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NOTE ON METRIZATION AND
ON THE PARACOMPACT p-SPACES OF ARHANGEL’SKII

PER ROAR ANDENAES

A completely regular T,-space X is a p-space if there exists in the

Stone-Cech-compactification of X a sequence {&/,},.z+ of open covers
of X such that

(O St(x,,) < X  foreveryzeX.
n=1

The p-spaces were introduced by Arhangel’skii in [2]. The class of
p-spaces contains the metrizable spaces and also the locally compact
Hausdorff spaces (more generally, the spaces that are complete in the
sense of Cech [2, theorems 7 and 8]). Among the p-spaces the paracom-
pact ones have the most noteworthy properties, e.g. a countable product
of paracompact p-spaces is a paracompact p-space. Furthermore, X is
a paracompact p-space if and only if it is the inverse image of a metric
space Y by a perfect map (‘“‘application propre’”) ([2, theorem 16]).
These spaces were also studied by Morita [4] (under the name paracom-
pact M -spaces).

The purpose of this note is to provide characterizations of paracom-
pact p-spaces and metrizable spaces in terms of star refinements of ar-
bitrary open covers. We recall to the reader the following theorem
(A. H. Stone, cf. [3, p. 168]):

A T,-space is paracompact if and only if each open cover has an open
star refinement.

We shall prove (the necessary definitions are given below):

A T,-space X is a paracompact p-space (resp. metrizable) if and only if
each open cover has an open star refinement which is reqular on some fized
compact cover A" of X (resp. on every compact cover X~ of X).

In the sequel all topological spaces under consideration are assumed
to be T,. For notation not explained here, the reader is referred to
Dugundji [3]. Let X be a topological space and K a compact (non-
empty) subset of X. An open cover ¥~ of X is called regular on K ([2,
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definition 6]) if the following conditions are satisfied for each open subset
U of X containing K:

(i) For each x € K there exists ¥V € ¥ such that x e V< U.
(ii) Only finitely many members of ¥~ intersect both K and X\U.

If A" is a compact cover of X (i.e. each K € X is compact), we say that
an open cover is regular on X if it is regular on each K € /. An open
cover ¥" of X which is regular on

Ho = {{z}| ze X},

is called a uniform base for X (cf. [1]). Finally, if ¥~ and #  are two
covers of X, then ¥ "A#" is the cover consisting of all sets of the form
VoW, Ve?¥, We¥.

According to a theorem of Arhangel’skii [2, theorem 22] a paracompact
space X is a p-space if and only if there exists a compact cover A~ of X
and an open cover ¥~ of X which is regular on A .

We shall also need a theorem of Alexandroff [1, theorem IV] by which
a topological space is metrizable if and only if it is paracompact and has a
uniform base. The proof of sufficiency given in [1] is rather lengthy
because it involves a characterization of spaces having a uniform base
([1, theorem IIT]). In an appendix we shall give a simpler direct proof.

Our first theorem is based on the following simple lemma:

LeEMMA. Let 4 be a compact cover of a topological space X and let ¥~
be an open cover which s regular on . Then ¥ AW is regular on A~ for
every locally finite (in [3]: nbd-finite) open cover #~ of X.

PRrOOF. ¥"A#  is evidently an open cover of X satisfying condition (i)
above. Let K be a member of £” and U an open set such that K< U.
Since K is compact and #” is locally finite, only a finite number of ele-
ments in % intersect K; on the other hand ¥~ satisfies condition (ii),
hence only finitely many sets of the form VnW, Ve¥", We# , can
intersect both K and X\ U.

TaEOREM 1. A topological space X is a paracompact p-space if and only
if each open cover % of X has an open star refinement which is regular on some
fized compact cover A" of X (independent of %).

Proor. Let X be a paracompact p-space. By Arhangel’skii’s charac-
terization of paracompact p-spaces there exists a compact cover X~ and
an open cover ¥~ of X which is regular on . Let % be an arbitrary
open cover of X. Since X is paracompact, we can find an open star
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refinement %' of %. Let # be a locally finite open refinement of %’.
From the previous lemma it follows that #" A% is regular on ", and since
¥ AW refines %', it is also an open star refinement of #. This proves
necessity. Sufficiency follows trivially from Arhangel’skii’s characteri-
zation of paracompact p-spaces quoted above.

THEOREM 2. A topological space is metrizable if and only if each open
cover has an open star refinement which i3 regular on every compact cover
A of X.

Proor. Recalling that an open cover which is regular on X% ,=
{{x} | = € X}, is a uniform base, we easily obtain sufficiency from Alexan-
droff’s metrization theorem quoted above. To prove necessity, let X
be metrizable with metric d. For each n e Z+ let ¥, be a locally finite
open refinement of the cover consisting of all open spheres with d-radius
1/n. Let K be a compact subset of X and U an open set containing K.
Since K is compact, the d-distance between K and X\ U is strictly posi-
tive, i.e. there exists ny, € Z+ such that for » > n, no member of ¥/, inter-
sects both K and X\U. It easily follows that ¥ =U$ ¥, is regular
on K. Since K was arbitrary, ¥~ is regular on every compact cover ¢
of X; in particular, #” is a uniform base. Let % be an arbitrary open
cover of X and select an open star refinement %’ of % and a locally
finite open refinement #~ of %’. It is now easily verified (cf. the proof
of theorem 1) that ¥ A% is an open star refinement of % and that it
is regular on every compact cover ¢ of X. This completes the proof.

Appendix.

PrOOF OF ALEXANDROFF’S METRIZATION THEOREM. 1) Let X be para-
compact and let & be a uniform base for X. We put

J = {{z} | « is an isolated point in X}

and &7, =/\F. Let #] be a locally finite open refinement of 2/,u.f,
and let 7] be anirreducible subcover of #3, i.e. no proper subfamily of 7]
covers X (cf. [3, p. 160]). We define

#, = {A| A ey, Ais properly contained in no V € #7}
and
Ms = dl\gl .

Then o/,u.# is a base for X: Let = be a non-isolated point and U an
open neighbourhood of z. For some V € #; we have z € V. Since X is T,
there exists A, € &/, such that
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x2€d, < VnU, A, +VnU.

Then A, ¢ %,, that is, 4, € o7,. Proceeding by induction, we obtain
sequences {7, }, {¥,} and {#,}, n € Z+, such that

a) &,USf is a base for X,

b) ¥, is a locally finite irreducible open refinement of 27, u.#,
c) #,={A| Ae,, A is properly contained in no V € ¥,},
d) A, =A\%,.

The union ¥ =U_,7,, is a o-locally finite open cover of X ; we claim
that it is also a base for X. Let x € X be arbitrary and for each n e Z+
select

Von€¥, and A, e, uS
such that
€V, < Ay n -
If

A, , €F forsome nyeZt,

Z, Ng

and {V, .} is a neighbourhood base at . Assume that 4, , € o/, for
every n € Z+. Then we also have 4, ,€%,: If

Az

s N

then we have

<V, A,,+ V forsome Vev,,

¥, would not be irreducible, which is a contradiction. It follows that
A, n & Sy, hence the sequence {4, ,} consists of distinct elements.
From the regularity of &/ it follows that {4, ,}, and therefore also
{V 4, )}, is a neighbourhood base at x, and X is metrizable by the Nagata—
Smirnov theorem.

2) The reverse implication is clear from the proof of our theorem 2.
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