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A CLOSURE PROBLEM FOR SPACES
OF INFINITELY DIFFERENTIABLE FUNCTIONS

GOSTA WAHDE

1. Introduction.
Let {m,}; be a sequence of positive numbers, m,=1, and let C,, be the
space of complex-valued, n times differentiable functions f, defined for

220, for which
[s <]

(L1) Il = Sm [ /@) do < oo
"= 0
Further, let
n n
(1.2) 2 m,22% = T (1 +1r;722%),  Rer;>0,
v=0 J=1

and suppose that r,+7; for + 4.

TaeorREM 1. Let ¢ € C,. Then the extremal problem

n
min,, |jp(z) - 21 b€ |y
J=

18 solved by

n
(pn(x) = z b;-")e—"”’,
j=
where
(PS,')(O) = ¢(’)(O), P = O,l’_ . ,’n_l .

Proor. Define in C, the inner product

[o2]

(o) = 3 m* [ 196) §°G) do.

0

It is well known that the extremal function ¢, is the unique solution of
the system of equations

(1.3) (=@’ =0, j=12,...,n.
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If f is an arbitrary function in C,, partial integrations give for 1<v=<n
(o] v o]
f [Oz) e de = — 3 71 fR(0) + Fj’J flx)e™™dx .
k=1
0 0

Hence

(o]

(f,e") = zn: (- 1)'m,,_27'j’ff(”)(x) 7 das

ye=0 °

2 (= 1)"1m,‘27f’,if1’°"f"“’°)(0) +2(- ym, 272 [ f@) e de
- 2 J

y=1

= ”2":1 £ (0) i (= 1ym,—27,-n-1

p=0 y=0

by (1.2). Thus (1.3) is equivalent to

n—1 lad
3 (P0) — ¢iP(0) 3 (—1ym "7 = 0, j=12,.. 0.
=0

p=0

Obviously, this system has the solution

¢g¥(0) = ¢¥(0), p=0,1,...,n—1.

Since there is a one-to-one correspondence between ¢, and {pl(0)};=4

the proof is complete.
On the other hand, the function ¢, has the property

(1.4) @nlln = D0in [|fllen)
for all f in O, satisfying
(1.5) F®0) = ¢¥0), u=0,1,...,n—1

(see [5, pp. 127-128]). Thus, the function in the span of {¢™"#}_; which
is the best approximation of ¢ in the norm (1.1) at the same time solves
the problem of interpolating given values (1.5) by a function f in C,
with minimal norm.

Now let 4={4,}3° be a sequence of positive numbers satisfying

(1.6) Ay =1,
(1.7) log 4, is a convex function of »,
and

(1.8) lim, , .(4,/v)" > 0.
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Let 5, be the Banach space of all complex-valued, infinitely differen-
tiable functions f(z), defined for x = 0, for which

[e ]

IfIF = 3 4, [ 1192 de < oo
y= °
and suppose that

(1.9) ZO A 22 = ]'I1 (L+7r722%), r;>0,
Y= ]=:

where r;<r; for ¢ <j. If fe & , it follows that
(1'10) Sungo |f(")(x)| S K(AvAv+1)i: ’V=O, 1’2,' L

where K is a constant (depending on f) (see [6, Lemma 6]).
Let ¢ be a fixed function in & ,. It follows that ¢ € C,, for every n
and, by (1.4),

(1.11) el = ¢l = llgll -

Using (1.11) it is easy to prove that there exists a subsequence {g, ()}
converging to an infinitely differentiable function y(z) in such a way
that

g(x) > yP@), »=0,1,2,...,

uniformly on every interval [0,a] and y(x) satisfies (1.10) (see Mandel-
brojt [3, pp. 104-105]). But

p®(0) = ¢®(0), »=0,1,2,....

If the sequence 4 has the property that the inequalities (1.10) define a
quasi-analytic class, and this is the case if and only if (see Mandelbrojt

[3])
(1.12) f xz~2log Qya*[A2) dx = oo,

0
then, since ¢ and y both satisfy (1.10), we have y=¢. This also implies
that

limg_, o (¢ —@uillny = O

In the special case p(z)=e~**, Rex >0, a calculation yields

n

1
I — @ullig = mjgl 11— afrsl®.

This tends to zero a8 » - oo if and only if
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o}

n
Sl = n-lf xz=2log (3, 2*/m2) dz — oo
J=1 °
(for the equality, see [5, p. 130]), that is, if and only if (1.12) holds.

In view of the above-mentioned facts it is natural to consider the
following closure problem. Let 4 ={4,}5’ be a sequence of positive num-
bers satisfying (1.6)—(1.8). Let, for a fixed k=1, & 4 be the Banach
space of all complex-valued, infinitely differentiable functions f(x),
defined for x = 0, for which

(1.13) Iflle = §Ok~2"A.—2 @) dz < oo,
v= 0

and let % 4 be the normed linear subspace of % ;i) which consists
of all f satisfying
(1.14) Iflly < oo

Further, let 2={4;};° be an increasing sequence of positive numbers
tending to infinity and such that

(1.15) Sit=oo.
j=1

Then our problem is to decide whether or not the set
A= {e*;j=1,2,3,...}

is fundamental in % 4, that is, the span of A is dense in £ 4. (For a
similar problem, see Korenbljum [2].)

Of course, the answer of this question will depend on the sequences
A and A, and on k. Concerning A we speak of the quasi-analytic case if
(1.12) holds and the non-quasi-analytic case if

(1.16) f xz—2log (3°x¥[A,%) dxr < oo.

0

The subject of this paper was suggested by Professor Lennart Carleson
and I wish to express my deep gratitude to him for his valuable and gener-
ously given advice.

2. Approximation of € **, Re a > 0.

We start by considering the approximation in & 4, of e~**, Rex >0,
by finite linear combinations of functions of the set A.
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Turorem 2. Let

(2.1) S(R) = 3 A,
AR
and
R
(2.2) I(B) = 2~ [ y~*log (55 y[4,) dy -
1

Then, a sufficient condition that every function e—%, Rex >0, can be ap-
proximated arbitrarily closely in F 40y by finite linear combinations of
Junctions of A is that
(2.3) li IE)

. im e

CoROLLARY. In the non-quasi-analytic case every function e==*, Rex >0,
can be approximated arbitrarily closely in F 44y by finite linear combina-
tions of functions of A.

Proor or THE CorOLLARY. This is immediate since (1.16) implies that
I(R) is bounded.

Proor or THEOREM 2. As is well known, it is sufficient to show that
for every bounded, linear functional L defined on & ) it holds true
that

LEe*®) =0, j=1,23,...,
implies
L(e—*) = 0, Rex>0.

For arbitrary f and g in % 4 let

o0

(24) (ho) = 3 472 [ 19) ) do;

0

this makes & 4 into a complete inner product space. Then, by the
theorem of Fréchet—Riesz, we can represent L in the form

L(f) = (fa(p)’ ¢ € yA(l)-

Let
2.5) L) = 3 (—a)y 4, f e gP(z) dz = F(x), Rex>0.
v=0

0

We observe that F(«) is holomorphic in the half plane Rex >0, and we
have to show that

(2.6) F(;) =0, j=1,2,3,...,

implies
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F(x) =0, Rex>0.

To do this we use Carleman’s theorem: If f(x) is holomorphic for Rex = 0
and if r,-e“’?', j=1,2,8,..., are the zeros of f(«) in this half plane, then
a8 R — oo

(2.7)

in
D (ry*—r;R~2) cosh; = (wR)? f log|f (Be*)| cos6 df +
risR Sn

R
+(@m) [ (y2— B log |f(iy)f (~ )| dy + O(D).
1

We take f(x)=F(x+9) for a fixed § > 0. Since for Rex 20

[ e 7@ da
0

we have for |x|< R, Rex=0

< (20) il 4, ,

|F(x+90)| = (28)7 [iglly ? (B+0Y/4, = (28)7F [lpll, e+

by (1.8), for some constant o >0. Hence the first term in the right hand
member of (2.7) is bounded above as R — co. Further,

R
(2n) [ (g2~ B%) log | F(iy + 8)F(—iy+ )| dy
1

R
< 71 f (y—2— B-2) log((28)* |lgll, S5 (y + 0/ 4,) dy
1

R
a1 [ y=2log (35 (y+07/4,) dy + O(1)

1

(1-9)"2I(R) + O(1)

IA

and, for 0<f<1,
Zyosr((4—08)"1—(4;—0)E-*) = (1-p2)8(BR) .
Then, by (2.7) and since I(R)=I(BR)+O(1),
(1-p%)S(BR) = (1-0)~*1(BR) + 0(1).
Here S(SR) - oo as R — oo by (1.15), and choosing 8 and & sufficiently



A CLOSURE PROBLEM FOR SPACES ... 215

small this leads to a contradiction if (2.3) holds. Hence F(x+68)=0 for
Rex >0 and thus, since we can take 8> 0 arbitrarily small, F(x)=0 for
Rex > 0. This completes the proof of Theorem '2.

3. The non-quasi-analytic case.

In this section we consider the closure porblem in the non-quasi-
analytic case (1.16). We prove the following theorem which can be con-
sidered as an extension of the well-known theorem of Miintz (see Schwartz

[4]).

THEOREM 3. In the non-quasi-analytic case, A i3 fundamental in
£ AR, k>1. .

To prove this theorem we need some lemmas. For a function f, defined
in a set containing [0,), we always denote its restriction to [0,c0) by
the same symbol f.

Levma 1. Let f€ F 44, and define, for >0,

f@) = flz+n), zz2-7.
Then ;
lim, o |f=flle =0, %kz1.

Proor. Obviously
S k4,72 | () - [+ dz
=N 0

becomes arbitrarily small for N sufficiently large, independent of 7.
Having fixed N, we can make "

0o

S a2 [ 1f0) - [+ d

=0 0

arbitrarily small by choosing # sufficiently small, since

lim, o f Ifz) — [z +n)|2dz = 0.
0 N

Lemma 2. If (1.16) holds, there exists for arbitrary constants n>0 and
ky> 0 an infinitely differentiable function p(x), defined on (— oo, ), such
that
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0 for x50
1) o) =] 7
Jor x=q
and for some constant C
(3.2) sup, |¢?(z)] < Cky’4,, v=0,1,2,....

Proor. By (1.7), the sequence {4, ,/4,}° is decreasing. Further,
(1.16) is equivalent to (see Mandelbrojt [3])

zAv—I/Av < oo,
1

Then we can construct a sequence {B,}3° such that
(3.3) B, ,|B, = q,4, ,/4,, v=1,23,...,

where g, - oo as » - oo, the sequence {B,_,/B,}{° is decreasing and
z Bv—l/Bv < %o,
1

It is well known that there exists an infinitely differentiable function
@(x), defined on (— oo, 0), satisfying (3.1) and, for constants C, and K,
depending on 7,

sup, l¢”(x)| < C,KB,, ¥=0,1,2,....
Hence, by (3.3), the inequalities (3.2) are fulfilled if C is sufficiently large.

Lemma 3. If (1.16) holds and if fe L 4, k> 1, then for every ¢>0
there exist constants > 0 (small) and L >0 (large) and an infinitely differ-
entiable function g(x), defined on (— oo, ), such that g(x) = 0 outside (—n, L),

(3.4) S k4,2 f 9P()[2 dz < oo
v=0

and -

(3.5) If—gllx < &

Proor. First, by Lemma 1, we can choose 7> 0 so small that

If=Flle < .

By Lemma 2, for arbitrary numbers 0 < L, < L there exists for an arbi-
trary k,> 0 an infinitely differentiable function y(z) such that

ly - %7] é x é Ll ’
p(x) = :
0, outside (—#,L),

and
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(3.6) sup, |v?(z)] < CkyA,, v=0,1,2,....
Define
f’l(x) 'P(x), xz -7,
g9(x) = o
, X< —7.
By (1.7) and (1.6)
(3.7) .A.,_".Aj é Av, j=0, 1,. Y

We also need the simple inequality

(3.8) (;)2 < (Z;) . §=0,1,....».

For 2= —n and »= 0 we have, by (3.6) and (3.7),

A

v

> (;) fO@+n) yo-9(x)

j=0

v

< 04,3 (3) kg4, 19 +)] -

=0

9@ =

Hence, by Cauchy’s inequality,

e S a2 S (5 k> S A o+
J=

j=0
But, by (3.8),
c v\2 —25 * 2 y—1
Jgo (J) ko™ = go( 7/) kot = (L)
Thus
[ 0@ dz < c2 420+ R 112
and finally
k4, [ g dz < CUflt S (X1 +k)> < oo
v=0 v=0
if we choose &, small enough.
By similar estimates
If,—glk? S (C+12 3 4,7 | 1@ de 3 (k114 k)
J= Ly V=

Since ||f]|; < oo this can be made arbitrarily small by taking L, sufficiently
large. Thus

Ifa—glle < te
and (3.5) is proved.

Proor or THEOREM 3. By the Corollary of Theorem 2, every function
e—%, Rex >0, can be approximated arbitrarily closely in & (), hence a
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fortiori in & 4, k>1, 'by finite linear combinations of funetions of A.
Then, by Lemma 3, it is sufficient to show that if g is a function of the
type described in Lemma 3, there existsifor every ¢>0 a function of
the form ‘

(3.9) Qx) = ’zn:c,e“’"" ,

y=1

where «, are complex numbers with Rex, > 0, such that
lg—@lle < &
For an arbitrary positive integer =, let
. Pn(x) — an-l(l — (1 — 2—:/L)2)n 9-z/L s
where a,, is chosen so that
oo
(3.10) | f P (z)dz = 1;
. J
we find

1
2 2n)!!
ap = L\ f(l—t2)”dt = Lf ( n) TR
\ log2_1 log2 (2n+1)!!

The function
70w = [ Pae-yowdy

is of the form (3.9) and
Q) = [ Pa) -9 dy .

Hence for x>0, by (3.10) and Schwarz’s inequality,

l9z) = @a)® =

| Paw) (9@ - ¢ -9) dy
—L

s f P,(y) l§”@) — ¢ —y)2 dy ,
~L

and so

o0

@.11) lg-Qt 5 [ Puly)dy 3 k4,2 | ) = 0Oyt de
' e A = 0
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By (3.4), we can make
> k4,7 [ @) - ¢ -y do
y=N °

arbitrarily small by taking N sufficiently large, independent of y. Having
fixed N, since

lim, o [ 19%) gz =y dz = 0

also

0

Shwa 2 [ [f0) -yt de

v=0 0

is arbitrarily small if |y| is sufficiently small. Thus, there exists a 6> 0
such that, independent of =,

o oo
L= [Puw)dy Sh>a2 | 19 - ¢Oa—y)lde < §e*.
- 0

r=0

Finally, having fixed J, we have to consider that part I, of the integral
with respect to y in the right hand member of (3.11), where |y|24. By
(3.4) it is sufficient to show that

-4 o
1imn_>oo( f P,(y)dy+ f Pn(y)dy) =
—L ']

But that follows from

1-29/L

-8
an(y)d = (27:;;3:' f (1—#2)r dt < const.nt (1—(1—2¥L)2)n

and an analogous estimate of the second integral. Hence, for sufficiently
large n, I,< }¢2.
This completes the proof of Theorem 3.

4. The quasi-analytic case.

In the quasi-analytic case, (1.15) is not sufficient for a set A to be
fundamental in 2 4. ’

Starting with an increasing sequence A of positive numbers such that
(1.15) holds, suppose that a sequence 4 satisfying (1.6)—(1.8) and (l 12)
is defined by
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(4.1) TI(+2 ) = 3 At

J=1 v=0

((1.7) is automatically fulfilled; see Boas [1, p. 24]). Then, as will appear
below, there are reasons to expect the following to be true: The set

A, = {e™";j=1,2,3,...}, a>0,

is fundamental in & 44, k> 1, if a<2; but if a > 2k, k=1, there exists,
for instance, an exponential function which does not belong to the closure
in & 4w of the span of A4, To motivate this conjecture we prove the
following two theorems.

THEOREM 4. Suppose that the sequence A, defined by (4.1), fulfils (1.12).
Then if a <2 every function e=**, Rex > 0, belongs to the closure in F ,a
of the span of A,.

Proor. By Theorem 2 it is sufficient to prove that (2.3) holds. Ap-
plying Carleman’s theorem to the entire function of exponential type

IT (- A7) = 3 (- 174, 2
j=1 =0

we get, since the first term in the right hand member of (2.7) is bounded
in this case (see Boas [1, p. 31]),

aS(aR) = z Atz S (41— AR
A4<R
R

-1 f y~%log ( _Zo A,"zyz") dy + 0(1) .

1

But for an arbitrary 8, 0<f<1,

S 2 o
(=g (Z4,7(6er) s 3 40>
y=0 v=0
and hence
R o aR
f y? IOg( EOA.*zyz”) dy 2 28 f y~2log(X2, 4,7'y") dy + O(1) .
1 v= 1
Thus
aS(R) =2 281(R) + O(1)
and so
I (R)
if we choose §> }a.
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THEOREM 5. Let A;=1}rnj, j=1,2,3,... . Then the corresponding set A3
18 fundamental in L 4a), k> 1, if a <2, but if a> 2k there exists, for in-
stance, an exponential function which does mot belong to the closure in
F 4, k21, of the span of A°.

Proor. We have in this case
(4.3) A, = 27{2v+ 1)1} = 9! (dn-1n)t (1 +¢,),
where ¢, > 0 as v — co. If fe & 4 it follows that
(4.4) Sup,=o|f®(x)| < const.y’»!

for an arbitrary y > 1. Hence f(x) is the restriction to [0, o) of a function
Jf(z), holomorphic in the domain

D Imz| < 1, Rezz0,
{ lz| <1, Rez<0,
and bounded in every set

— { |Imz|

<b<1l Rezz=0,
Dy:
2] = b <1,

Rez<0.

a. The case a2, k>1.
We need the following lemma.

LemmaA 4. For fe L 4w,

lim, o4 [If (@) — e*=f (@)l = 0.

Proor. For
95(@) = f(@)(1—e), %20, 6>0,
we find
»—1
@I = 3 (7)o @) + (1—e)|fa)]
=0
By Cauchy’s inequality,
»—1
W@ s 3 (1) @0~ [0 + (1— et o,
J=0

and thus

»—1

(o] ’ 2 00
H e de < 1123 () @442 + [ (1—eop2 |foxz)P da.
0 0

=0
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Finally,
oo »—1 2
Holh? < 112 3 k4,23 (%) (20>, +
J=0

=0

+ Sk4, [ (1—eto O da
0

y==0
= Sl(a) + 82(6) .
For d< {, by (3.8) and (4.3),

If1h28,0) S (40 3k 3 1/2))!,

=0 J=0
and so
lim, .+ 8,(6) = 0.

By dominated convergence,
lim, o+ Sy(6) = 0,
and thus the proof of Lemma 4 is complete.

To prove Theorem 5 in the case a <2 we perform the conformal map-
ping w=e-+9, Then D, is mapped onto a Jordan region £, in the w-
plane with 0 on the boundary. Let for 0<d<1

106 2 0 ’
Py < [T w0
0 , w=0.
Since F(w) is holomorphic in 2, and continuous in £,, F(w) can be
approximated uniformly and arbitrarily closely in &, by a polynomial
in w without constant term. But every function wm-1+ where m is a
positive integer, can be approximated in the same way and this implies
that, for an arbitrary &> 0, there exists a function
N
P(w) = Y a;wi-?
j=1
such that
maxg, |[F(w)-Pw)| < e.
This yields, for
- N
h(z)=e™"f(z) and Q(z) = Y ase-fines,
j=1
the inequality
maxp, [k(2)—Q(z)] < Ce

and, for some constant M independent of e, .
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1Q(z)] < Me-inz,  zeD,.

By Lemma 4 it is now sufficient to prove that Hk—Q”k can be made
arbitrarily small.
By Cauchy’s estimates,

IQ@("”)! < My! b e—had(x—l)’ z20,

and hence, choosing b so that kb>1,

o X M2 oo
3 k24, [ Q@) dv S — e ED S by
=0 R T y=0

This, and also

S kA, f ()2 dx |
R

ye=0
is arbitrarily small if R is sufficiently large. Finally, for 220,
[PP(z) —Q¥(x)| < Cb™"v!e,

and hence

R
> k4,7 [ W9@) — QU@)2dz < RO* 3 (kb)>,
) ,

v=0 =0

which is arbitrarily small if ¢ is sufficiently small. This; proves Theorem 5
in the case a < 2.

b. The case a>2k, k=1.

Suppose that for a certain function f in &£ 4u) there exists a sequence
{@.(2)},, Where @, (x) belongs to the span of 4,° such that

(4.5) ﬁmn—)oo “f"'Qn”k =0.

Hence
€.l < const.

uniformly in » and so for an arbitrary y>1

SUP,5¢ |@,(x)| < const. (ky) »!.
Thus, on every compact subset of the half strip
(4.6) Imz| < 1/k, Rez>0,

we have
sup |Q,(2)| = const.
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uniformly in n. The family {@,(z)};>, is thus normal in the half strip
(4.6). Since, by (4.5),

uniformly on [0,00), we infer that
1imn-—>oo Qn(z) = f(Z)

uniformly on every compact subset of the half strip (4.6). But Q,(z) is
periodic with period 4¢/a and then this is true also for f(z), if the width
of the half strip is greater than 4/a, that is, if a > 2k. However, there are
for instance exponential functions for which this is not true. This com-
pletes the proof of Theorem 5.
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