NOTE ON METRIZATION AND ON THE PARACOMPACT p-SPACES OF ARHANGEL'SKIĬ

PER ROAR ANDENÆS

A completely regular T_1 -space X is a p-space if there exists in the Stone–Čech-compactification of X a sequence $\{\mathscr{A}_n\}_{n\in Z^+}$ of open covers of X such that

$$\bigcap_{n=1}^{\infty} \operatorname{St}(x, \mathscr{A}_n) \subset X \quad \text{for every } x \in X.$$

The p-spaces were introduced by Arhangel'skii in [2]. The class of p-spaces contains the metrizable spaces and also the locally compact Hausdorff spaces (more generally, the spaces that are complete in the sense of Čech [2, theorems 7 and 8]). Among the p-spaces the paracompact ones have the most noteworthy properties, e.g. a countable product of paracompact p-spaces is a paracompact p-space. Furthermore, X is a paracompact p-space if and only if it is the inverse image of a metric space Y by a perfect map ("application propre") ([2, theorem 16]). These spaces were also studied by Morita [4] (under the name paracompact M-spaces).

The purpose of this note is to provide characterizations of paracompact p-spaces and metrizable spaces in terms of star refinements of arbitrary open covers. We recall to the reader the following theorem (A. H. Stone, cf. [3, p. 168]):

A T_1 -space is paracompact if and only if each open cover has an open star refinement.

We shall prove (the necessary definitions are given below):

A T_1 -space X is a paracompact p-space (resp. metrizable) if and only if each open cover has an open star refinement which is regular on some fixed compact cover \mathcal{K} of X (resp. on every compact cover \mathcal{K} of X).

In the sequel all topological spaces under consideration are assumed to be T_1 . For notation not explained here, the reader is referred to Dugundji [3]. Let X be a topological space and K a compact (non-empty) subset of X. An open cover $\mathscr V$ of X is called regular on K ([2,

Received March 1, 1967.

definition 6]) if the following conditions are satisfied for each open subset U of X containing K:

- (i) For each $x \in K$ there exists $V \in \mathscr{V}$ such that $x \in V \subset U$.
- (ii) Only finitely many members of $\mathscr V$ intersect both K and $X \setminus U$.

If $\mathscr K$ is a compact cover of X (i.e. each $K \in \mathscr K$ is compact), we say that an open cover is *regular on* $\mathscr K$ if it is regular on each $K \in \mathscr K$. An open cover $\mathscr V$ of X which is regular on

$$\mathscr{K}_0 = \{\{x\} \mid x \in X\},\,$$

is called a *uniform base* for X (cf. [1]). Finally, if $\mathscr V$ and $\mathscr W$ are two covers of X, then $\mathscr V \wedge \mathscr W$ is the cover consisting of all sets of the form $V \cap W$, $V \in \mathscr V$, $W \in \mathscr W$.

According to a theorem of Arhangel'skii [2, theorem 22] a paracompact space X is a p-space if and only if there exists a compact cover $\mathscr K$ of X and an open cover $\mathscr V$ of X which is regular on $\mathscr K$.

We shall also need a theorem of Alexandroff [1, theorem IV] by which a topological space is metrizable if and only if it is paracompact and has a uniform base. The proof of sufficiency given in [1] is rather lengthy because it involves a characterization of spaces having a uniform base ([1, theorem III]). In an appendix we shall give a simpler direct proof.

Our first theorem is based on the following simple lemma:

LEMMA. Let \mathscr{K} be a compact cover of a topological space X and let \mathscr{V} be an open cover which is regular on \mathscr{K} . Then $\mathscr{V} \wedge \mathscr{W}$ is regular on \mathscr{K} for every locally finite (in [3]: nbd-finite) open cover \mathscr{W} of X.

PROOF. $\mathscr{V} \wedge \mathscr{W}$ is evidently an open cover of X satisfying condition (i) above. Let K be a member of \mathscr{K} and U an open set such that $K \subset U$. Since K is compact and \mathscr{W} is locally finite, only a finite number of elements in \mathscr{W} intersect K; on the other hand \mathscr{V} satisfies condition (ii), hence only finitely many sets of the form $V \cap W$, $V \in \mathscr{V}$, $W \in \mathscr{W}$, can intersect both K and $X \setminus U$.

THEOREM 1. A topological space X is a paracompact p-space if and only if each open cover \mathcal{U} of X has an open star refinement which is regular on some fixed compact cover \mathcal{K} of X (independent of \mathcal{U}).

PROOF. Let X be a paracompact p-space. By Arhangel'skii's characterization of paracompact p-spaces there exists a compact cover \mathcal{K} and an open cover \mathcal{V} of X which is regular on \mathcal{K} . Let \mathcal{U} be an arbitrary open cover of X. Since X is paracompact, we can find an open star

refinement \mathscr{U}' of \mathscr{U} . Let \mathscr{W} be a locally finite open refinement of \mathscr{U}' . From the previous lemma it follows that $\mathscr{V} \wedge \mathscr{W}$ is regular on \mathscr{K} , and since $\mathscr{V} \wedge \mathscr{W}$ refines \mathscr{U}' , it is also an open star refinement of \mathscr{U} . This proves necessity. Sufficiency follows trivially from Arhangel'skii's characterization of paracompact p-spaces quoted above.

Theorem 2. A topological space is metrizable if and only if each open cover has an open star refinement which is regular on every compact cover \mathcal{K} of X.

PROOF. Recalling that an open cover which is regular on $\mathcal{K}_0 = \{\{x\} \mid x \in X\}$, is a uniform base, we easily obtain sufficiency from Alexandroff's metrization theorem quoted above. To prove necessity, let X be metrizable with metric d. For each $n \in Z^+$ let \mathcal{V}_n be a locally finite open refinement of the cover consisting of all open spheres with d-radius 1/n. Let K be a compact subset of X and U an open set containing K. Since K is compact, the d-distance between K and $X \setminus U$ is strictly positive, i.e. there exists $n_0 \in Z^+$ such that for $n \ge n_0$ no member of \mathcal{V}_n intersects both K and $X \setminus U$. It easily follows that $\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n$ is regular on K. Since K was arbitrary, \mathcal{V} is regular on every compact cover \mathcal{K} of X; in particular, \mathcal{V} is a uniform base. Let \mathcal{U} be an arbitrary open cover of X and select an open star refinement \mathcal{U}' of \mathcal{U} and a locally finite open refinement \mathcal{W} of \mathcal{U}' . It is now easily verified (cf. the proof of theorem 1) that $\mathcal{V} \wedge \mathcal{W}$ is an open star refinement of \mathcal{U} and that it is regular on every compact cover \mathcal{K} of X. This completes the proof.

Appendix.

Proof of Alexandroff's metrization theorem. 1) Let X be paracompact and let $\mathscr A$ be a uniform base for X. We put

$$\mathscr{I} = \{\{x\} \mid x \text{ is an isolated point in } X\}$$

and $\mathscr{A}_1 = \mathscr{A} \setminus \mathscr{I}$. Let \mathscr{W}_1 be a locally finite open refinement of $\mathscr{A}_1 \cup \mathscr{I}$, and let \mathscr{V}_1 be an irreducible subcover of \mathscr{W}_1 , i.e. no proper subfamily of \mathscr{V}_1 covers X (cf. [3, p. 160]). We define

$$\mathscr{B}_1 = \{A \mid A \in \mathscr{A}_1, A \text{ is properly contained in no } V \in \mathscr{V}_1\}$$

and

$$\mathcal{A}_2 = \mathcal{A}_1 \backslash \mathcal{B}_1$$
.

Then $\mathscr{A}_2 \cup \mathscr{I}$ is a base for X: Let x be a non-isolated point and U an open neighbourhood of x. For some $V \in \mathscr{V}_1$ we have $x \in V$. Since X is T_1 , there exists $A_x \in \mathscr{A}_1$ such that

$$x \in A_x \subset V \cap U$$
, $A_x \neq V \cap U$.

Then $A_x \notin \mathcal{B}_1$, that is, $A_x \in \mathcal{A}_2$. Proceeding by induction, we obtain sequences $\{\mathcal{A}_n\}$, $\{\mathcal{V}_n\}$ and $\{\mathcal{B}_n\}$, $n \in \mathbb{Z}^+$, such that

- a) $\mathcal{A}_n \cup \mathcal{I}$ is a base for X,
- b) \mathscr{V}_n is a locally finite irreducible open refinement of $\mathscr{A}_n \cup \mathscr{I}$,
- c) $\mathscr{B}_n = \{A \mid A \in \mathscr{A}_n, A \text{ is properly contained in no } V \in \mathscr{V}_n\},$
- d) $\mathscr{A}_{n+1} = \mathscr{A}_n \setminus \mathscr{B}_n$.

The union $\mathscr{V} = \bigcup_{n=1}^{\infty} \mathscr{V}_n$ is a σ -locally finite open cover of X; we claim that it is also a base for X. Let $x \in X$ be arbitrary and for each $n \in Z^+$ select

$$V_{x,n} \in \mathscr{V}_n$$
 and $A_{x,n} \in \mathscr{A}_n \cup \mathscr{I}$

such that

$$x \in V_{x,n} \subset A_{x,n}$$
.

If

$$A_{x,n_0} \in \mathscr{I} \quad ext{for some } n_0 \in Z^+$$
 ,

then we have

$$\{x\} = V_{x, n_0} = A_{x, n_0},$$

and $\{V_{x,n}\}$ is a neighbourhood base at x. Assume that $A_{x,n} \in \mathcal{A}_n$ for every $n \in \mathbb{Z}^+$. Then we also have $A_{x,n} \in \mathcal{B}_n$: If

$$A_{x,n} \subset V$$
, $A_{x,n} \neq V$ for some $V \in \mathscr{V}_n$,

 \mathscr{V}_n would not be irreducible, which is a contradiction. It follows that $A_{x,n} \notin \mathscr{A}_{n+1}$, hence the sequence $\{A_{x,n}\}$ consists of distinct elements. From the regularity of \mathscr{A} it follows that $\{A_{x,n}\}$, and therefore also $\{V_{x,n}\}$, is a neighbourhood base at x, and X is metrizable by the Nagata–Smirnov theorem.

2) The reverse implication is clear from the proof of our theorem 2.

REFERENCES

- P. Alexandroff, On the metrization of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 135–140. (Russian.)
- A. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Dokl. Akad. Nauk SSSR 151 (1963), 751-754 (=Soviet Math. Dokl. 4 (1963), 1051-1055.)
- 3. J. Dugundji, Topology, Boston, 1966.
- K. Morita, Products of normal spaces with metric spaces, Math. Annal. 154 (1964), 365-382.