SOME APPLICATIONS OF THE HILFSSATZ VON DEDEKIND-MERTENS

ROBERT W. GILMER, JR.

Recently Arnold [1] has proved the following result:

Let R be a commutative ring containing a regular element, and let T be the total quotient ring of R. If $f,g \in T[X_1,\ldots,X_n]$ and if A, B, and C denote the fractional ideals of R generated by the coefficients of f, g, and fg, respectively, then there is a positive integer k such that $A^{k+1}B = A^kC$.

Arnold's theorem represents a broad generalization of a result due originally to Dedekind [4] and Mertens [13], proved in case R is an integral domain with identity and n=1. This result Krull refers to in [9, p. 128] as the *Hilfssatz von Dedekind-Mertens*. A form of the Hilfssatz von Dedekind-Mertens is proved by Prüfer [15, p. 24].

We present here some applications of the Dedekind-Mertens Lemma to the important case when R is a Prüfer domain, i.e., an integral domain D with identity such that each nonzero finitely generated ideal of D is invertible. The study of such domains originated with Prüfer's paper [15] and Krull developed some important aspects of the theory of Prüfer domains (called *Multiplikationsringe* by Krull) in [11]. In recent years renewed interest in the structure of such domains has been evident. For example, the papers of Jensen [8], Gilmer [5], Butts and Smith [3], and Ohm [14] contain basic results concerning the ideal theory of Prüfer domains. In a Prüfer domain the equality $A^{k+1}B = A^kC$ in the statement of Arnold's result implies that AB = C, since A^k is an invertible fractional ideal of R, and hence is a cancellation ideal. (The ideal Q of the commutative ring S is a cancellation ideal if there do not exist distinct ideals Q_1, Q_2 of S such that $QQ_1 = QQ_2$.)

In stating Theorem 1, we use this notation: D denotes an integral domain with identity having quotient field K. For $f \in K[X]$, A_f denotes the fractional ideal of D generated by the coefficients of f. We have already observed that $A_{fg} = A_f A_g$ for any $f, g \in K[X]$ in case D is a Prüfer domain. Theorem 1 establishes the converse.

Received December 13, 1966.

THEOREM 1. If $A_f A_g = A_{fg}$ for any $f, g \in K[X]$, then D is a Prüfer domain.

PROOF. By a result due to Prüfer, it suffices to prove that each non-zero fractional ideal of D with a basis of two elements is invertible [15, p. 7]]. Thus if a,b are nonzero elements of K, the equality $(aX-b)(aX+b)=a^2X^2-b^2$ implies that $(a,-b)(a,b)=(a^2,-b^2)$. Consequently, $ab \in (a^2,b^2)$. A result due to Butts and Smith [3, Prop. 3.9] then shows that (a,b) is invertible if D is integrally closed. (The method of proof of this result essentially goes back to Prüfer [15]. In Theorem 4.3 of [7], Gilmer proves a generalization of Butts and Smith's result.)

We complete the proof by establishing integral closure of D. Thus if $c \in K$ and if c is integral over D, there is a monic polynomial $f(X) \in D[X]$ such that f(c) = 0. In K[X] we have f(X) = (X - c)g(X), where g(X) is necessarily monic. The equality $A_f = A_{X-c}A_g$ then implies: $D = (1,c)A_g$, and since g is monic, $c \in (1,c)A_g$. Therefore, $c \in D$, D is integrally closed, and our proof is complete.

Remark. Theorem 1 implies that if $A_{fg} = A_f A_g$ for any $f,g \in K[X]$, then the corresponding equality also holds for any $f,g \in K[X_1,\ldots,X_n]$. That this is true also follows as a corollary to this elementary result, proved in [1]: If S is a commutative ring and if $f,g \in S[X_1,\ldots,X_n]$, $n \ge 2$, then there exist $f_1,g_1 \in S[X_1,\ldots,X_{n-1}]$ such that f and f_1,g and g_1 , and fg and f_1g_1 have the same sets of coefficients.

The applications of Theorem 1 and its converse which we shall consider here concern ideal theoretic properties of a Prüfer domain under integral extensions. We introduce some notation which we use throughout the remainder of this paper. D denotes a Prüfer domain, K is the quotient field of D, and p is the characteristic exponent of K (that is, p=1 if K has characteristic 0; otherwise, p is the characteristic of K [2, p. 71]). L denotes a finite normal extension of K of degree n over K, and G denotes the Galois group of L/K. The order of G is equal to f, the separable degree of f is the integral closure of f in the degree of inseparability of f is the integral closure of f in f is a Prüfer domain [15, p. 22], and f is stable under f; that is, f is a Prüfer domain [15, p. 22], and f is stable under f; that is, f is a Prüfer domain f is Following the terminology used in classical algebraic number theory [12, p. 62] we define, for any ideal f of f, the norm of f, denoted by f is the integral of f in f in f is the norm of f in f

$$N(A) = [A^{(1)}A^{(2)} \dots A^{(r)}]^{p^k},$$

where $G = \{\sigma_1 = I, \sigma_2, \dots, \sigma_r\}$ and where $A^{(i)} = \sigma_i(A)$; here I denotes the identity of G. Also, if $g \in L[X]$, A_g denotes the fractional ideal of \overline{D}

generated by the coefficients of g. (In algebraic number theory, A_g is called the *content* of g. A well-known result from algebraic number theory states that if L is a finite algebraic number field and if D is the ring of rational integers, then the content of the product of two polynomials over \overline{D} is the product of the contents of the two polynomials [12, p. 68].)

Using this notation and terminology, we state and prove:

THEOREM 2. If A is an ideal of \overline{D} , N(A) has a basis consisting of elements of D. That is, N(A) is the extension of an ideal of D.

PROOF. We first consider the case when $A = (b_0, b_1, \ldots, b_s)$ is finitely generated. If for each i between 1 and r,

$$f^{(i)} = \sum_{j=0}^s \sigma_i(b_j) X^j ,$$

then $A^{(i)} = A_{f^{(i)}}$ for each i, so that

$$A^{(1)} \dots A^{(r)} = A_{f^{(1)}} \dots A_{f^{(r)}} = A_{f^{(1)} \dots f^{(r)}}$$

the last equality holding because \bar{D} is Prüfer. However, the coefficients of $f = f^{(1)} \dots f^{(r)}$

are left fixed by each element of G, and hence these coefficients are purely inseparable over K. It follows that $f^{p^k} \in D[X]$. But

$$N(A) = [A_f]^{p^k} = A_f p^k,$$

so that N(A) has a basis consisting of elements of D as we wished to show.

In case A is not finitely generated, we consider the family $\{B_{\lambda}\}_{\lambda \in A}$ of finitely generated ideals of \overline{D} contained in A. $\{B_{\lambda}\}$ is a directed set under \subseteq and $A = \bigcup_{\lambda \in A} B_{\lambda}$. Further, the definition of $N(A) = [A^{(1)} \dots A^{(r)}]^{p^k}$ as the set of all finite sums of products $x_1 x_2 \dots x_{rp^k}$ of rp^k elements, p^k from each $A^{(i)}$, implies that each element of N(A) is in $N(B_{\lambda})$ for some $\lambda \in A$. Hence $N(A) = \bigcup_{\lambda \in A} N(B_{\lambda})$, and N(A) has a basis consisting of elements of D since $N(B_{\lambda})$ has this property for each $\lambda \in A$.

COROLLARY 1. If A is an ideal of \overline{D} which is stable under G, then A^n has a basis consisting of elements of D.

PROOF. Since A is stable under G, $A = A^{(1)} = \ldots = A^{(r)}$. Hence $N(A) = (A^r)^{p^k} = A^n$, and Corollary 1 follows from Theorem 2.

COROLLARY 2. If B is an ideal of D which is equal to its own radical, and if A is the radical of $B\overline{D}$, then $A^n \subseteq B\overline{D}$.

PROOF. It is clear that $B\overline{D}$ is stable under G, and this implies that A is also stable under G, for if $x \in A$ and if $x^m \in B\overline{D}$, then for any $\sigma \in G$,

$$\sigma(x^m) = [\sigma(x)]^m \in B\overline{D}$$
 so that $\sigma(x) \in A$;

hence $\sigma(A) \subseteq A$ and $\sigma^{-1}(A) \subseteq A$, and consequently,

$$A = \sigma(A)$$
.

Corollary 1 then implies that A^n is the extension to \overline{D} of an ideal of D; in particular, $A^n = (A^n \cap D)\overline{D}$. Each element of A^n is in the radical of $B\overline{D}$, so that each element of $A^n \cap D$ is in the radical of $B\overline{D} \cap D$. But a result due to Krull [11, p. 752] shows that

$$(\sqrt[l]{B}\overline{D}) \cap D = \sqrt[l]{B} = B$$
.

It follows that $A^n \cap D \subseteq B$ so that

$$A^n = (A^n \cap D)\overline{D} \subseteq B\overline{D}$$

as we wished to show.

COROLLARY 3. If P is prime in D, the set of prime ideals of \overline{D} lying over P is finite. If this set is $\{P_1, \ldots, P_t\}$, then

$$\left[\bigcap_{i=1}^t P_i\right]^n \subseteq P\overline{D}.$$

PROOF. By a theorem due to Krull, [11, p. 752], the primes of \overline{D} lying over P are conjugate under elements of G. Hence the number of such primes is finite and is $\leq r$. Since D is integrally closed, $\{P_1, \ldots P_t\}$ is the set of minimal primes of $P\overline{D}$ [11, p. 755], so that

$$P_1 \cap \ldots \cap P_t = \sqrt{P \overline{D}}$$
.

From Corollary 2, it follows that $[\bigcap_{i=1}^t P_i]^n \subseteq P\overline{D}$.

REMARK. In the notation of Corollary 3, there are no containment relations among the P_i 's since \overline{D} is integral over D. But since \overline{D} is Prüfer, this implies that the P_i 's are pairwise comaximal. Hence

$$\bigcap_{i=1}^t P_i = \prod_{i=1}^t P_i.$$

The analogues of Corollaries 2, 3 are meaningful without the assumption that L is normal over K. We prove these analogues in Theorem 4.

THEOREM 4. Let D be a Prüfer domain with quotient field K, let L_0 be a finite algebraic extension of K, and let D_0 be the integral closure of D in L_0 . Let L be a normal closure of L_0/K and let n = [L:K].

(a) If B is an ideal of D such that B = VB, and if $A_0 = VBD_0$, then $A_0^n \subseteq BD_0$.

(b) If P is prime in D, the set $\{P_i\}_{i=1}^t$ of prime ideals of D_0 lying over P is finite, and

$$\left[\bigcap_{i=1}^t P_i\right]^n = \left[\prod_{i=1}^t P_i\right]^n \subseteq PD_0.$$

PROOF. (a): Let $A = VB\overline{D}$, where \overline{D} is the integral closure of D in L. Then clearly $A_0 \subseteq A$, and by Corollary 2, $A^n \subseteq B\overline{D}$. Hence $A_0{}^n \subseteq B\overline{D} \cap D_0$. But Corollary 2 of [6] shows that $B\overline{D} \cap D_0 = BD_0$.

(b) Since there are only finitely many primes of \overline{D} lying over P and since each prime of D_0 lying over P is the contraction to D_0 of a prime ideal of \overline{D} which lies over P, there are only finitely many primes of D_0 lying over P. Having made this observation, the proof of Theorem 4(b) is the same as the proof of Corollary 3 if this change is made in the proof of Corollary 3: replace "Corollary 2" by "Theorem 4(a)".

ADDED IN PROOF. After an abstract of this paper appeared in *Notices* of the American Mathematical Society, Professor Irving Kaplansky informed the author that Hwa Tsang proved Theorem 1 in her thesis. Hwa Tsang has not submitted her results for publication.

REFERENCES

- 1. J. T. Arnold and R. W. Gilmer, Jr., On the lemma of Dedekind-Mertens, submitted for publication.
- 2. N. Bourbaki, Algèbre, Chapitre 4-5 (Act. Sci. Ind. 1102), Paris, 1950.
- 3. H. S. Butts and W. W. Smith, Prüfer rings, Math. Z. 95 (1967), 196-211.
- R. Dedekind, Über einen arithmetischen Satz von Gauss, Mitt. Deutsch. Math. Ges. Prag (1892), 1-11.
- 5. R. W. Gilmer, Jr., Overrings of Prüfer domains, J. Algebra 4 (1966), 331-340.
- 6. R. W. Gilmer, Jr., Contracted ideals with respect to integral extensions, Duke Math. J. (to appear).
- 7. R. W. Gilmer, Jr., On a condition of Ohm's for integral domains, submitted for publication
- 8. Chr. U. Jensen, On characterizations of Prüfer rings, Math. Scand. 13 (1963), 90-98.
- 9. W. Krull, Idealtheorie, Berlin, 1935.
- W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Z., 41 (1936), 545–577.
- 11. W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche III, Math. Z. 42 (1937), 745-773.
- 12. H. B. Mann, Introduction to algebraic number theory, Columbus, 1955.
- F. Mertens, Über einen algebraischen Satz, S.-B. Akad. Wiss. Wien Abtheilung II.a 101 (1892), 1560-1566.
- 14. J. Ohm, Primary ideals in Prüfer domains, Canad. J. Math. 18 (1966), 1024-1030.
- H. Prüfer, Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36.