DIFFERENTIABILITY OF A FUNCTION AND OF ITS COMPOSITIONS WITH FUNCTIONS OF ONE VARIABLE

JAN BOMAN

1. Statement of results.

Denote by $C^{\infty}(\mathbb{R}^d, \mathbb{R}^e)$ the set of infinitely differentiable functions from \mathbb{R}^d to \mathbb{R}^e .

The following theorem was conjectured by H. Rådström in an unpublished work.

THEOREM 1. Let f be a function from R^d to R, and assume that the composed function $f \circ u$ belongs to $C^{\infty}(R,R)$ for every $u \in C^{\infty}(R,R^d)$. Then $f \in C^{\infty}(R^d,R)$.

This paper contains a proof of Theorem 1 and of several more precise results which are closely related to Theorem 1.

DEFINITION 1. If σ is a function from $R_+ = \{t : t > 0\}$ to R_+ , such that $\lim_{\varepsilon \to 0} \sigma(\varepsilon) = 0$, we denote by $K(\sigma)$ the class of functions $f : R^d \to R$ with the following property: to each compact subset $F \subseteq R^d$ there exists a constant C such that

$$|f(x+y)-f(x)| \leq C\sigma(\varepsilon), \quad when \quad |y| \leq \varepsilon, \ x \in F, \ x+y \in F.$$

If $f \in K(\sigma)$ when $\sigma(\varepsilon) = \varepsilon^{\varrho}$, $0 < \varrho \le 1$, then we write $f \in \text{Lip}(\varrho)$ and say that f is Lipschitz continuous with exponent ϱ .

DEFINITION 2. If p is a non-negative integer, we denote by C^p or $C^p(\mathbb{R}^d,\mathbb{R}^e)$, or sometimes by $C^{p,0}$ or $C^{p,0}(\mathbb{R}^d,\mathbb{R}^e)$, the class of functions from \mathbb{R}^d to \mathbb{R}^e whose derivatives of order $\leq p$ are continuous. Let C_{σ}^p or $C_{\sigma}^p(\mathbb{R}^d,\mathbb{R}^e)$ denote the class of those functions in $C^p(\mathbb{R}^d,\mathbb{R}^e)$ whose derivatives of order p belong to $K(\sigma)$. Similarly, if $0 < \varrho \leq 1$, then $C^{p,\varrho}$ or $C^{p,\varrho}(\mathbb{R}^d,\mathbb{R}^e)$ denotes the class of functions from \mathbb{R}^d to \mathbb{R}^e whose derivatives of order p are Lipschitz continuous with exponent ϱ .

We can now state our first generalization of Theorem 1.

Received June 3, 1967.

THEOREM 2. Let f be a function from R^d to R, and assume that $f \circ u \in C^{p,\varrho}(R,R)$ for every $u \in C^{\infty}(R,R^d)$. Then

$$f \in C^{p,\varrho}(\mathbb{R}^d,\mathbb{R})$$
 if $0 < \varrho \le 1$ or $p = \varrho = 0$,

and

$$f \in C^{p-1,1}(\mathbb{R}^d,\mathbb{R})$$
 if $\varrho = 0$ and $p \ge 1$.

The next theorem states that the conclusion of Theorem 2 can not be strengthened to read $f \in C^{p,0}$ in the case $\varrho = 0$, even if we strengthen the assumption by taking $u \in C^p$ instead of $u \in C^{\infty}$.

THEOREM 3. If $p \ge 1$ and $d \ge 2$, there exists a function f from \mathbb{R}^d to \mathbb{R}^d such that $f \notin C^p$, but $f \circ u \in C^p(\mathbb{R}, \mathbb{R})$ for every $u \in C^p(\mathbb{R}, \mathbb{R}^d)$.

In fact, the statement of Theorem 3 is true for every function f which is homogeneous of degree p, belongs to C^p outside the origin and is not a polynomial.

Theorem 2 asserts in particular that f must belong to C^p if there exists $\varrho > 0$ such that $f \circ u \in C^{p,\varrho}(R,R)$ for every $u \in C^{\infty}(R,R^d)$. It is natural to try to weaken the assumption $f \circ u \in C^{p,\varrho}(R,R)$ here. The next theorem gives a result of that kind.

THEOREM 4. Let f be a function from R^d to R, and assume that there exists a function σ such that $\lim_{\epsilon \to 0} \sigma(\epsilon) = 0$ and such that $f \circ u \in C_{\sigma}^{p}(R,R)$ for every $u \in C^{\infty}(R,R^d)$. Then $f \in C^{p}(R^d,R)$.

From our proof of Theorem 4 one could deduce an estimate (depending on σ) of the modulus of continuity of the p^{th} derivatives of f. However, using Theorem 1 in [1] in place of Lemma 7 below we can obtain a better estimate of that kind. Writing

$$\hat{\sigma}(\varepsilon) = \varepsilon \left(1 + \int_{\min(\epsilon, 1)}^{1} t^{-2} \sigma(t) dt\right)$$

we obtain in this way $f \in C_{\hat{\sigma}}^p(\mathbb{R}^d,\mathbb{R})$ in the conclusion of Theorem 4. This application of Theorem 1 in [1] is discussed at the end of Section 3 below.

By letting u vary over a smaller class than C^{∞} we can obtain generalizations of Theorem 2 and Theorem 4. Let $L=\{L_k\}_{k=0}^{\infty}$ be an increasing sequence of positive numbers. Denote by C^L or $C^L(\mathbb{R},\mathbb{R}^d)$ the set of all

functions $u \in C^{\infty}(\mathsf{R},\mathsf{R}^d)$ such that to every finite interval $F \subseteq R$ there exists a constant C such that

$$\sup_F |d^k u/dx^k| \, \leqq \, C^{k+1} L_k{}^k \quad \text{ for every } k \; .$$

The function u is said to have a zero of infinite order at the point $t \in R$ if u and its derivatives of all orders vanish at t. The class C^L is called quasianalytic if no non-trivial function in C^L has a zero of infinite order. The Denjoy-Carleman Theorem states that C^L is quasianalytic if and only if $\sum_{k=0}^{\infty} L_k^{-1}$ is divergent. This shows in particular that the so-called Gevrey classes G_a — which are defined for $a \ge 1$ by $G_a = C^{\{1+k^a\}}$ — are non-quasianalytic when a > 1. When a = 1, the class G_a is the set of real analytic function, which of course is quasianalytic. A quasianalytic function is a function which belongs to some quasianalytic class.

A strengthened version of Theorem 2 can now be stated as follows.

Theorem 5. Let $L = \{L_k\}_{k=0}^{\infty}$ be an increasing sequence of positive numbers such that the class C^L is non-quasianalytic, let f be a function from R^d to R, and assume that $f \circ u \in C^{p,\varrho}(R,R)$ for every $u \in C^L(R,R^d)$. Then the conclusion of Theorem 2 holds.

The assumption of Theorem 5 that C^L is non-quasianalytic can not be omitted. This is implied by our next theorem.

Theorem 6. If $d \ge 2$, there exists a non-continuous function f from R^d to R such that $f \circ u \in C^{\infty}(R,R)$ for every quasianalytic function $u \in C^{\infty}(R,R^d)$.

A study related to ours has been made by Rosenthal [2]. However, the latter author studies only the continuity of f (not the differentiability properties of f). A function $u \in C^1(\mathbb{R}, \mathbb{R}^d)$ is called non-singular if $|u'(t)| \neq 0$ for every t. Rosenthal proves the following. If $f \circ u$ is continuous for every non-singular function $u \in C^1(\mathbb{R}, \mathbb{R}^d)$, then $f: \mathbb{R}^d \to \mathbb{R}$ is continuous. He also shows that if $d \ge 2$ there exist non-continuous functions $f: \mathbb{R}^d \to \mathbb{R}$ such that $f \circ u$ is continuous for every non-singular $u \in C^2(\mathbb{R}, \mathbb{R}^d)$.

Recently we obtained the following generalization of Rosenthal's result.

Let us say that a function $u \in C^{m+1}$ has a singularity of order m at t $(m \ge 0)$, if $u'(t) = \ldots = u^{(m)}(t) = 0$, and $u^{(m+1)}(t) \ne 0$.

THEOREM 7. Let $p \ge 1$ and let f be a function from R^d to R such that $f \circ u$ is continuous for each function $u \in C^p(\mathsf{R},\mathsf{R}^d)$ with singularities of order at most p-1. Then f is continuous.

On the other hand, if $d \ge 2$ and $p \ge 1$, there exists a function $f: \mathbb{R}^d \to \mathbb{R}$

such that $f \notin C^1(\mathbb{R}^d, \mathbb{R})$ and $f \circ u \in C^p(\mathbb{R}, \mathbb{R})$ for each $u \in C^p(\mathbb{R}, \mathbb{R}^d)$ with singularities of order at most p-1.

Moreover, if $d \ge 2$ and $p \ge 2$, there exists a non-continuous function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f \circ u \in C^p(\mathbb{R}, \mathbb{R})$ for every $u \in C^p(\mathbb{R}, \mathbb{R}^d)$ with singularities of order at most p-2.

The proofs of these results will be published elsewhere.

A few words should be said also about the situation when u varies over some class of functions of more than one variable. In this case we do not lose one degree of differentiability as we did in the case $\varrho = 0$ of Theorem 2. This fact can be stated as follows.

THEOREM 8. Let f be a function from \mathbb{R}^d to \mathbb{R} , and assume that $f \circ u \in C^p(\mathbb{R}^2, \mathbb{R})$ for every $u \in C^\infty(\mathbb{R}^2, \mathbb{R}^d)$. Then $f \in C^p(\mathbb{R}^d, \mathbb{R})$.

PROOF. Using Theorem 2 with $p = \varrho = 0$, it is easy to prove Theorem 8. Set

$$u(t) = t_1 e_j + w(t_2)$$
 for $t = (t_1, t_2) \in \mathbb{R}^2$,

where e_j is the unit vector in the direction of the j^{th} coordinate axis in \mathbb{R}^d , and $w \in C^{\infty}(\mathbb{R}, \mathbb{R}^d)$. Then $u \in C^{\infty}(\mathbb{R}^2, \mathbb{R}^d)$, and hence by assumption $(\partial^p/\partial t_1^p)(f \circ u)$ exists and is a continuous function of $t \in \mathbb{R}^2$. Thus, in particular $(D_j^p f)(w(t_2))$ is a continuous function of t_2 . (Here D_j means $\partial/\partial x_j$.) Since this is true for each $w \in C^{\infty}(\mathbb{R}, \mathbb{R}^d)$, the function $D_j^p f$ must be continuous by the above mentioned special case of Theorem 2.

Again, we do not get the desired result if u is restricted to the class of analytic functions. In fact, this is so even if u is a function of d-1 variables:

THEOREM 9. There exists a non-continuous function f from \mathbb{R}^d to \mathbb{R} such that $f \circ u \in C^{\infty}(\mathbb{R}^{d-1}, \mathbb{R})$ for every analytic function u from \mathbb{R}^{d-1} to \mathbb{R}^d .

Sections 2 and 3 below contain a complete proof of Theorem 5. The reader who wishes to see the proof of Theorem 2 but not that of the more general Theorem 5 may simply disregard Lemma 3. To obtain a proof of Theorem 1 it suffices to combine the first part of Lemma 1 with Lemma 4 and Lemma 5.

2. Boundedness of the directional derivatives $D_{\xi}f$.

If $\xi \in \mathbb{R}^p$, $|\xi| \neq 0$, we set $D_{\xi}f(x) = \lim_{t \to 0} (f(x+t\xi) - f(x))/t$, and similarly we define $D_{\xi}^k f(x)$ inductively by $D_{\xi}^k f(x) = D_{\xi}(D_{\xi}^{k-1} f(x))$ when k > 1.

If the hypothesis of Theorem 2 (or Theorem 5) is fulfilled, it is obvious that the derivatives $D_{\varepsilon}^{k}f(x)$ exist for each $k \leq p$, and that the restriction

of the function $D_{\xi}^{p}f$ to any line parallel with ξ is Lipschitz continuous with exponent ϱ . To see this we need only apply the hypothesis to the function $u(t) = x + t\xi$, $x \in R^{d}$, $t \in R$. Our first and most important step towards proving that $f \in C^{p,\varrho}$ is to prove that these statements hold with a certain uniformity with respect to the set of lines parallel to ξ . To make the last statement precise we need the following definition.

DEFINITION 3. Let σ be a function from R_+ to R_+ with $\lim_{\varepsilon \to 0} \sigma(\varepsilon) = 0$, and let ξ be a non-zero vector in R^d . Then $K(\xi, \sigma)$ will denote the class of functions from R^d to R with the following property: to each compact set $F \subset R^p$ there exists a constant C such that

$$|f(x+t\xi)-f(x)| \leq C\sigma(\varepsilon), \quad when \quad |t| \leq \varepsilon, \ x \in F, \ x+t\xi \in F.$$

If $\sigma(\varepsilon) = \varepsilon^{\varrho}$, $0 < \varrho \le 1$, then $K(\xi, \sigma)$ will also be denoted $\text{Lip}(\xi, \varrho)$.

The following is a simple consequence of the definition: if M is a set of vectors which spans \mathbb{R}^d , and f belongs to $K(\xi,\sigma)$ for each $\xi \in M$, then $f \in K(\sigma)$.

We may always assume that σ is subadditive and increasing. In fact, if $f \in K(\sigma)$, then there always exists a function σ_1 such that σ_1 is subadditive and increasing, $\sigma_1 \leq \sigma$, and $f \in K(\sigma_1)$. This is an obvious consequence of the fact that

$$\sup \{|f(x+y)-f(x)| ; x \in F, x+y \in F, |y| \le \varepsilon\}$$

is a subadditive and increasing function of ε if F is convex. In fact we can always take

$$\sigma_1(\varepsilon) \, = \, \inf \, \, \left\{ \sum_{i=1}^n \, \sigma(\varepsilon_i) \; ; \; \, \sum_{i=1}^n \, \varepsilon_i \, {\geq} \, \varepsilon, \, \varepsilon_i \, {\geq} \, 0 \right\} \, ,$$

which is the largest increasing and subadditive minorant of σ .

If $\sigma(\varepsilon)$ is subadditive and increasing, we have the following inequality:

(2.1)
$$\sigma(a\varepsilon) \leq \sigma((1+[a])\varepsilon) \leq (1+a)\sigma(\varepsilon), \quad \varepsilon > 0, a > 0.$$

Here [a] denotes the integral part of a.

LEMMA 1. If f is a function from R^d to R such that $f \circ u \in C^p(R,R)$ for every $u \in C^\infty(R,R^d)$, then f is continuous and each derivative $D_{\xi}^p f$ is a locally bounded function on R^d .

If, in addition, $D^p(f \circ u) \in K(\sigma)$ for every $u \in C^{\infty}(\mathbb{R}, \mathbb{R}^d)$, then $D_{\xi}^p f \in K(\xi, \sigma)$ for every ξ .

For the proof of Lemma 1 we need the following trivial lemma.

Lemma 2. Let L_q be increasing and $\sum L_q^{-1} < \infty$ (that is, the class C^L non-quasianalytic). Assume that $\psi \in C^{\infty}(R,R)$, that $\psi(t) = 0$ for large t and that

$$|\psi^{(q)}(t)| \leq C^{q+1} L_q^q$$

for all q and t (that is, $\psi \in C^L$). Set

$$u(t) = (a+tb) \psi(t/T)$$

for all real t, where $a, b \in \mathbb{R}^d$ and $0 < T \le 1$. Then there exists a constant C_1 , which is independent of a, b, q, t and T, such that

$$|u^{(q)}(t)| \leq (|a|+|b|) T^{-q} C_1^{q+1} L_q^q.$$

PROOF. Differentiation gives

$$u^{(q)}(t) = (a+tb)T^{-q}\psi^{(q)}(t/T) + qbT^{-q+1}\psi^{(q-1)}(t/T).$$

Hence, if $\psi(t) = 0$ when |t| > B, then

$$|u^{(q)}| \leq (|a| + B|b|) T^{-q} C^{q+1} L_q^{q} + q|b| T^{-q} C^q L_{q-1}^{q-1}.$$

Since L_q is increasing and $\sum L_q^{-1} < \infty$, we have $C_2 L_q \ge q$ for some C_2 , and hence $q L_{q-1}^{q-1} \le C_2 L_q L_q^{q-1} = C_2 L_q^q.$

Combining this with (2.3) gives (2.2).

PROOF OF LEMMA 1. We first prove that $D_{\xi}^{p}f$ is locally bounded. Let us assume the contrary, i.e. that $D_{\xi}^{p}f$ is unbounded in each neighbourhood of some point, say the origin. Then there exists a sequence of points $x^{n} \in R^{d}$ such that $|x^{n}| \to 0$ and $D_{\xi}^{p}f(x^{n}) = F_{n}$ tends to $+\infty$ or $-\infty$, say $+\infty$. Assuming this we shall construct a function $u \in C^{\infty}(\mathbb{R}, \mathbb{R}^{d})$, which assumes infinitely many of the values x^{n} , such that $D^{p}(f \circ u)$ is not locally bounded, which contradicts the assumptions of the lemma.

Let L_q be any sequence satisfying the assumptions of Lemma 2 and take $\psi \in C^{\infty}$ such that $\psi(t) = 1$ when $|t| < \frac{1}{2}$, $\psi(t) = 0$ when $|t| > \frac{3}{4}$, and

$$|\psi^{(q)}| \le C^{q+1} L_q^{\ q}$$
 for every q

(that is, $\psi \in C^L$). For example, we can take $L_q = q^2$. Let T_j be real numbers such that

$$0 < T_j \le 1$$
 and $\sum_{j=1}^{\infty} T_j < \infty$,

and set

$$t_k = 2 \sum_{j=1}^{k-1} T_j + T_k$$
.

Let r_j be an increasing sequence of natural numbers and c_j a sequence of positive numbers, both of which will be chosen later. Set

$$(2.4) \qquad u_j(t) = \left(x^{r_j} + \xi c_j(t-t_j)\right) \psi \big((t-t_j)/T_j\big), \qquad t \in \mathbb{R} \ ,$$
 and
$$u(t) = \sum_{j=1}^\infty u_j(t) \ .$$

Since all the u_j have disjoint supports, the sum is trivially convergent. It is also clear that

$$u \in C^{\infty}$$
 when $t \neq t_{\infty} = \lim_{k \to \infty} t_k$.

We shall now choose r_i and c_i such that

(a₁)
$$u \in C^{\infty}$$
 in a neighbourhood of t_{∞} ,

$$(a_2)$$
 $D^p(f \circ u)(t_i) \to +\infty \text{ as } j \to \infty.$

To do so we shall first take c_i such that

(b₁)
$$c_j T_j^{-q} \to 0$$
 as $j \to \infty$ for every q

(for example $c_i = T_i^j$), and then choose r_i such that

$$|x^{r_j}| \le c_j \quad \text{for every } j$$

and

$$(b_3) c_j{}^p F_{r_j} \to +\infty as j \to \infty.$$

That this is possible is obvious since $|x^n| \to 0$ and $F_n \to +\infty$ as $n \to \infty$. It remains to verify that (a_1) and (a_2) are valid if r_j and c_j are chosen so that (b_1) , (b_2) and (b_3) hold. To prove (a_1) it is enough to show that

$$|u^{(q)}(t)| \to 0$$
 as $t \to t_{\infty}$

for each q. In the interval $\{t : |t-t_j| \le T_j\}$ we have according to Lemma 2 and (b_2) :

$$|u^{(q)}(t)| \leq (|x^{r_j}| + |\xi|c_j)T_j^{-q}C_1^{q+1}L_q^q$$

$$\leq (1 + |\xi|)c_iT_i^{-q}C_1^{q+1}L_q^q \leq c_iT_i^{-q}C_2^{q+1}L_q^q ,$$

which tends to zero as $j \to \infty$, for each q, by (b_1) . To compute $D^p(f \circ u)(t_j)$ we note that $u(t) = x^{r_j} + \xi c_j(t - t_j)$ in a neighbourhood of t_j . Hence

$$D^{p}(f \circ u)(t_{j}) = c_{j}{}^{p}D_{\xi}{}^{p}f(x^{r_{j}}) = c_{j}{}^{p}F_{r} ,$$

which tends to infinity by (b₃).

In the case p=0 we have to prove the stronger statement that f is continuous. Assume the contrary, for example that

$$|x^n| \to 0$$
 and $\lim_{n \to \infty} f(x^n) \neq f(0)$.

If we take c_j and r_j according to (b_1) and (b_2) and define u(t) again by (2.4), we obtain

$$\lim_{j\to\infty}(f\circ u)(t_j)=\lim_{n\to\infty}f(x^n)\,\, \neq f(0)=\,(f\circ u)(t_\infty)\,\, ,$$

that is, $f \circ u$ is not continuous at t_{∞} , contrary to the hypothesis. This completes the proof of the first part of Lemma 1.

To prove the second part of the lemma it is enough to prove that $D_{\xi}^{p}f \in K(\xi,\sigma)$ in some neighbourhood of an arbitrary point x. As was remarked after Definition 3 we can assume that σ is subadditive and increasing. Assume that for some point x, say $x = (0, \ldots, 0)$, the assertion is not true. Then there must exist B_{n} , x^{n} and h_{n} such that

$$B_n \to \infty$$
, $|x^n| \to 0$, $h_n \to 0$,

and

$$(2.6) |D_{\xi}^{p}f(x^{n}+\xi h_{n})-D_{\xi}^{p}f(x^{n})| > B_{n}\sigma(|h_{n}|), n = 1, 2, \dots.$$

Define the function $u(t) = \sum u_j(t)$ again by (2.4) and let the parameters T_j , t_j and c_j have the same values as above. Choose r_j such that again

$$|x^{r_j}| \le c_i \quad \text{for every } j,$$

and such that

$$(b_3')$$
 $c_j^{p+1}B_{r_j} \to \infty$ as $j \to \infty$,

and

$$|h_{r_j}| < \frac{1}{2}c_jT_j.$$

Then as above $u \in C^{\infty}$. We shall show that with $\varepsilon_j = h_{r_j}/c_j$ we have, at least for large j,

$$(2.7) |D^p(f \circ u)(t_i + \varepsilon_i) - D^p(f \circ u)(t_i)| > \frac{1}{2}c_i^{p+1}B_{r_i}\sigma(|\varepsilon_i|).$$

In view of (b_3') this will complete the proof. To prove (2.7), first note that

$$u(t_j + h) = x^{r_j} + \xi c_j h$$
 when $|h| < \frac{1}{2}T_j$.

Since by (b₄) we have $|\varepsilon_j| < \frac{1}{2}T_j$, we then obtain from (2.6):

(2.8)

$$|D^p(f \circ u)(t_j + \varepsilon_j) - D^p(f \circ u)(t_j)| = |c_j^p(D_{\xi}^p f)(x^{r_j} + \xi c_j \varepsilon_j) - c_j^p(D_{\xi}^p f)(x^{r_j})|$$

$$\geq c_j^p B_{r_j} \sigma(c_j |\varepsilon_j|).$$

Then by (2.1), if j is so large that $c_j \leq 1$,

$$\sigma(\varepsilon_j) \leq (1 + (1/c_j)) \sigma(c_j \varepsilon_j) \leq (2/c_j) \sigma(c_j \varepsilon_j)$$
.

This together with (2.8) proves (2.7).

Lemma 3. Let $M = \{M_q\}_{q=0}^{\infty}$ be an increasing sequence of positive numbers such that $\sum_{q=0}^{\infty} M_q^{-1} < \infty$, that is, the class C^M is non-quasianalytic.

Then all the assertions of Lemma 1 hold if we write $u \in C^{\mathbb{M}}(\mathsf{R},\mathsf{R}^d)$ instead of $u \in C^{\infty}(\mathbb{R}, \mathbb{R}^d)$.

Proof. To prove this lemma we have to improve the construction of the function u in the proof of Lemma 1, so that we get $u \in C^M$ instead of just $u \in C^{\infty}$. Then first of all we must use the fact that every nonquasianalytic class contains non-trivial functions with compact support. (This is easy to prove using the fact that C^L is closed under multiplication if L_k is increasing.) Since $\sum M_q^{-1} < \infty$, we can take L_q such that L_q is increasing, $\sum L_q^{-1} < \infty$, and $A_q = M_q/L_q$ tends to infinity. Then C^L is non-quasianalytic, and we can take $\psi \in C^L$ such that $\psi(t) = 1$ when $|t| < \frac{1}{2}$, and $\psi(t) = 0$ when $|t| > \frac{3}{4}$. Define t_i and T_i as above, and choose c_i such that

$$(b_1')$$
 $c_j \leq (T_j A_q)^q, \quad j = 1, 2, ..., \quad q = 1, 2, ...$

That this is possible is clear since $A_q \to \infty$ as $q \to \infty$, and hence $(T_j A_q)^q \to \infty$ as $q \to \infty$ for every fixed j. Then choose r_j as above, and define $u = \sum u_i$ again by (2.4). Since (b_1') implies (b_1) , u will have all the previous properties, in particular $u \in C^{\infty}$. Moreover, $u \in C^{M}$, since by (2.5) and (b_1') and the definition of A_q :

$$|u^{(q)}| \, \leq \, c_j T_j^{\, -q} C^{q+1} L_q^{\, q} \, \leq \, A_q^{\, q} C^{q+1} L_q^{\, q} \, = \, C^{q+1} M_q^{\, q} \, .$$

This completes the proof of Lemma 3.

3. Continuity of the derivatives.

In this section we will start with the directional continuity properties of the directional derivatives $D_{\varepsilon}^{p}f$ and prove that all partial derivatives of f of degree p have the corresponding continuity properties as functions on \mathbb{R}^d .

Definition 4. Let $\xi \in \mathbb{R}^d$, $|\xi| \neq 0$. A function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be continuous in the direction ξ if $f(x+t\xi)$ tends to f(x) uniformly for x in compact sets as t tends to zero $(t \in R)$.

If $f \in K(\xi, \sigma)$ and $\lim_{\epsilon \to 0} \sigma(\epsilon) = 0$, then f is obviously continuous in the direction ξ .

LEMMA 4. Assume that $f \in C^0(\mathbb{R}^d,\mathbb{R})$ and that $D_{\xi}f$ is continuous in the direction ξ . Then $D_{\xi}f$ is continuous.

PROOF. Write $D_{\xi}f = f_{\xi}$. Assume that f_{ξ} is not continuous at the origin $0 \in \mathbb{R}^d$. We can assume, for example, that

$$\overline{\lim}_{x\to 0} f_{\xi}(x) > f_{\xi}(0) .$$

Then there exists a sequence $x^n \in \mathbb{R}^d$ tending to 0 and an $\varepsilon > 0$ such that

$$(3.1) f_{\xi}(x^n) - f_{\xi}(0) > \varepsilon, n = 1, 2, \dots$$

Since f_{ξ} is continuous in the direction ξ , it follows from (3.1) that there exists a positive number δ which is independent of n, such that

$$f_{\xi}(x^n+t\xi)-f_{\xi}(t\xi) > \frac{1}{2}\varepsilon, \qquad 0 \le t \le \delta, \quad n=1,2,\ldots.$$

Integrating over t from 0 to δ gives

$$f(x^n + \delta \varepsilon) - f(x^n) - f(\delta \varepsilon) + f(0) > \frac{1}{2} \delta \varepsilon, \qquad n = 1, 2, \dots$$

Letting n tend to infinity we arrive at a contradiction, since f is continuous.

We now have to study the problem of how to obtain information about the mixed derivatives of f, when we know something about the derivatives $D_{\varepsilon}^{p}f$.

If $\xi \in \mathbb{R}^d$ and $\alpha = (\alpha_1, \dots, \alpha_d)$ is a multi-index, α_j non-negative integers, write $\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_d^{\alpha_d}$, and if $|\alpha| = \sum \alpha_j = p$, let $\binom{p}{\alpha}$ denote $p!/(\alpha_1! \dots \alpha_d!)$. The number of distinct multi-indices α with length $|\alpha| = p$ is

$$\binom{d+p-1}{p}=N.$$

Let Γ be a collection of N vectors in \mathbb{R}^d . If α runs through the set of all multi-indices with length p, and ξ runs through Γ , then the numbers $\binom{p}{\alpha}\xi^{\alpha}$ form a quadratic matrix, which is defined up to a permutation of rows or columns. Denote the absolute value of the determinant of this matrix by $\Delta(\Gamma)$. Considering $\Delta(\Gamma)$ as a function of the Nd variables ξ_j , $\xi \in \Gamma$, it is easily seen that $\Delta(\Gamma)$ is the absolute value of a polynomial of degree pN.

LEMMA 5. Let g be a continuous function from R^d to R, let p be a natural number, and let Γ be a collection of

$$\binom{d+p-1}{p}$$

vectors in \mathbb{R}^d such that $\Delta(\Gamma) \neq 0$. Assume that the derivative $D_{\xi}{}^p g$ exists and is continuous for each $\xi \in \Gamma$. Then $g \in C^p$.

Proof. We have to prove that an arbitrary mixed derivative $D^{\alpha}g$ where $|\alpha| = p$ exists and is continuous. We begin by proving that there is a constant C which depends only on Γ , such that, if $h \in C^p(\mathbb{R}^d,\mathbb{R})$, then

$$(3.2) \max_{|\alpha|=p} |D^{\alpha}h(x)| \leq C \max_{\xi \in \Gamma} |D_{\xi}^{p}h(x)|, x \in \mathbb{R}^{d}.$$

In fact, if $h \in C^p(\mathbb{R}^d, \mathbb{R})$, then

(3.3)
$$D_{\xi}^{p}h(x) = \sum_{|\alpha|=p} {p \choose \alpha} \xi^{\alpha} D^{\alpha}h(x), \qquad \xi \in \Gamma.$$

Since by assumption the determinant of the system (3.3) is different from zero, (3.2) follows. Take $\varphi \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$ such that $\varphi \geq 0$, $\varphi = 0$ when |x| > 1, and $\int \varphi dx = 1$, and form for $\varepsilon > 0$ the "regularization" of g,

$$g_{\varepsilon}(x) = \int g(x - \varepsilon y) \varphi(y) dy$$
.

By assumption $D_{\xi}^{p}g$ exists and is continuous when $\xi \in \Gamma$, and hence for such ε ,

$$|D_{\varepsilon}^{p}g_{\varepsilon}(x)-D_{\varepsilon}^{p}g(x)|\to 0\quad \text{ as } \varepsilon\to 0 \ ,$$

uniformly on compact sets. Applying (3.2) to $g_{\varepsilon} - g_{\delta}$ we then find that if $|\alpha| = p$, then $D^{\alpha}g_{\varepsilon} - D^{\alpha}g_{\delta}$ tends to zero uniformly on compact sets as ε and δ tend to zero, and hence that $D^{\alpha}g_{\alpha}$ converges uniformly on compact sets to some continuous function v. It is clear that these facts imply that $D^{\alpha}g$ exists and is equal to v.

Lemma 6. Let $g \in C^p(\mathbb{R}^d, \mathbb{R})$ and let Γ be a collection of

$$\binom{d+p}{p+1}$$

vectors in \mathbb{R}^d satisfying $\Delta(\Gamma) \neq 0$. Assume that for each $\xi \in \Gamma$

$$D_{\xi}^{p}g \in \operatorname{Lip}(\xi,1)$$
.

Then $g \in C^{p,1}$.

PROOF. Let g_s have the same meaning as in the proof of Lemma 5. Then again if $|\alpha| = p$,

(3.4)
$$D^{\alpha}g_{\varepsilon} \to D^{\alpha}g \quad \text{as } \varepsilon \to 0 ,$$

with uniform convergence on compact sets. Moreover, we claim that for each $\xi \in \Gamma$ the family of functions

 $D_{\varepsilon}^{p+1}g_{\varepsilon}$, $0<\varepsilon<1$, is uniformly bounded on compact sets. (3.5)

In fact, since $D_{\xi}^{p}g \in \text{Lip}(\xi,1)$, the functions $D_{\xi}^{p}g_{\xi}$ have the same property in a uniform way, that is, on each compact set the Lipschitz constant of the function $D_{\xi}{}^{p}g_{\varepsilon}$ can be estimated by a constant independent of ε . But since $g_{\varepsilon} \in C^{\infty}$, the last statement is equivalent to (3.5). Applying (3.2) with p+1 instead of p we obtain from (3.5) with $|\alpha|=p$ and $D_i=$ $\partial/\partial x_i, j=1,2,\ldots,d,$

 $D_i D^{\alpha} g_{\epsilon}$, $0 < \epsilon < 1$, is uniformly bounded on compact sets. (3.6)

Now (3.4) and (3.6) imply that $D^{\alpha}g \in \text{Lip}(\xi,1)$ if ξ is parallel to any coordinate axis. This shows that $g \in C^{p,1}$.

PROOF OF THEOREM 4. From Lemma 1 we know already that f is continuous and that, if $p \ge 1$, then $D_{\xi}^{k} f$ is continuous in the direction ξ for each $k \leq p$. Next we assert that $D_{\xi}^{k}f$ is continuous for each ξ and each $k \leq p$. This follows from Lemma 4 by induction on k. Finally we apply Lemma 5 to conclude that $f \in C^p$.

REMARK. By applying Lemma 3 instead of Lemma 1 we can obviously prove the analogous assertion with $u \in C^M$ in place of $u \in C^{\infty}$, where $M = \{M_q\}$ is an increasing sequence such that the class C^M is non-quasianalytic.

Proof of Theorem 2 and Theorem 5 in the case $\rho = 0$ or $\rho = 1$. Since $C^{p,1} \supset C^{p+1,0}$, it is obviously enough to consider the case $\varrho = 1$. However, since by Theorem 4 and the remark above we already know that $f \in C^p$, we can apply Lemma 1 or 3 and Lemma 6 to conclude that $f \in C^{p,1}$.

The following lemma is needed in the case $0 < \rho < 1$.

LEMMA 7. Let Λ be a finite set of vectors $\xi \in \mathbb{R}^2$ which are pairwise linearly independent, let there be given for each $\xi \in \Lambda$ a function g_{ξ} from \mathbb{R}^2 to R, and let $0 < \rho < 1$. Assume that

$$(3.7) |g_{\varepsilon}(x)| \leq 1, |x| \leq A$$

$$(3.8) |g_{\xi}(x+t\xi) - g_{\xi}(x)| \leq |t|^{\varrho}, |x|, |x+t\xi| \leq A$$

$$|g_{\xi}(x)| \leq 1, |x| \leq A,$$

$$|g_{\xi}(x+t\xi) - g_{\xi}(x)| \leq |t|^{\varrho}, |x|, |x+t\xi| \leq A,$$

$$|\sum_{\xi \in A} (g_{\xi}(x) - g_{\xi}(y))| \leq b, |x|, |y| \leq A.$$

Then for each $\delta > 0$ there exists a constant C which depends only on ϱ , δ and A such that

$$(3.10) |g_{\xi}(x) - g_{\xi}(y)| \leq C(b + |x - y|^{\varrho}), |x|, |y| \leq A - \delta, \xi \in \Lambda.$$

COROLLARY. Let ξ^1, \ldots, ξ^n be pairwise linearly independent vectors in R^2 , let g_k , $k=1,\ldots,n$, be locally bounded functions from R^2 to R, and let $0 < \varrho < 1$. Assume that $g_k \in \text{Lip}(\xi^k, \varrho)$ for each k and that $\sum_{k=1}^n g_k$ is identically zero. Then $g_k \in \text{Lip}(\varrho)$ for each k.

PROOF. If c is small enough, the functions cg_k , $k=1,\ldots,n$, satisfy the assumptions of Lemma 7 with b=0.

Remark 1. If Λ consists of one or two elements, the assertion (3.10) with C=2 is a trivial consequence of (3.8) and (3.9).

Remark 2. The assertion of the corollary (and of Lemma 7) is not true if $\rho = 1$ and Λ contains at least three elements. This is seen from the example

$$g_1(x) = x_1 \log |x|, \quad g_2(x) = x_2 \log |x|, \quad \text{and} \quad g_3 = -(g_1+g_2) \; ,$$
 where $|x| = (x_1^2 + x_2^2)^{\frac12}.$ In fact,

$$|\partial g_1/\partial x_2| = |x_1x_2|/|x|^2 \le 1$$
,

which shows that g_1 , g_2 , and g_3 belong to Lip $(\xi, 1)$ with ξ equal to (0, 1), (1,0) and (1,-1) respectively. On the other hand, it is obvious that the functions g_k do not belong to Lip(1).

Remark 3. The assertion of the corollary (and of Lemma 7) is not true if we omit the assumption that the g_{ξ} are locally bounded. This is seen from the example

$$g_1(x_1,x_2)=\varphi(x_1),\quad g_2(x_1,x_2)=\varphi(x_2),\quad \text{and}\quad g_3(x_1,x_2)=-\varphi(x_1+x_2)\;,$$
 where φ is a non-measurable solution of the equation

$$\varphi(s+t) = \varphi(s) + \varphi(t), \ s,t \in \mathbb{R}$$
.

For the proof of Lemma 7 we need the following lemma.

LEMMA 8. Let w be a real-valued function of one variable, such that w(0) = 0 and $|w(t)| \le 1$ when $|t| \le 2a$, let $0 < \rho < 1$, and assume that

$$\begin{array}{ll} (3.11) & |w(2t)-2w(t)| \, \leq \, b+C_1|t|^\varrho, \qquad |t| \leq a \,\, . \\ Then & \\ (3.12) & |w(t)| \, \leq \, b+C_2|t|^\varrho, \qquad |t| \leq 2a \,\, , \end{array}$$

where $C_2 = (1/a^{\varrho}) + C_1/(2-2^{\varrho})$.

PROOF. When $a \le |t| \le 2a$, it is obvious that (3.12) holds, since $C_2 a^2 \ge 1$. Now assume that 0 < |s| < a and that (3.12) holds when t = 2s. Then by (3.11) and the triangle inequality

$$\begin{split} 2 \, |w(s)| & \leq \, |w(2s)| \, + \, b \, + \, C_1 |s|^\varrho \\ & \leq \, b \, + \, C_2 |2s|^\varrho + b + C_1 |s|^\varrho \\ & \leq \, 2b \, + \, |s|^\varrho (2^\varrho C_2 + C_1) \, \leq \, 2b \, + \, 2 \, C_2 |s|^\varrho \, . \end{split}$$

The last inequality follows from the fact that $C_2 \ge C_1/(2-2^{\varrho})$, that is, $2^{\varrho}C_2 + C_1 \le 2C_2$. Thus we have proved that (3.12) holds when t=s. The proof is completed by an obvious induction argument.

Proof of Lemma 7. We prove the lemma by induction on the number of elements of Λ . As remarked above the assertion is true when Λ consists of one or two elements, and in this case we can take C=2. Let

$$\Lambda = \Lambda_0 \cup \{\eta\}, \text{ where } \eta \notin \Lambda_0$$

and assume that all the vectors in Λ are pairwise linearly independent. We assume that the assertion of Lemma 7 is true for Λ_0 , and we shall prove that it is true for Λ . Assume that $\{g_{\xi}\}_{\xi\in\Lambda}$ satisfies (3.7), (3.8) and (3.9). For $\xi\in\Lambda_0$ set

$$(3.13) h_{\varepsilon}(x,s) = h_{\varepsilon}(x) = \frac{1}{2} (g_{\varepsilon}(x+s\eta) - g_{\varepsilon}(x)), |x| \leq A - \delta_1, |s\eta| \leq \delta_1,$$

where $\delta_1 = \frac{1}{3}\delta$. Then it is obvious that h_{ξ} satisfies (3.7) and (3.8) when

$$|x| \le A - \delta_1$$
 and $|x + t\xi| \le A - \delta_1$.

Moreover, by (3.8) for $\xi = \eta$ and (3.9)

$$\begin{split} | \sum_{\xi \in A_0} \bigl(h_{\xi}(x) - h_{\xi}(y) \bigr) | \; & \leq \; \tfrac{1}{2} \, | \sum_{\xi \in A} \bigl(g_{\xi}(x + s \eta) - g_{\xi}(x) \bigr) | \; + \\ & + \; \tfrac{1}{2} \, | \sum_{\xi \in A} \bigl(g_{\xi}(y + s \eta) - g_{\xi}(y) \bigr) | \; + \\ & + \; \tfrac{1}{2} | g_{\eta}(x + s \eta) - g_{\eta}(x) | \; + \; \tfrac{1}{2} | g_{\eta}(y + s \eta) - g_{\eta}(y) | \\ & \leq \; b \; + \; |s|^\varrho, \qquad |x|, \; |y| \; \leq \; A - \delta_1, \; |s\eta| \; \leq \; \delta_1 \; . \end{split}$$

This means that $\{h_{\xi}\}_{\xi\in\Lambda_0}$ satisfies (3.9) with $b+|s|^{\varrho}$ instead of b. By the induction hypothesis there exists a constant C_1 , which depends only on Λ_0 , ϱ and δ_1 , such that

$$|h_{\xi}(x) - h_{\xi}(y)| \le C_1(b + |s|^{\varrho} + |x - y|^{\varrho}), \qquad |x|, |y| \le A - 2\delta_1, |s\eta| \le \delta_1, \xi \in \Lambda_0.$$

If we take $y-x=s\eta$ and use (3.13), this becomes

 $(3.14) \quad |g_{\xi}(x+2s\eta)-2g_{\xi}(x+s\eta)+g_{\xi}(x)| \ \leq \ 2C_1(b+|s|^\varrho+|s\eta|^\varrho) \ \leq \ C_2(b+|s|^\varrho) \ ,$ if

$$|x| \le A - 3\delta_1, |s\eta| \le \delta_1, \xi \in \Lambda_0.$$

Here C_2 is any constant $\geq 2C_1(1+|\eta|^{\varrho})$. Set

$$w(s) = g_{\xi}(x+s\eta) - g_{\xi}(x)$$
 when $\xi \in \Lambda_0$.

Then (3.14) means that

$$|w(2s)-2w(s)| \leq C_2(b+|s|^\varrho), \qquad |s\eta| \leq \delta_1$$
.

Lemma 8 then shows that

$$|w(s)| = |g_{\xi}(x+s\eta) - g_{\xi}(x)| \le C_3(b+|s|^{\varrho}),$$

$$|s\eta| \le \delta_1, |x| \le A - 3\delta_1, \xi \in A_0,$$

where C_3 depends only on C_2 , ϱ and $\delta_1/|\eta|$, that is on Λ , ϱ and δ . If we take C_3 so large that $C_3(\delta_1/|\eta|)^\varrho \ge 2$ and use the assumption (3.7), we obtain (3.15) for all s such that $|x+s\eta| \le A-3\delta_1$. Now it is easy to prove (3.10) for an arbitrary $\xi \in \Lambda_0$ by combining (3.8) and (3.15). In fact we obtain (3.10) with a constant $C = C_3C_4$, where C_4 depends only on ξ and η . Finally, by interchanging the roles of the vector η and one of the vectors $\xi \in \Lambda_0$ we obtain (3.10) with η in place of ξ , that is, we obtain (3.10) for all $\xi \in \Lambda$. The proof is complete.

Conclusion of proof of Theorem 2 and Theorem 5. Let $0 < \varrho < 1$, and assume that f satisfies the assumptions of Theorem 2 or Theorem 5. By Theorem 4 we know that $f \in C^p$. It remains to prove that $f \in C^{p,\varrho}$. If p=0 this assertion trivially follows from Lemma 1, respectively Lemma 3. Let H be an arbitrary two-dimensional plane in \mathbb{R}^d . Let $p \ge 1$ and choose a finite set Λ of vectors ξ in \mathbb{R}^d , pairwise linearly independent and all parallel to H, and choose for each $\xi \in \Lambda$ a constant $c_{\xi} \neq 0$ such that the polynomial

$$\sum_{\xi\in\Lambda} c_{\xi} \langle \xi, x \rangle^p$$

is identically zero. A moment of reflection shows that Λ must contain at least p+2 vectors, and also that any set of p+2 pairwise linearly independent vectors can be chosen for Λ . Since $f \in C^p$ we then have

$$\sum_{\xi \in \Lambda} c_{\xi} D_{\xi}^{p} f = 0.$$

By Lemma 1, respectively Lemma 3, the functions $D_{\xi}^{p}f$ belong to $\text{Lip}(\xi,\varrho)$. The corollary of Lemma 7 then shows that the restrictions to H of the functions $D_{\xi}^{p}f$, $\xi \in \Lambda$, belong to $\text{Lip}(\varrho)$. Moreover, applying Lemma 7 with b=0, which is a quantitative counterpart of the corollary, we find that if $\xi \in \Lambda$,

$$\sup \{ |D_{\xi}^{p}f(x) - D_{\xi}^{p}f(y)|/|x - y|^{\varrho} ; |x|, |y| \leq A, x, y \in H \}.$$

depends only on ϱ , Λ , and on bounds for

$$\sup \{ |D_{\xi}^{p} f(x)| ; |x| \leq 2A, \, \xi \in \Lambda \}$$

and

$$\sup \{ |D_{\xi}^{p} f(x+t\xi) - D_{\xi}^{p} f(x)|/|t|^{\varrho} ; |x|, |x+t\xi| \le 2A, x, x+t\xi \in H, \xi \in \Lambda \}.$$

Applying this result to a collection of planes parallel to H we find that, for any η parallel to H, the function $D_{\xi}^{p}f$ belongs to $\mathrm{Lip}(\eta,\varrho)$ as a function on \mathbb{R}^{d} . Since H was arbitrary, the same statement must be true for any $\eta \in \mathbb{R}^{d}$, hence in particular for a set of η which forms a basis for \mathbb{R}^{d} . This shows that, on \mathbb{R}^{d} , the function $D_{\xi}^{p}f$ is Lipschitz continuous with exponent ϱ . For reasons of symmetry the same statement must be true for any non-zero $\xi \in \mathbb{R}^{d}$. Since an arbitrary mixed derivative of order p of f is a linear combination of derivatives $D_{\xi}^{p}f$, $\xi \in \mathbb{R}^{d}$, this shows that $f \in C^{p,\varrho}$.

As was pointed out in Section 1, one could use Theorem 1 in [1] instead of Lemma 7 above in proving that the derivatives of order p of f belong to $\text{Lip}(\varrho)$. We will now indicate briefly how this could be done. Let J be the set of all multi-indices $\alpha = (\alpha_1, \ldots, \alpha_d)$ of length $|\alpha| = p$. Then J contains

$$N = \binom{p+d-1}{p}$$

elements. We will consider N-tuples $(c_{\alpha})_{\alpha \in J}$ of real numbers as elements of \mathbb{R}^N . The usual inner products in \mathbb{R}^d and \mathbb{R}^N will be denoted $\langle \cdot, \cdot \rangle$. If $\xi \in \mathbb{R}^d$, the numbers $(\xi^{\alpha})_{\alpha \in J}$ define an element of \mathbb{R}^N which we denote $V^p \xi$. Since we know that $f \in C^p$, we can define a continuous function $g = (g_{\alpha})_{\alpha \in J}$ from \mathbb{R}^d to \mathbb{R}^N by

$$g_{\alpha}(x) = {p \choose \alpha} D^{\alpha} f(x) .$$

Then $D_{\xi}^{p}f(x) = \langle V^{p}\xi, g(x) \rangle$. By Lemma 1 we know that

(3.16)
$$\langle V^p \xi, g \rangle \in K(\xi, \sigma)$$
 for each non-zero $\xi \in \mathbb{R}^d$.

Now, taking

$$\Lambda = \{(\xi, \mathsf{V}^p \xi) : 0 \neq \xi \in \mathsf{R}^d\} \subset \mathsf{R}^d \times \mathsf{R}^N,$$

we can apply Theorem 1 in [1]. It is easy to see that Λ satisfies condition (\hat{A}) of [1], i.e. that

$$a \in \mathbb{R}^d$$
, $b \in \mathbb{R}^N$, and $\langle a, \xi \rangle \langle b, V^p \xi \rangle = 0$ for every $\xi \in \mathbb{R}^d$

implies that a=0 or b=0. On the other hand, Λ does not satisfy condition (A), since every element of the linear hull L of the set of tensor products $\xi \otimes V^p \xi$ has an obvious symmetry property, and hence L must be a proper subset of the tensor product $\mathbb{R}^d \otimes \mathbb{R}^N$. The cited theorem then shows that $g \in K(\hat{\sigma})$, where

$$\widehat{\sigma}(\varepsilon) = \varepsilon \left(1 + \int_{\min(1,\,\varepsilon)}^{1} t^{-2} \, \sigma(t) \, dt \right),\,$$

and that this is the strongest result that follows from (3.16). If $\sigma(\varepsilon) = \varepsilon^{\varrho}$ and $\varrho < 1$, we have $\hat{\sigma}(\varepsilon) \approx \sigma(\varepsilon)$, hence

$$K(\hat{\sigma}) = K(\sigma) = \text{Lip}(\rho)$$

and thus (3.16) implies $g \in \text{Lip}(\varrho)$ in this case. On the other hand, if $\sigma(\varepsilon) = \varepsilon$ we have

$$\hat{\sigma}(\varepsilon) \approx \varepsilon \log(1/\varepsilon)$$
,

and hence the theorem shows that the assumption

$$\langle V^p \xi, g \rangle \in \text{Lip}(\xi, 1)$$
 for each non-zero $\xi \in \mathbb{R}^d$

does not imply $g \in \text{Lip}(1)$. This explains why we had to use a separate method (Lemma 6) in the case $\rho = 1$.

4. The converse theorems.

We now pass to the proofs of the counterexamples Theorem 3, 6 and 9. The following theorem gives sufficient conditions for a function to have the property of Theorem 3.

THEOREM 10. Let f be a function from R^d to R, and assume that f belongs to C^p outside the origin and that f is homogeneous of degree p, where p is a natural number. Then $f \circ u \in C^p(R,R)$ for every $u \in C^p(R,R^d)$.

Of course, any function which satisfies the hypotheses of Theorem 10 and is not a polynomial must have a discontinuity in some derivative of degree p at the origin. In fact, if $f \in C^p$ and f is homogeneous of degree p, then each derivative of degree p is constant, and hence f is a polynomial.

PROOF OF THEOREM 10. If $\xi \in \mathbb{R}^d$, let $\langle \xi, D \rangle f$ denote $\sum \xi_j \partial f / \partial x_j$, which has been denoted by $D_{\xi}f$ above. Set $E = \{t \; ; \; t \in \mathbb{R}, \; |u(t)| \neq 0\}$. In the open set E we have

$$h=f\circ u\in C^p$$

and

$$(4.1) h^{(p)}(t) = (\langle u'(t), D \rangle^p f)(u(t)) + \ldots,$$

where the dots indicate terms containing derivatives of f of order at most p-1. On the other hand, if $t^0 \notin E$,

$$(4.2) h^{(p)}(t^0) = p! f(u'(t^0)).$$

In fact, in this case we can write $u(t) = (t - t^0)v(t)$, where $v \in C^{p-1}$ and $v(t^0) = u'(t^0)$, and hence in view of the homogeneity,

$$h(t) = (t-t^0)^p f(v(t)), \text{ where } f(v(t)) \in C^{p-1}.$$

These facts imply (4.2). Thus it only remains to prove that if $t^0 \notin E$,

$$h^{(p)}(t) \rightarrow h^{(p)}(t^0)$$
 as $t \rightarrow t^0$, $t \in E$.

Since $D^{\alpha}f$ is homogeneous of degree $p-|\alpha|$, the omitted terms in (4.1) tend to zero as $t \to t^0$. Moreover,

$$(\langle u'(t), D \rangle^p f)(u(t)) - (\langle u'(t^0), D \rangle^p f)(u(t))$$

$$= \sum_{|\alpha|=p} \binom{p}{\alpha} \big(u'(t)^{\alpha} - u'(t^0)^{\alpha} \big) (D^{\alpha}f) \big(u(t) \big) \to 0 \quad \text{ as } t \to t^0, \quad t \in E \ ,$$

since $(D^{\alpha}f)(u(t))$ is bounded $(D^{\alpha}f)$ is homogeneous of degree zero) and u' is continuous. Thus it suffices to prove that

$$(4.3) \qquad (\langle u'(t^0), D \rangle^p f)(u(t)) \to p! f(u'(t^0)) \quad \text{as } t \to t^0, \qquad t \in E,$$

for an arbitrary $t^0 \notin E$. If $|u'(t^0)| = 0$, it is obvious that (4.3) holds. If $|u'(t^0)| \neq 0$, we again write $u(t) = (t - t^0)v(t)$. Since $\langle u'(t^0), D \rangle^p f$ is homogeneous of degree zero, the left-hand side of (4.3) is equal to

$$(\langle u'(t^0), D \rangle^p f)(v(t))$$
,

which tends to

$$(\langle u'(t^0), D \rangle^p f)(u'(t^0))$$

as $t \to t^0$. Applying Euler's equality for homogeneous functions we obtain the desired result.

PROOF OF THEOREM 6. It is enough to prove the theorem for d=2. Take a non-constant function $F\colon \mathbb{R}^2\to\mathbb{R}$, such that F is homogeneous of degree zero, $F(x_1,x_2)=0$ when $x_1x_2=0$, and F is infinitely differentiable in the complement of the origin. Define $e^{-1/|x_2|}$ as zero for $x_2=0$ (then $e^{-1/|x_2|}\in C^\infty$), and set

$$f(x_1,x_2) = F(x_1,e^{-1/|x_2|}), \quad (x_1,x_2) \in \mathbb{R}^2.$$

Then f is obviously not continuous at the origin. We claim that $f \circ u \in C^{\infty}$ for each quasianalytic function $u = (u_1, u_2) \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$. Since $f \in C^{\infty}$ outside the origin, it will be enough to show that $f \circ u \in C^{\infty}$ in a neighbourhood of t = 0, if |u(0)| = 0. If u_1 is identically zero, then f is identically zero. If $u_1(0) = 0$ and u_1 is not identically zero, then by virtue of the quasianalyticity there exists an integer $k \ge 1$, such that

$$u_1(t) = t^k v_1(t), \quad v_1 \in C^{\infty} \text{ and } v_1(0) \neq 0.$$

Since $u_2(0) = 0$, we have

$$e^{-1/|u_2(t)|} = t^k v_2(t) ,$$

where $v_2 \in C^{\infty}$ and $v_2(0) = 0$. Using the fact that F is homogeneous and that $F(x_1, 0) = 0$, we obtain

$$f(u_1(t), u_2(t)) = F(t^k v_1(t), t^k v_2(t)) = F(v_1(t), v_2(t)), \qquad t \in \mathbb{R}$$

Since $v_1(0) \neq 0$, this proves that $f \circ u \in C^{\infty}$ in a neighbourhood of zero.

REMARK. We have actually proved that $f \circ u \in C^{\infty}$ for each $u \in C^{\infty}$ which has no zero of infinite order. This shows in particular that one can not prove Theorem 1, Theorem 2 or Theorem 5 without applying the assumption to functions u with singularities of infinite order.

The following result implies Theorem 9.

Theorem 11. Let $r_j(s)$, j = 0, 1, ..., d, be continuous functions defined when $s \ge 0$, vanishing at the origin, positive and infinitely differentiable when s > 0 and satisfying

$$\lim_{s\to 0} r_{j-1}(s)/r_j(s)^B = 0, \quad j=1,\ldots,d,$$

and

$$\lim_{s\to 0} r_d(s)/s^B = 0$$
 for every B.

Set $r(s) = (r_1(s), \ldots, r_d(s))$. Let $\varphi \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$, $\varphi \equiv 0$ and $\varphi(x) = 0$ when |x| > 1. Define the function $f \colon \mathbb{R}^{d+1} \to \mathbb{R}$ by

$$f(x,s) \,=\, \left\{ \begin{array}{ll} \varphi \left(\left(x - r(s) \right) \middle/ r_0(s) \right), & s > 0, \ x \in \mathbb{R}^d \\ 0, & s \leqq 0, \ x \in \mathbb{R}^d \end{array} \right. .$$

Then $f \circ u \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$ for every analytic function u from \mathbb{R}^d to \mathbb{R}^{d+1} , but f is not continuous.

It is obvious that there exist functions $r_j(s)$ with the properties mentioned in the theorem; for example, we can take $r_j(s) = \exp(-x^{j-d-1})$ when s > 0, $r_j(0) = 0$, $j = 0, 1, \ldots, d$.

PROOF OF THEOREM 11. It is obvious that f is not continuous at the origin, and that f is infinitely differentiable outside the origin. Thus it is sufficient to prove that $f \circ u = 0$ in a neighbourhood of each point $t^0 \in \mathbb{R}^d$ such that $|u(t^0)| = 0$. Take a non-trivial analytic function U = U(x,s) from a neighbourhood of $0 \in \mathbb{R}^{d+1}$ to \mathbb{R} such that

$$(U \circ u)(t) = 0$$
 in a neighbourhood of t^0 .

We shall show that if $r_j(s)$ has the properties described in Theorem 10, then there exist c>0, $\delta>0$ and B such that

$$(4.4) |U(x,s)| \ge c r_0(s)^B, \text{if} |x-r(s)| \le r_0(s), 0 < s < \delta.$$

This will complete the proof, since if (x,s)=u(t) for some t sufficiently close to t^0 , then U(x,s)=0, and hence by virtue of (4.4) we have $|x-r(s)|>r_0(s)$, that is, f(x,s)=0. To prove (4.4) we begin by showing that there exist c>0, $\delta>0$ and B such that

$$|U(r(s),s)| \ge c r_1(s)^B, \quad 0 < s < \delta,$$

or more generally that

$$|V(r(s))| \ge c r_1(s)^B, \qquad 0 < s < \delta,$$

for an arbitrary non-trivial analytic function V from a neighbourhood of 0 in \mathbb{R}^d to \mathbb{R} if the functions $r_j(s), j=1,\ldots,d$, satisfy the assumptions of Theorem 10. This is easily proved by induction on the dimension d if we write V in the form

$$V(x) = x_1^k v(x_2, \ldots, x_d) + x_1^{k+1} R(x) ,$$

where $k \ge 0$, v and R are analytic and $v \ne 0$, and use the estimate

$$\begin{aligned} |V(r(s))| &\ge r_1(s)^k \left(|v(r_2(s), \dots, r_d(s))| - Cr_1(s) \right) \\ &\ge r_1(s)^k \left(c r_2(s)^B - Cr_1(s) \right) \\ &\ge \frac{1}{2} c r_1(s)^{k+B}, \qquad 0 < s < \delta \ . \end{aligned}$$

It remains to show that (4.5) implies (4.4). Take C so large that

$$|\mathrm{grad}_x U(x,s)| \, \leq \, C$$

in some neighbourhood of 0, and assume that

$$|x-r(s)| \leq r_0(s) .$$

With a new δ we then have

$$\begin{aligned} |U(x,s)| &\ge |U(r(s),s)| - C|x - r(s)| \\ &\ge c r_1(s)^B - C r_0(s) \\ &\ge \frac{1}{2} c r_1(s)^B, \qquad 0 < s < \delta. \end{aligned}$$

This completes the proof of Theorem 11.

REFERENCES

- 1. J. Boman, Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967).
- A. Rosenthal, On the continuity of functions of several variables, Math. Z. 63 (1955), 31-38.