma 4. Assume that fe COR%,R) and that D,f is continuous in the
direction &. Then D,f is continuous.

Proor. Write D,f=f,. Assume that f, is not continuous at the origin
0e R4, We can assume, for example, that

Math. Scand. 20 — 17
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B, of () > f(0) .

Then there exists a sequence x” € R? tending to 0 and an &> 0 such that
(3.1) fe@™)—f(0) > ¢, n=1,2,....

Since f, is continuous in the direction &, it follows from (3.1) that there
exists a positive number é which is independent of », such that

fela+1E) —fo(t&) > 3¢, 0=t<d, n=12,....
Integrating over ¢ from 0 to  gives
f@™+3de)—f(x™)—f(0e) +f(0) > }de, m=1,2,....

Letting n tend to infinity we arrive at a contradiction, since f is continu-
ous.

We now have to study the problem of how to obtain information
about the mixed derivatives of f, when we know something about the
derivatives D2f.

If £eR?and a=(xy,...,x,) is & multi-index, «; non-negative integers,
write §*=§"1...£;", and if |x|=F«;=p, let (¥) denote p!/(x,!...a,!).
The number of distinct multi-indices « with length |x|=7p is

(d+p—l) - N
» .

Let I" be a collection of N vectors in R?. If x runs through the set of all
multi-indices with length p, and & runs through I', then the numbers
(®)&* form a quadratic matrix, which is defined up to a permutation of
rows or columns. Denote the absolute value of the determinant of this
matrix by A(I'). Considering A(I") as a function of the Nd variables
&;, £ €T, it is easily seen that A(I") is the absolute value of a polynomial
of degree pN.

Lemma 5. Let g be a continuous function from R% to R, let p be a natural
number, and let I" be a collection of

(*37)

p
vectors in R% such that A(I')+0. Assume that the derivative DpPg exists
and s continuous for each &€ I'. Then g € CP.
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Proor. We have to prove that an arbitrary mixed derivative D%
where |x|=p exists and is continuous. We begin by proving that there
is a constant C which depends only on I, such that, if &~ € C?(R%,R), then

(3.2) max,_, |D*k(z)| £ O max,.,|DPh(z)], xeRe.
In fact, if h € C?(R4,R), then

(3.3) Do) = Spuims (Z) & D'ha), tel.

Since by assumption the determinant of the system (3.3) is different from
zero, (3.2) follows. Take ¢ € C*(R4,R) such that ¢ 20, ¢ =0 when |z|> 1,
and [pdz=1, and form for ¢> 0 the “regularization” of g,

0.2) = [g(@—ey) o) dy .

By assumption D,Pg exists and is continuous when ¢ e I', and hence for
such e,
|IDPg(x)—DpFg(x)) -0 as e—>0,

uniformly on compact sets. Applying (3.2) to g,—g, we then find that
if |x|=p, then D*y,— D*g, tends to zero uniformly on compact sets as ¢
and ¢ tend to zero, and hence that D%, converges uniformly on compact
sets to some continuous function ». It is clear that these facts imply
that D%y exists and is equal to v.

Lrmma 6. Let g € CP(R4,R) and let I' be a collection of

(d + p)

p+1

vectors in Re satisfying A(I')+0. Assume that for each £€ I’
DprgelLip(§,1).

Then g € C?:1,

Proor. Let g, have the same meaning as in the proof of Lemma 5.
Then again if |x|=p,
(3.4) D9, -D% ase—~>0,

with uniform convergence on compact sets. Moreover, we claim that
for each £ e I' the family of functions

(8.5) D@Hyg, 0<e<], is uniformly bounded on compact sets .
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In fact, since D,Pg € Lip(£,1), the functions D,Pg, have the same pro-
perty in a uniform way, that is, on each compact set the Lipschitz
constant of the function D,?g, can be estimated by a constant independent
of ¢&. But since g, € C*, the last statement is equivalent to (3.5). Applying
(3.2) with p+ 1 instead of p we obtain from (3.5) with |x|=p and D;=
0[ox;,j=1,2,...,d,

(3.6) D;D%,, 0<e<]1, is uniformly bounded on compact sets .

Now (3.4) and (3.6) imply that D*j € Lip(&,1) if & is parallel to any
coordinate axis. This shows that g € CP-1.

Proor or THEOREM 4. From Lemma 1 we know already that f is
continuous and that, if p= 1, then D/*f is continuous in the direction &
for each k<p. Next we assert that D/*f is continuous for each & and
each k<p. This follows from Lemma 4 by induction on k. Finally we
apply Lemma 5 to conclude that fe CP.

RemaRk. By applying Lemma 3 instead of Lemma 1 we can obviously
prove the analogous assertion with » e C™ in place of u e C®, where
M ={M,} is an increasing sequence such that the class C¥ is non-quasi-
analytic.

Proor or THEOREM 2 AND THEOREM 5 IN THE CASE p=0 OR g=1.
Since C?.1>(CP+L9 it is obviously enough to consider the case o=1.
However, since by Theorem 4 and the remark above we already know
that f e O?, we can apply Lemma 1 or 3 and Lemma 6 to conclude that
fe P,

The following lemma is needed in the case 0 <p<1.

Lemma 7. Let A be a finite set of vectors & € R? which are pairwise
linearly independent, let there be given for each & € A a function g, from R?
to R, and let 0<p<1. Assume that

(3.7) l9:()] = EEY.
(3.8) |gs(x +28) —ge()| < Itl° 2|, e+t <4,
(3.9) [Zeea(gel@) —gey)| = b ||, lyl=4 .

Then for each 8> 0 there exists a constant C which depends only on g, 6
and A such that

(3.10) lg(e)—g:)l < Cb+le—yl®), |o],|ys4-90, Eed.

CoROLLARY. Let &1,...,&" be pairwise linearly independent vectors in
R, let g, k=1,...,n, be locally bounded functions from R? to R, and let
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0<p<1. Assume that g, € Lip(&*,0) for each k and that 3}_,g; ts iden-
tically zero. Then g, € Lip(p) for each k.

Proor. If ¢ is small enough, the functions cg,, k=1,...,n, satisfy the
assumptions of Lemma 7 with 6=0.

Remark 1. If A consists of one or two elements, the assertion (3.10)
with C=2 is a trivial consequence of (3.8) and (3.9).

REMARK 2. The assertion of the corollary (and of Lemma 7) is not
true if p=1 and A contains at least three elements. This is seen from
the example

91(x) =z logla|, gu(x) = @yloglz|, and gy = —(91+9s),
where |z| = (z,2+,%). In fact,
|0g,/0xs| = |z y2olf|2|® = 1,

which shows that g,, ¢,, and g, belong to Lip(&,1) with £ equal to (0,1),
(1,0) and (1, —1) respectively. On the other hand, it is obvious that the
functions g, do not belong to Lip(1).

ReMARK 3. The assertion of the corollary (and of Lemma 7) is not true
if we omit the assumption that the g, are locally bounded. This is seen
from the example

91(21, %) = @(x1),  Gal®1, %) = @(xy), and  gy(xy,%p) = — (2, +%5) ,

where ¢ is a non-measurable solution of the equation

p(s+1t) = ¢(s)+¢(t), s,teR.
For the proof of Lemma 7 we need the following lemma.

Lemma 8. Let w be a real-valued function of ome variable, such that
w(0)=0 and |w(t)| <1 when |t| < 2a, let 0< g < 1, and assume that

(3.11) lw(2t) —2w(t)] £ b+ C,t)°, t|Za.
Then
(3.12) lw(t)] < b+Cyltle, |t <2a,

where Cy=(1]a%)+Cy/(2—2°).

Proor. When a < |t| < 2a, it is obvious that (3.12) holds, since Cpa®2 1.
Now assume that 0< |s| <a and that (3.12) holds when ¢=2s. Then by
(3.11) and the triangle inequality
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2w(s)] = |w(28)] + b + Cyls|®

b + Cy|251°+b+C, s

2b + [8]2(2¢C,+C,) £ 2b + 20,)s)°.

The last inequality follows from the fact that C,>C,/(2—2?), that is,
20Cy+0C,5£2C,. Thus we have proved that (3.12) holds when f=s.
The proof is completed by an obvious induction argument.

IA A 1A

Proor or LEMmaA 7. We prove the lemma by induction on the number
of elements of 4. As remarked above the assertion is true when A con-
sists of one or two elements, and in this case we can take C=2. Let

A = Ayu {n}, where néAd,,
and assume that all the vectors in /4 are pairwise linearly independent.
We assume that the assertion of Lemma 7 is true for 4,, and we shall
prove that it is true for 4. Assume that {g.}.., satisfies (3.7), (3.8) and
(3.9). For &e A, set
(3.13)  hy(,s) = hy(a) = b(glat+om—gila),  |alS A0y, lon| <8y,
where 6, =4d. Then it is obvious that h, satisfies (3.7) and (3.8) when
¢ £ A—6; and |x+t& = A—-4;.
Moreover, by (3.8) for £=# and (3.9)
IZEEAo(hE(x) - he(ﬁ‘/))! 3 IzéeA (ge(x +8n) —gg(x))l +
+ 3Zeca(9:(y +5m) —g:))| +

+ 3g,(x+sn)—g,() + }lg,(y+sm) -9,
b+ [s]%, lz|, [yl = A—6y, [sm| < 6.

A

IIA

This means that {A}, 4, satisfies (3.9) with &+ |s|® instead of b. By the
induction hypothesis there exists a constant C;, which depends only on
Aqy, o and §;, such that

(@) —he(y)l < C1(0+Is°+1z=yl),  |al, ly|<A—20y, |sn| <8, E€ 4, .
If we take y —x=sn and use (3.13), this becomes

(3.14) |gu(x+28m) — 2@+ sm) + go(x)] < 2C1(b+sl°+[sml?) = Cy(b+1sl%) ,
if

ol S A—38,, [sn| S0y, £y
Here C, is any constant = 2C,(1+ [5/?). Set

w(s) = ge(x+sn)—g.(x) when £ed,.
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Then (3.14) means that
|w(2s) —2w(s)| < Cy(b+[sl®),  lsn|<d,.
Lemma 8 then shows that

(3.15)  |w(s)| = |ge(w+sm) —gex)] = Ca(b+[s[?)
lsn] <6y, || A—38,, £€4,,

where C3 depends only on C,, ¢ and 4,/[5|, that is on 4, o and d. If we
take C; so large that Cy(d,/|n])°=2 and use the assumption (3.7), we
obtain (3.15) for all s such that |z +sy| < A —35,. Now it is easy to prove
(3.10) for an arbitrary & € A, by combining (3.8) and (3.15). In fact we
obtain (3.10) with a constant C'=C,;C,, where C, depends only on £ and
7. Finally, by interchanging the roles of the vector » and one of the
vectors & € 4, we obtain (3.10) with # in place of &, that is, we obtain
(3.10) for all £ e A. The proof is complete.

CoNCLUSION OF PROOF OF THEOREM 2 AND THEOREM 5. Let 0<p<1,
and assume that f satisfies the assumptions of Theorem 2 or Theorem 5.
By Theorem 4 we know that fe C?. It remains to prove that fe CP.¢,
If p =0 this assertion trivially follows from Lemma 1, respectively Lemma
3. Let H be an arbitrary two-dimensional plane in R¢. Let p=>1 and
choose a finite set A of vectors & in R%, pairwise linearly independent
and all parallel to H, and choose for each & € A4 a constant ¢,+ 0 such
that the polynomial

Z&A c&,x)?

is identically zero. A moment of reflection shows that /4 must contain
at least p+2 vectors, and also that any set of p+2 pairwise linearly
independent vectors can be chosen for A. Since fe C? we then have

Seeac:DEf = 0.
By Lemma 1, respectively Lemma 3, the functions D,/f belong to
Lip(¢,0). The corollary of Lemma 7 then shows that the restrictions to #
of the functions Df, & € A, belong to Lip (¢). Moreover, applying Lemma
7 with b=0, which is a quantitative counterpart of the corollary, we find
that if £e A,

sup {|Dgf(x)~ DFf (y)l/le—~yl°; |2l lyl< 4,2,y e H} .
depends only on g, 4, and on bounds for

sup {|D&f () ; |¢| <24, &€ A}
and
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sup {|DFf(x+1t&) — DEf(x)|[It1°; ||, |x+t6| <24, x,x+té e H, £ € A}.

Applying this result to a collection of planes parallel to H we find that,
for any # parallel to H, the function D2f belongs to Lip(»,e) as a func-
tion on R?. Since H was arbitrary, the same statement must be true for
any 7 € R%, hence in particular for a set of # which forms a basis for R4.
This shows that, on Ré, the function D,?f is Lipschitz continuous with
exponent g. For reasons of symmetry the same statement must be true
for any non-zero £ € R4, Since an arbitrary mixed derivative of order p
of f is a linear combination of derivatives D2f, £ € R9, this shows that
feCpe,

As was pointed out in Section 1, one could use Theorem 1 in [1] instead
of Lemma 7 above in proving that the derivatives of order p of f belong
to Lip(p). We will now indicate briefly how this could be done. Let J
be the set of all multi-indices &= (x,,...,x;) of length |x|=p. Then J

( )
p

elements. We will consider N-tuples (c,),.; of real numbers as ele-
ments of RY, The usual inner products in R¢ and R¥ will be denoted
{+,*). If £eR% the numbers (£*),.; define an element of R¥ which we
denote V?£. Since we know that fe C?, we can define a continuous
function g=(g,),.; from R? to R¥ by

0.62) = (2) D).

Then D2f(x)=(VPé&,g(x)). By Lemma 1 we know that

(3.16) (Vr&,g9) € K(&,6) for each non-zero £eR%,

Now, taking
A = {(§,VPE); 0££eR% < RIXRY,

we can apply Theorem 1 in [1]. It is easy to see that A satisfies condition
(A4) of [1], i.e. that

acRd, beRVN, and {(a,&)d, VP&)=0 for every £ € R? '

implies that a=0 or b=0. On the other hand, A does not satisfy condi-
tion (A), since every element of the linear hull L of the set of tensor
products £ ® VP£ has an obvious symmetry property, and hence L must
be a proper subset of the tensor product R¢ QRYN. The cited theorem
then shows that g € K(), where
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1
o(e) = ¢ (l + -2 o(t) dt) ,

min(l, &)
and that this is the strongest result that follows from (3.16). If o(e) =&?
and g <1, we have G(¢)~a(e), hence

K(3) = K(o) = Lip(o),

and thus (3.16) implies g € Lip(¢) in this case. On the other hand, if
o(¢)=¢ we have
o(e) ~ elog(l/e),

and hence the theorem shows that the assumption
(V?¢,9> € Lip(§,1) for each non-zero £ € R¢

does not imply g € Lip(1). This explains why we had to use a separate
method (Lemma 6) in the case g=1.

4. The converse theorems.

We now pass to the proofs of the counterexamples Theorem 3, 6 and 9.
The following theorem gives sufficient conditions for a function to have
the property of Theorem 3.

THEOREM 10. Let f be a function from Re to R, and assume that f belongs
to C? outside the origin and that f is homogeneous of degree p, where p is
a natural number. Then fou € CP(R,R) for every u € CP(R,R%).

Of course, any function which satisfies the hypotheses of Theorem 10
and is not a polynomial must have a discontinuity in some derivative of
degree p at the origin. In fact, if fe C? and f is homogeneous of degree
p, then each derivative of degree p is constant, and hence f is a poly-
nomial.

Proor or THEOREM 10. If £ € R%, let (&,D)f denote 3 &;9f/ox;, which
has been denoted by D.f above. Set E={t; teR, |u(t)|+0}. In the
open set £ we have

h = foueCr
and

(4.1) rOE) = ({u'(t), D)2 f) (u(t))+ ... »

where the dots indicate terms containing derivatives of f of order at
most p—1. On the other hand, if i° ¢ E,
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(4.2) h®(0) = p! f(u'(t)) -

In fact, in this case we can write u(t)= (f—t%)v(t), where v € CP-1 and
v(t%) ='(#), and hence in view of the homogeneity,

h(t) = t—1°)Pf(v(t)), where f(v(t))eCP-1.
These facts imply (4.2). Thus it only remains to prove that if ¢ ¢ E,
rP(t) - h®(%) as t 10, tek.

Since D*f is homogeneous of degree p—|«|, the omitted terms in (4.1)
tend to zero as t — 19, Moreover,

(Cu'(8), D)o f) (ult)) — (<w'(t°), D)7 f) (u(?))
= 2lal=p (ZZ) (w'(8)* — w' (1)) (D*f) (u(t)) >0 as t—>1, tek,

since (D*f)(u(t)) is bounded (D% is homogeneous of degree zero) and '’
is continuous. Thus it suffices to prove that

(4.3) (Cw'(t°), D)2 f) (u(t)) > p! f(w'(t?) as t—1t°, tek,

for an arbitrary $°¢ E. If |u'(t%)|=0, it is obvious that (4.3) holds. If
|u’(t%)] 0, we again write wu(f)=(¢—¢°)v(f). Since {('(t°),D)Pf is homo-
geneous of degree zero, the left-hand side of (4.3) is equal to

(Cw' (%), DY2f) (v(8))
(Cw'(89), D)2f) (w'(2°))

as ¢ - %, Applying Euler’s equality for homogeneous functions we ob-
tain the desired result.

which tends to

Proor or THEOREM 6. It is enough to prove the theorem for d=2.
Take a non-constant function F: R? - R, such that F' is homogeneous of
degree zero, F(z,,x,) =0 when z,2,=0, and F is infinitely differentiable
in the complement of the origin. Define ¢™1¢ ag zero for z,=0 (then
e"Viz2l ¢ ), and set

fl@y,z,) = F(rg,e V%), (2;,2,) eR2,

Then f is obviously not continuous at the origin. We claim that fou € C®
for each quasianalytic function u=(u,,u,) € C*(R,R?). Since fe C* out-
side the origin, it will be enough to show that fou e C* in a neighbour-
hood of ¢=0, if |«(0)|=0. If u, is identically zero, then f is identically
zero. If %,(0)=0 and wu, is not identically zero, then by virtue of the
quasianalyticity there exists an integer k=1, such that
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uy(t) = thoy(t), v,€C™ and v,(0) £ 0.

Since u4(0)=0, we have
e Ulua®)] tho,(t)

where v, € C* and v,(0)=0. Using the fact that F is homogeneous and
that F(x,,0)=0, we obtain

S(uy(®), ua(t)) = F(tkvy(t), thvy(t)) = F(vy(t), vy(t)), teR.
Since v,(0) = 0, this proves that fou € C* in a neighbourhood of zero.

Remark. We have actually proved that fowe C* for each u e C®
which has no zero of infinite order. This shows in particular that one
can not prove Theorem 1, Theorem 2 or Theorem 5 without applying
the assumption to functions « with singularities of infinite order.

The following result implies Theorem 9.

Trrorem 11. Let r,(s), j=0,1,...,d, be continuous functions defined
when s 0, vanishing at the origin, positive and infinitely differentiable
when s> 0 and satisfying

Lim, o 7;_4(s)/ry(8)8 =0, j=1,...,d,
and
lim,_ ,7;(8)/sB = O for every B.

Set r(s)=(ry(8),...,74(s)). Let ¢ C°RER), g0 and @@)=0 when
|x| > 1. Define the function f: R4+l -~ R by

o((z—7(s))[ro(s)), 8>0, zeRe
0, §<0, zeR4,

sl = |

Then fou € C*(R4,R) for every analytic function u from R? to R¥+1, but f s
not continuous.

It is obvious that there exist functions r;(s) with the properties men-
tioned in the theorem; for example, we can take r;(s)=exp(—a/—4-1)
when $>0, 7,(0)=0, j=0,1,...,d.

Proor or TurOREM 11. It is obvious that f is not continuous at the
origin, and that f is infinitely differentiable outside the origin. Thus it
is sufficient to prove that fou=0 in a neighbourhood of each point
e R? such that |u(?)]=0. Take a non-trivial analytic function U=
U(z,s) from a neighbourhood of 0 € R¥+! to R such that

(Uou)(¢) = 0 in a neighbourhood of #°.
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We shall show that if r;(s) has the properties described in Theorem 10,
then there exist ¢>0, 6>0 and B such that

(4.4) [U(z,8)] = cro(8)B, if |z—1r(s)] S 74(s), 0<s8<d.

This will complete the proof, since if (x,s)=wu(t) for some ¢ sufficiently
close to 19 then U(x,s)=0, and hence by virtue of (4.4) we have
|z —7(8)| >ry(s), that is, f(x,s)=0. To prove (4.4) we begin by showing
that there exist ¢ >0, 6 >0 and B such that

(4.5) |U(r(s),8)| = ery(s)B, 0<s<$,

or more generally that

[V(r(s))] = ery(s)?, O0<s<d,
for an arbitrary non-trivial analytic function ¥V from a neighbourhood
of 0 in R? to R if the functions r(s), j=1,...,d, satisfy the assumptions

of Theorem 10. This is easily proved by induction on the dimension d
if we write ¥ in the form

V(z) = x,% v(zy,. ..,25) + 2,51 R(x) ,

where k2 0, » and R are analytic and v= 0, and use the estimate

V()] Z ri(8)* (Jo(ra(s), - - -,7a(8))] — Ory(s))
2 rl(s)k(cr2(s)B—Crl(s))
2 dery(s)etB, 0<s<d.

It remains to show that (4.5) implies (4.4). Take C so large that
lgrad, U(z,s)| < C
in some neighbourhood of 0, and assume that
|z —r(s)] = 7ls) .
With a new § we then have
[U(x,9)| 2 |U(r(s),8)| = Clz—r(s)|
cry(8)B — Cry(s)
3c r,(s)B, 0<8<d.

This completes the proof of Theorem 11.

v v v
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