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TAUBERIAN PROBLEMS FOR THE
n-DIMENSIONAL LAPLACE TRANSFORM II

LENNART FRENNEMO

Introduction.

In [4] the author estimated the remainder in a Tauberian theorem for
the n-dimensional Laplace transform. When applied to the one-dimen-
sional case, this result includes the remainder analogue of the part
within parenthesis of the following Tauberian theorem of Hardy and
Littlewood [7]. (The first method to prove it originates from Littlewood

(91
Suppose that « is a non-decreasing function with «(0)=0, and that A
and p are real numbers, u2 0. If
F(s) = fexp(—.st) do(t)
0
converges for all s>0 and if

F(s) ~ As~#, 8-> 400 (8> +0),

then as) ~ As*T(1+p)"Y, 8- +0 (s> +o0).

In this paper we will consider a Tauberian problem which includes a
remainder theorem corresponding to the case outside the parenthesis.
From certain restrictions on F for large values of its argument we wish
to get information about the behaviour of « near the origin.

The method of proof is similar to that in [4], and since it is applicable
to several dimensions, we carry it through in that case. We first prove a
general result which, for example, also applies to a convolution kernel
associated with the Meijer transform. We then apply this result to the
n-dimensional Laplace transform. In Section 3 we discuss the precision
of the estimates, and in Section 4 we will consider some results concerning
the problem of how fast F may tend to zero as its argument tends
to infinity without forcing « to vanish in some neighbourhood of the
origin.

Received April 2, 1967.

Math. dcand. 26 — 15
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We repeat some of the notation from [4, pp. 41-42].
If x=(2,%,,...,2,) € R* and y=(y;,¥s,. - -,Y,) € RB*, then

n n n
-y = vayw a¥ = Hxv?lv, |xl = 2 lxvl .
v=1 y=1 y=1

By z<y we mean that z,=y,, v=1,2,...,», and by -~ +0 and
x - +oo we mean that , > +0 and z, > + oo, respectively, for »=
1,2,...,n. We let B ™ be all x € R™ such that = 0 and we use the abbre-

viations:

expxr = (expz;, exp¥,,..., eXpx,)
logx = (logz,, logz,,. .., logz,)
max (x y = (max (2;,¥,), max (Zy,¥Y,),. . ., MaX(,,¥,))
= (L1,..,1)

For valuable discussion in connection with Section 3, I thank Dr.
G. W. Hedstrom.

1. A general Tauberian remainder theorem.
We first introduce the class E, of convolution kernels, which we will
consider.

DeriniTION. By E, we denote the set of functions K € L(R") which
satisfy the following three conditions:

1° K(t)+0 for all t € R™.
2° The function g defined by

g(t) = K@)~

can be continued analytically into a region Im¢> —p, with o> 0.
3° The function g satisfies the inequality

(1.1) lg@®)] = C exp (m|z[+p-y—y-log(l+y))

for some real positive m and some p e R,” and for all t=x+1y
such that y=Im¢>max(—1, —p).

Let H be a continuous function from R,™ to R, which is strictly
positive and non-decreasing and such that if r is real, then

(1.2)  H(rz) < rH(@), r>1, and lim,_ rH(rz) = +oo
forall xe R,™.

We also suppose that H(x) > + oo when # > +o0. If G is the trans-
formation defined by
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G(x) = xH(x)™,
then G has an inverse ¢, and we introduce H, by the condition
Hy(z) = H(g@)™.

It follows from (1.2) and the definition of ¢ that for any x € B ,» and r> 1

there exists a » such that g,(rz) = rq,(x). Hence
H(rx) £ Hy(x), r>1.

The following theorem states our general result.

THEOREM 1. Suppose that K € E,, that H and H, are as defincd above,
and that ¢ is a bounded and measurable function from R™ to R. Let

(1.3) Kxp(x) = O(exp(—H(expx))), x> +oo,
and
(1.4) inf,(¢p(t) — p(x)) = O(H,(expa)), «— +oo,

where the infimum is taken over all t with x<t<x+1-H,(expx). Then
there exists a real positive constant a, such that

p(x) = O(H,(a expx)), *—> +oo.
(For the value of the constant a see the end of the proof and the remark
Sfollowing.)

Proor. The method of proof is similar to that used in [4]. We start
with the following inequality.
There exists a constant C such that, if  is an integrable function, then

(1.5) sup,cga [u(z)| = C{"infxgtgxm (“(t) —u(w)) + f [@(&)dE}
~V=ésV

for all positive V=(V,,V,,...,V,) and h=(hy,h,,. . .,h,) with
h, =V, v =1,2,...,n.
We apply (1.5) to the function » defined by the relation,
u(z) = exp(— Hz—9)2o?) g@), yeR, 0>1.
Then we have
(16) 28) = exp(—i£y) [vly—=) Q) dx.,
where an unspecified region of integration is R", and where

p() = Kxp (2)
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and
(1.7) Qx) = (2n) 0w |exp(iz-v—}(r—£)2w2) g(v) dv .

(Cf. [3, p. 81] or [4, p. 44].)
In (1.7) we make the substitution v=t+&+4is with s>max(—1, —p).
After an estimation based on (1.1) we conclude that (Cf. [4, p. 44])

(1.8) |Q(x)] = Cexp(—s-x+4s2w2+p-s—s-log(l+s)+im?*nw?+m|é|).

Now suppose that

8 = (81,82,+ + +18,), T = (T,%,...,%,),
P = (P1,Pas- - -+ Pn) 0 = (01,02 +,04) »
and z=(z,,2,,...,2,), where 2 is defined by

(1.9) 2, =log(l+mw?) —p,—tmn+1) —em, v=1,2,...,m,

and where ¢ is an arbitrary real positive number, which is supposed to
be the same throughout the proof. For each » we let s, depend on z,,z,
and g, in the following way

8,

v mw? for —z =x

v=""y *

_l—-}min(l,gv) for —oco<z,<-2,,

Since ¢ is bounded, we see that y is bounded. By (1.3) we have that, if
is large, then

(1.10) lp(x)| £ Cexp(—H(expx)) for zzy+z.

We use this inequality to estimate @ as given in (1.6). Hence, we see
that if D={x: 2 € R* and x< —z} then

UGIE 0[ [10@ vy dz+ [ 10@ piy—2) dx]= Ol +15} .
D

RA-D
From a direct estimate of the first part we see that

(1.11) I, < C’exp(%mznw2+ml£|—H(exp(y+z))) .

With our choice of s it follows from the inequality

L=3 [ Q@) d
v=1
that 2ty
(1.12) I, £ Cexp(m|é|—ew?).
If we now combine y and w in such a way that

(1.13) H(exp(y+2)) = im?nw?+ cw?
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then it is a consequence of (1.11) and (1.12) that

(1.14) [ @1 < cexpm|V)—ewt)
~V<EsV

for large values of .
If in (1.5) we put

mnV = }ew?l = mn(h, by, . b, Y,
then from (1.13) and the definition of H; we see that
02 = (}mPn+¢) H(exp(y+2))* < OHl(exp(y+z) H(exp(y+z))‘1) .
From this inequality and (1.9) we conclude that

bexpy = bexp(y+z—z) < exp(y+2z) H(exp(y+2))*,
if
b £ 2(mn+2em)Lexp(—p,—im(n+1)—em) forall »=1,2,...,n.
Hence

w2 £ C H(bexpx),
where b is as above.
By modification of the estimate used in [4, p. 46] and by (1.4) we

find that if 0<A<1 then
(1.15) inf (w(t)—u(z)) 2 4 — Cexp(—}etw?) — CXh,,

rsSt<w+h y=1
where

A = inf (@) —p(x)) — Co? sup lp(x)] .
r<t<zt+h —1= e z—)<1
—1=e i@yt

If we put (1.14) and (1.15) into (1.5) we obtain
o)) S suplue) < CHy(exply—e) + Hybexpy) _sup _lple)|+o~?
xeR" —-15 e Yax—y)=1

for large values of y.
Since ¢ is arbitrary it follows by iteration that

p(y) = O(H,(a expy)), y— +oo,

for any @ such that a < 2(mn)~! exp(—p,— im(n+1)) forallv=1,2,...,n.
Hence Theorem 1 is proved.

RemARk. It is possible to improve the result by a larger a, but if for
example n=1 this constant is of no importance in all those cases where
H is of the type

H(x) = 2°L(x), 0ge<l1,
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if L is continuous and satisfies

L(cx) L(x)t -1, z—> 400,
for any fixed ¢> 0.

2. Application to the Laplace transform.
Let H and H, be as in section 1, and suppose that « is a measure on
R,™ and that u e R,». We define H, by

Hy(sy,85,. . .,8,) = Hy(s;74,8,7%. . .,8,7Y)
As in [4, p. 47] we introduce regions 2, ; by
Q.,={:teR.,™and t<s} — {t: te R, and t<x}.

Our first result for the n-dimensional Laplace transform is the following.
(For a result with weaker conditions in case =0 or n=1, see Theorem 3
below.)

THEOREM 2. If

(2.1) F(s) = fexp(—s-t)doe(t) ~ O(s~# exp(—H(s)), s+,
Ry

where the integral is boundedly convergent for all s> 0, if

(2.2) |F(s)| = Cs—+ foralls>0,
and if
(2.3) sup,l< f dzx(t)) < Cs*Hy(s), s>0,

where the supremum is taken over all x with 0 Sx<s=xexpH,(s), then
there exists a positive real number a such that

f da(t) = O(s*Hy(as)), s- +0.
0=st<s

Proor. As in [4, p. 48] we let

do(x) when t>0,
pt) = l 0=zt
0 otherwise .
Then it follows that
(2.4) F(s) = st f oxp(—s-1) B) d¢ ,
Ry

where the integral is absolutely convergent.
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With the substitutions
s =expxr and ¢ = exp(—v),
formula (2.1) implies that

Kxp (x) = O(exp(—H(expw))), x—> +oo,
where
K(x) = exp(— |expx|+ (14 pu) )
and
p(x) = exp(u-x) flexp(—2)).

We shall apply Theorem 1 and have to prove that the conditions of this
theorem are satisfied. It is easy to see that K € E,. We have K € L(R")
and if

t = (tl’tz" . "tn)’ m = (‘ul"um' . 'nun) s
then

K(t) = TT T(1+p,—1t,)
v=1
Here I'(- )~ is analytic in the whole complex plane, and Stirlings formula
shows that

|(1+p,—~12,)7Y| £ Cexp(mlz,| +y, -y, log(1+y,))
where
z,=x,+1y, with y,2 —}and m = i=n.

To prove that ¢ satisfies the Tauberian condition, we write

(2.5) (t) —p(x) = exp(u-t)[f(exp(—1))—plexp(—=))]+
+exp (u-x) f(exp (—x))[exp(u- (t—2))—1]

and observe that (1.4) follows from (2.3) if we have

(2.6) Bs)l = Cs*, s>0.

Then we also see that ¢ is bounded. To prove (2.6) we suppose that
0<s<x<2s and we write

m
B(x) - E (B(s®) — B(s*-1))
where the s® are chosen on the line segment from s to z, so that
8§=80 <l < L <smM=gy
and
(2.7) sk < sk < gk- exp H,y(s®) .

From (2.3) we see that
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m
Bx)—p(s) = Cs* 3 Hy(s®),
k=1
and by (2.7) the division points can be chosen so that

> Hy(s®) < C.
k=1
Hence we see that
(2.8) Bx)—pB(s) < Cs# for 0=<s<x<2s.

To complete the proof of (2.6) we now apply the same method by which
a corresponding inequality was derived in [4, p. 49-51]. Since all details
are nearly the same this time, the proof is left to the reader.

By (2.6) we have both that ¢ is bounded and that the Tauberian condi-
tion is satisfied. Hence Theorem 2 is proved.

THEOREM 3. Suppose that =0 or that n=1. If
(2.9) F(s) = fexp(—s-t) da(t) = O(s~ exp(—H(s))), 8- +oo,

Ry

where the integral is boundedly convergent for some s,> 0, and if

(2.10) supz< f dzx(t)) = O(s*Hys)), s— +0,

z,8
where the supremum 18 taken over all x with, 0Sx <s=<x expHy(s) then
there exists a positive real number a such that

f da(t) = O(s*Hy(as)), s +0.

0st<ss

Proor. We start as in the proof of Theorem 2. This time we know
only that (2.4) is true for s > s,, since the Laplace transform is boundedly
convergent for some s=s,, and hence for all s>s, (cf. [1, p. 473]). Let
qge R, g>s,; then we suppose that f(s)=0 if we do not have s=q.
The bounded convergence implies that

[B(s)] = Cexp(sy's) for 820
(cf. [1, p. 474]), and therefore we have, as * > + oo,
y(@) = K*g ()

(2.11) n
=0 (exp( — H(expx))+exp(u-x) glexp( -q, expx,)) .

From the boundedness of § we conclude that the integral in (2.4) is
absolutely convergent for all s> 0. Hence y exists for all «.
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From (2.10) and (2.5) we have that, if ¢ is bounded, then
(2.12) inf, (p(t) — p(x)) = O(H,(expx)), x— +oo,

where the infimum is taken over all ¢ with x <¢t<x+1H,(expz). If u=0
this is trivially true. Otherwise n=1 and we see as in (2.8) that

(2.13) Bx)—p(s) £ Cs# for 0=ssx=2s

when s is small. From (2.13) we derive that if 4 >0 and s is small then
B(s)—B(s2™) = Cs+ 3 27Hr < Csv.
k=1

Here we let m - + oo and hence, for small values of s,
B(s) = Cs+,

since B(s) >0 as s — +0. (This follows from Theorem 3 applied to
the case u =0, since the proof in that case does not depend on this state-
ment.) Since § is bounded the inequality is true for all s> 0.

We also have

(2.14) |B(s)] = Cs# forall s>0,

since if we did not have this inequality, then by use of (2.13) it is easy to
see that we would not have (2.9).

We now modify the proof of Theorem 1 to take account of the weaker
conditions (2.11) and (2.12). The proof is the same as in Theorem 1 to
(1.10), to which we now have to add

n
Cexp(u-2) 3 exp(~g, expa,)

to the right-hand member. Hence there corresponds a modification of
(1.11), but (1.9) takes care of that if y is large enough and if at the
same time (1.13) is true. When estimating I, we observe that y is still
bounded and hence (1.12) is true. Then (1.14) follows as in Theorem 1.

Since ¢ is bounded, (1.15) is still true. Hence the conclusion follows
as in Theorem 1, and Theorem 3 is proved.

Remark 1. Conditions (2.2) and (2.3) in Theorem 1 can be weakened
somewhat. We only need (2.2) when [s| is large and (2.3) when
min (sy,8,,. . .,S,) is small.

REMARK 2. Let ¢ be an arbitrary real, positive number. If for example
D, is a region of form

{s: 8=(81,8,...,8,) and 8,28, >0, vk, v,k=1,2,...,n},
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then by the method used in Theorem 3, (2.1) and (2.3) implies that if
u=+0, then
f da(t) = O(s*Hy(s)), s +0 (seD,).

0stss

3. The precision in Theorems 2 and 3.
If the function R defined by

R(x) = H(expx)
is sub-additiv, that is, if

R(x+y) < R(x)+R(y) forall ze R and ye R",
then it follows from Theorems 2 and 3 that
Hy(s) = O(H(s)™), s— +oo.

For all such functions H, the result is best possible (cf. [5]).
If we have
H(s) = (87 +837 1+ ... +8,71), 0O<e<l1,
then
(3.1) Hys) = ($;+83+ ... +8,)/0-9,
In the one-dimensional case the example
B(s) = m—t f 1~ sin (3¢-1) di
0
shows that (3.1) is best possible for ¢=}, since if
F(s) = [ exp(~st)ap(e),

0
then

F(s) = s~texp(—st) sin(s?)
(cf. [2, p. 254]), and it is easy to see that there exists a sequence of s
tending to zero, for which f(s) is of order s%2.
Formula (3.1) is in fact generally best possible in the one-dimensional
case. If for example

(3.2) B(s) = f 11 sin (%) dt
0

for some positive real number k, then by the saddle-point method one
can show that
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(3.3) F(s) = O(exp(—ysk/a+0)), s> +oo,

for sume y > 0. Since there exists a sequence of s tending to zero, for which
B(s) is of order s¥, this example shows that (3.1) is precise.
We give a short outline of how to prove (3.3). We shall estimate

F(s) = ft*l exp(—st—it~*)dt, k>0,
0

for large values of s. If we make the change of variables

t = us—l/(l+k) and 8k/(1+k) =r,
we obtain that

Ju"l exp(—rf(u)) du ,
0

where f(u)=u+tu*. Take a branch of the analytic function f such that
u~* is positive for positive . Now, we may deform the path of integra-
tion so that it passes through the saddle point

o in
Uy = 1/ G +k) exp (2(1 +k)) .

Let ¢ and R be two real positive numbers, ¢<Reu,<R. We shall
use a broken-line path from 0 to &, from ¢ along the line Reu=¢ up to
u, such that argu,=argu,, then from u, through the saddle-point %,
to a point u, with Reu,=R. From wu, we go along Reu=R down to R
and then along the axis to infinity. We estimate separately the integral
along each segment, and with properly chosen ¢ and R we have the
only important contribution from the segment passing through the
saddle-point.

In several dimensions formula (30) on p. 165 in [10], which can easily
be generalized to the n-dimensional case, shows that (3.1) is essentially
best possible as soon as it is best possible in the one-dimensional case.

4. The rate at which a convolution transform, with kernel in class E,,
can tend to zero in the non-trivial case.

The class of functions that H belongs to in Theorems 1, 2 and 3 is
rather restricted, but the results below shows that these restrictions are
natural. It is known that a Laplace transform cannot tend to zero too
rapidly when its argument tends to infinity, without forcing the original
measure (x in Theorem 2) to be without any mass in some neighbourhood
of the origin (cf. e.g. [8]). Here we prove a corresponding result for
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the class E,, which applied to the Laplace case gives a sometimes weaker
result than that obtained in [8], see Corollary 1, but also a stronger re-
sult, see Corollary 2.

We need the concept of conjugate Young functions. We say that F
and @ are conjugate if they are defined in the following way:

x

Fx) = | f(t)dt and G(x) = |g(t)dt,
g f

0

where f(0)=g(0)=0, and where f and g are non-decreasing functions
which satisfy the relation

flg@) = 9(f(2)) = 2, 0sw<oo.
It is well known that for such functions
(4.1) 2y £ Fx)+Q(y), O0sx<+o00, 0Sy<+oo.
We need a simple lemma (cf. [6, p. 25]).

Lemma. If F, G and F,, G, are two pairs of coujugate Young functions,
then

(4'2) ﬁx—)ﬂw (F(x) _Fl(x)) >0
implies that
(4'3) _l_i__n_];a:—>+oo (G(x) - Gl(x)) <l.

Proor. By (4.2) there exists a sequence (x,);,, such that F(x,)z=
Fi(x;) and 2, > + o0 a8 k > +oo. If now (y,); is defined by y, =f(x;),
k=1,2,..., then y, > +~ as ¢ > + o and

xkyk = F(xk) + G(yk)’ k= 1,2,. o e
We also know that
Ty S Fylag) + Goly),  k=1,2,....

Hence
Gi(yx) — Qyx) 2 F(xy) — Fy(zy) s

and the lemma follows from this.

THEOREM 4. Suppose that K € E,, that ¢ is a bounded, measurable
SJunction, that F is a Young function and that y is a positive number. Let

(4.4) Kxp (x) = O(exp(—F(z))), - +oo,
where
(4.5) lim, , ., F(z) exp(—2) > 7 .
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Then it follows that
plx) = 0
for every point x,
x> —logy+(p—1)+m,

at which ¢ is continuous.

Proor. The proof is the same as in Theorem 1 up to formula (1.8),
except that we now use the same s for all values of x. Combining (1.8)
and (1.6), we find that

(4.6) (%) £ Cexp(m|&| + ImPw?+ ts?w=2 + ps — s log(1+s))-
[ exp(~s2) lply— )] de .
Let
I = [exp(-s2) [ply—2)] da .

We make the change of variable =y —¢. Then from (4.4) and from
the fact that ¢ is bounded, we conclude that

(4.7) I < Cexp(—sy) (8‘1-{- Jexp (st—F(2)) dt)
0

Now introduce ¥, such that
F(t) = Fot)+t-C

where C is a positive constant. We suppose that C is properly chosen so
that F, is a Young function.

If we let F, be defined by

F\(x) = y expz —yx — vy,
then F, is a Young function and its conjugate function @, satisfies the
inequality
Gy(x) < zlog(l+x)—x—xlogy+Clog(l+2)+C, 0 £ & < co.

It follows from (4.5) and the lemma that there exists a sequence (s;)7°
tending to infinity as k — oo, such that G,, the conjugate Young function
of F,, satisfies the inequality

Go(s,) < 8, log(l+s;) — 8, — 8 logy + Clog(1+s,)+C, k=1,2,..

If we combine (4.1) for the functions F, and G, with (4.7) we conclude
that for s=s;, we have
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(4.8) I = Cexp(—s;y+s,log(l+sy) — s, — s logy

+C log(1+sk))fexp(—x)dx .
It follows from this estimate and (4.6) that ’

(09 [ |wenas

~-VsesvV
< Cexp(mV+3im?w? + §s 202 + (p—1)s;, — 8, log y — 8,y +C log(1+sy;)) .
The first part in the right-hand member of (1.5) we estimate as in (1.15),
but with e=w-*. Hence we have the inequality

lp)l = C1—  inf  (p(t)—g(@)+ot+h+
r<t<z+h
-1set@y)s1

+exp(mV +imPw?+ i 2w + 8 (p—1) — 8, logy — 8,4 + C log (1 + ;)

Now suppose that

y= —logy+p—-14+m+4d forsomed>0.
Let w=w;, V=7V, and let
(4.10) 4mV, =80 and s, =mw,2.

Hence for large values of £ we have the inequality

lpy)l = O} =  inf  (p(t) —g(@)) +w, 1.
rsStsz+op—1l
1ot @-y=1

If we let £ > + oo in this inequality, then from the fact that w, - + oo
when k — + oo, and if ¢ is continuous at y, we conclude that

¢y) = 0.
Hence, Theorem 4 is proved.

CorOLLARY 1. Let F be the same as in Theorem 4. If « is a measure on
R, such that

fexp(—st) da(t) = O(exp(—-F(Iogs))), 8§ > +oo0,
0
where the integral converges for all large s, then (4.5) implies that

f dx(t) = 0 a.e. for s<yexp(—in).

0st=s
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Proor. Introduce g like in Theorem 2, and suppose that g is identically
equal to zero when its argument is greater than some constant larger
than 9 (like in Theorem 3 this is no restriction). Since 8 is of bounded
variation we conclude that ¢ is continuous almost everywhere. Since
the Laplace kernel satisfies condition (1.1), with p=1 and m = }=, the
result follows from Theorem 4.

CoroLrLARrY 2. If

11m1-—>+00

F(x)exp(—z) = 400,
then

dx(t) = 0 a.e.

0ost<s
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