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ON THE STABILITY OF LINEAR DIFFERENTIAL
EQUATIONS IN SPACES WITH AN INDEFINITE METRIC

BERTIL MARKSJO and BJORN TEXTORIUS

Introduction.
The purpose of this paper is to investigate the stability of the differen-

tial equation
uw'(t) = A(t)u(t) .

Here, for every real, non-negative ¢, the function w(t) belongs to a separ-
able Hilbert space H, and the periodical operator 4(¢) has domain on
and range in H. Besides some regularity conditions which guarantee
the existence of a unique solution, the operator A(¢) satisfies the symme-

try condition
DA(t) + A*(¢)D = 0,

where D is a constant operator in [H].

We will define two kinds of stability: the equation is stable if for every
initial value its solution is bounded in norm, uniformly in ¢; the equation
is weakly G-stable, if |(Du(t),v)| is bounded uniformly in ¢ for v in the set
GeH.

The paper is divided into four sections. In the first one, we quote some
basic facts about the differential equation; in the second one we introduce
a sesquilinear form [z,y]= (Dz,y) on the space, following [6], [8] and [9].
We obtain some analogues of Bessel’s inequality and Parseval’s relation.

In the third section we make a construction extending a method origi-
nally designed by G. Borg [3]. This construction is fundamental for the
last section in which our main theorem (Theorem 4.1.) about G-weak
stability is proved. The result extends an investigation by Boman [2].
Let A(t)=A4 + B(t), where A is a constant operator of a special kind and
B(t) is a compact operator belonging to the interior of the unit sphere
in the sense of Proposition 4.1. Then there exists a non-empty set G < H
so that the equation is weakly G-stable. The result is best possible, i.e.
a perturbation B(f) on or outside the unit sphere may give instability.
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1. Basic facts about the differential equation.

Let H denote a separable Hilbert space and R+ the set of positive
reals, including zero. Consider the equation

(1.1) w'(t) = A(t)u(t),

where A(?) is a periodic function from R+ to [H], the Banach space of
continuous endomorphisms of H, such that A(f) is Bochner integrable
with respect to the measure u(¢)=¢ in every finite subinterval, and, for
almost every ¢t € Rt, A(t) is a compact operator. Assume for the sake of
simplicity that A(t)=A4(t+1). Here u'(t) denotes the strong derivative
of a function u(f) from R+ to H.

For every initial value u, € H theequation (1.1) has a unique continuous
solution u(¢) such that %(0)=wu,. We define the solution operator U(t)
by the relation

u(t) = U(t)u(0)

and observe that the inverse operator U-1(¢) defined on the range of U(¢)
exists for all £ € Rt (see Massera—Schéffer [10]). It follows by the unique-
ness of the solution that

Un+t) = (UL)UE), n=12,....

Set for convenience U(1)="U.
We further assume that there exists a continuously invertible operator

D e [H], not depending on ¢, satisfying
(1.2) DA(t) = —A*(@t)D.

Here A*(t) denotes the adjoint of 4(¢). We observe that A(¢) isa closed
operator and that D hence can be chosen self-adjoint. This can be done
by exchanging D for }(D+D¥*) if D is not already self-adjoint provided
that D+ D*+0. Otherwise D is exchanged for ¢D. Hence, from now on
we assume D self-adjoint. It is well known that the solution operator U
corresponding to the equation (1.1) with the symmetry condition (1.2)

has the property
(1.3) DU = (U*)'D.

2. Indefinite metric.

A complex linear space X is said to be a space with G-metric, if there
exists a sesquilinear form G(z,y) defined on X [6]. We can now define
various topologies on X. We will consider the case where X =H with its
ordinary topology. The sesquilinear form, denoted by [z,y] is given by
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(2.1) [z,y] = (D=,y)

where D e [H] is the operator, mentioned above. The form [z,y] is
thus hermitian. The elements z,y € H are called D-orthogonal if [z,y]=0.
A set of vectors z; € H is called D-orthonormal if [x;,2;]= +0;;, where

0 if 747, ..
0y = {1 ifij;', ,j=1,2,....
An operator V e[H], satisfying the relation [Vx,y]=[z,Vy] for all
z,y€ H is called D-self-adjoint or D-s.a. Analogously, an operator
U e [H], satisfying the relation [Uz, Uy]=[z,y] for all z,y € H is called
D-isometric. It is easy to see that these conditions are equivalent to
DV =V*D and U*DU = D respectively. Let sp(A4) denote the spectrum
of an operator A. It is a standard observation that if U is D-isometric
then sp(U)=(sp(U))™* and if V is D-self-adjoint then sp(V)=sp(V).

D-positiveness.
We will now study the implications of the concept .D-positiveness.

DeriniTION 2.1. An operator V, defined on H, is said to be D-positive
if [Va,2]=0 for all x € H.

ProrosrrioN 2.1. Let V be an tnvertible, D-s.a. and D-positive operator.
Then [Vz,x]=0 implies z=0.

Proor. First we observe that DV is positive and symmetric. Then
DV has a symmetric square root R. (See e.g. Riesz-Nagy [11, p. 250].)
Now

= [Vz,z] = (R%,z) = |Rx|?.
Then
DVa = R% = R(Rx) = 0

and consequently z=0.

CoroLLARY. If z is an eigenvector of V and A is the corresponding eigen-
value, then [x,x]+0 and A s real.

With the assumptions of Proposition 2.1 we can hence introduce a new
metric generated by the inner product

{z,2} = [Va,2] .

We observe that V is a self-adjoint operator in this metric.
It is easy to see that eigenvectors of a D-positive and D-s.a. operator
belonging to different eigenvalues are D-orthogonal. For the eigenvec-
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tors of V, D-orthogonality is equivalent to orthogonality with respect
to {+,},
ProrosiTION 2.2. Let V be a D-s.a. and D-positive operator, having a

D-orthonormal set of eigenvectors (@;)ie, with the corresponding eigenvalues
(Ag)im1; then a generalized Bessel’s inequality holds true:

(2.2) Vel 2 S i [ gl -

=l
Proor. Consider

n
Yn = x_zl[x’¢i] [(p’b(pi](pi .
S

The result follows by direct calculation, since [Vy,,,y,]= 0 for all n.
We will now state an analogue of Parseval’s relation.

ProrosiTiON 2.3. Let V be an tnvertible, D-s.a., and D-positive operator
with a countable spectrum. Then there exists a D-orthonormal basis (@;);e.,
of H consisting of eigenvectors of V, and

[o°]
[Va,y] = El 1] (2,9 eyl forall z,yeH,
fe=
where (1;);e, are the corresponding eigenvalues.

ProoF. The existence of a basis (y;);o., of H, consisting of eigenvectors
of V and orthogonal with respect to the inner product {-,-} is clear by
Dunford-Schwartz [4, p. 905]. Thus

z=2@ydve ¥ =2y
1= p==

and

(o]

[Vfl?,:l/] = {x’y} = z Milz [x’wi] [%?/]

=1

= 'Zl Mz’ [%‘Pi] [‘Pi’y] ’
S
where @;= |[y;, ]|t y;.

CoroLLARY. Let V be as above and denote its Cayley transform by U.
Then
|[[Um, Vy]| < [Va,2]t [Vy,y]t, m=123,....

Proor. From

Um0} = 3w v} inn),
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where
”v = (i+}‘v)(i_)’v)-l’ va = lvwv )
it follows that

[Umz, Vo]l = [{Umz,g)| < il{w,w.}{w.,y}l

0 © bt

< (SIS o)
y==1 =1

= ([Vx,x] [V?/:y])* .

3. Perturbation of the differential equation.
Basic facts.

We will now study the differential equation (1.1) by applying the
Floquet procedure. Let u be an eigenvalue of U, and 2 a corresponding
eigenvector. Thus

Ur =px and U@E+1)=U@)Ux = pURt)x.

Now define
w(t) = exp(—tlogp)- U(e)e,

where —m<argu<m. Then w(t) has period 1. Since w(t) exp (¢ logy) is
a solution of (1.1) we obtain

(38.1) w'(t) + (3T —A(t)w(t) = 0,

where logu=1{, —n<Rel <.
Let us now make a perturbation of the equation (1.1):

(3.2) w(t) = (A()+B(t)ult),

where B(t) satisfies the same regularity conditions as A(t). By the previ-
ous transformation we obtain

(3.3) w'(t) + (¢CI— A(t))w(t) = B(t)w(t) .
We now turn to some basic definitions.

DeriniTioN 3.1. We define B,(H) as the set of functions z(-): ¢ — z(?),
x(t) € H for ¢ € [0,1], which are strongly measurable with respect to the
Lebesgue measure, and for which [j|[x(t)||*dt < oe.

We observe that B,(H) becomes a Hilbert space with the norm

1 ]
el = ( [1z01e dt) :
0
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if elements differing only on sets of measure zero are identified (see
Hille-Phillips [7, p. 88]). . ,
For a linear operator 7'(t) we define 7'(+): B,(H) - By(H) as the func-
tion
T()x(:): t->T@)x¢) if =) eDT().
The norm of 7'(-) is
I7()Il = sup {IT(-)x(-)ll + lle(-)|=1,2(-) € D(T())}.

Let K be an invertible operator H — H and
d
I =K (Zﬁ (iCI—A(t))), —n<Relsn.

DEeriNiTION 3.2. We denote by P, (4,{) the function
Di(4,8) = inf {|T(-)w()ll : w(0)=w(l), fw(-)|=1}.

Dy (A,l) is not necessarily defined for all {, —x<Re{ =<z, when the
domain of K is not all of H. When it is not defined, assign + oo as its
value.

ProrosiTioN 3.1. The following properties of Px(4,L) are valid:

(i) Px(4,0)20.

(ii) If exp (i) belongs to the point spectrum of U, where U is the solution
operator corresponding to A(t), then Px(A,l)=0. If not, no general
conclusion can be drawn.

(iii) If D(K)=H, then ®x(A,L) 18 an upper semicontinuous function of ¢;
if K € [H], it 1s continuous.

(iv) Let H be a direct orthogonal sum of subspaces H, and H, such that K
18 completely reduced by this decomposition, and DPx"(A,L) denotes
the restriction of @Px(A,L) to H,, v=1,2. Then

DPx(4,0) = min, PM(4,0), »=12.

Proor. The verification of (i) and the first part of (ii) is immediate.
By means of an example (involving the operators A and K(A) to be
constructed in Theorem 3.1), we shall verify the second part of (ii), by
observing that, in that case 1 does not belong to the point spectrum of
U but
D,(A,0) =0, Dg(4,0) 21,

(iii) is proved by direct caicula,tion, and for the proof of (iv) we can apply
the method in [2].
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A necessary condition that all eigensolutions of the equation (1.1) with
the symmetry condition (1.2) are uniformly bounded in ¢ is that sp(U)
is contained in the unit circle S* (Almkvist [1]).

The fundamental problem.
For a given operator K we define

M (K) = {B(t) : B(t) is Bochner integrable, B(t+ 1)=B(t)
and ||K(-)B(-)||<1}

and turn to the following problem: Find a constant invertible operator
K such that between every two consecutive points on the real axis,
o, and p,,; corresponding to points exp(ip,), exp(ip,,;) of the point
spectrum of U, there is at least one real point o', so that @4 (4,0') = 1.
We remark, that since U — I is compact (see e.g. Almkvist [1]), the point
spectrum of U is isolated with x=1 as the only point of accumulation.

Assume that an operator K solves the problem. Then, if B(f) is com-
pact a.e. and belongs to #(K), and if exp (ig) lies in the point spectrum
of U corresponding to the perturbed equation, we obtain

Dg(4,0) = |[KB()[| < 1.
Consequently ¢’ in the problem above does not belong to the point spec-
trum of U. This will be of importance in the perturbation theory of
Section 4. We also remark that the choice of the constant =1 is im-

material.
For the solution of the problem, we proceed as follows: Given two

neighbour points g,, ¢,41, ¥=1,2,..., as before. Put

M(K,») = supeeI,QK(AsQ) s
where I, denotes the closed interval between the two points. We must
suppose that there is no interval I, where @4 (4,0)=0, otherwise the
problem is not solvable. We then determine K such that M(K,»)=1
for »=1,2,.... We solve the problem in two special cases which are
fundamental in perturbation theory.

THEOREM 3.1. Let (e,);..; be an orthonormal basis in H, and A a compact

operator, which is represented as a matrixz with boxes A, along the principal
diagonal and 0 in all other positions,

4 = ( 0 a,) ,
_ -a, 0
where a,> 0 and a,+nw, n integer, v=1,2,... . With A(t)=A4, the problem
stated above has a solution K(A), and K-1(A) is compact.
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Proor. We decompose H into a direct sum of subspaces generated by
ey,-1 and ey, for »=1,2,... and apply the result by Giertz [5] to obtain

?,(A,0) = inf, min, |a,— o+ 27n||, »=1,2,...;0=0,+1,....
It is clearly no restriction to assume that
a >a,> ...>a,> ... >0,

because there is only one point of accumulation, and that a,<z, »v=
1,2,.... Then
¢I(A’Q) = m'fvlav_lQ” .

By symmetry it is sufficient to consider p € [0,#], and we define
file) = la,—el .

Thus
M(I,») = max min(f,(0), f,+1(0)) = ¥(@,—a,) -

ay+15e=ay

We now determine k,, v=1,2,..., such that the operator K, which is
represented as a matrix with boxes

10
— -1
K, =k (O 1)

along the principal diagonal and 0 in the other positions, solves the
problem. We obtain

Pg(4,0) = inf, |k,|a,—g| .

Hence it is sufficient to assume k,>0, v=1,2,.... Thus
a,—a
M(K,y) = >3
k' + kv+1 ’

and the solution of the system
(3.4) k+k, 2a0,-a,, v=12,...,
gives the desired result. Define
d, =a,—a,,
d, = min(a, ;-a,0,-a,,,), v=2,3,....
Then d,<a,—a,,, and d, tends monotonously to zero, as » > co. The

system
(3.5) k+k,,=4d, k>0 v=12,..,

14

has the unique solution



ON THE STABILITY OF LINEAR DIFFERENTIAL EQUATIONS ... 185

k,=>(-1ytd, n=12,....
y=n
Hence this is a solution of (3.4).
We adjust the value of @x(A,x), substituting &, by

k) = a«min(k;,x—a,), O<a<l.

The compactness of K- is obvious.
We observe that the previous choice of the operator K gives

Gp(A,0) = inf, 2 > inf, 2 > inf, — > 1,
v dv a,— Qi1

ReMARK. If (a,—a,,,),2, is monotonously decreasing sequence, then,
with (k,),_, determined by the system (3.5), M(K,»)=1. In this case
we also have another simple solution of the system (3.4), viz. k,=
(@,—a,,1)7, but then M(K,»)>1, »=1,2,.... In the general case (3.5)

yields a best possible solution of (3.4) in the sense that M(K,»)=1 for
countably many ».

TurEOREM 3.2. Let (e,),o, be an orthonormal basis in H and E a compact

y=1
operator, which is represented as a diagonal matriz with entries ia,, where

a, ts real and *nm, n integer, v=1,2,.... With A(t)=2Z, the problem
stated above has a solution K(Z), and K-1(E) 1s compact.

Proor. Either
(i) card{a,: a,>0}=card{a,: a,< 0}
or
(ii) card{a,: a,>0}=+card{q,: a,<0}.
In case (i) it is no restriction to assume

G Za3 2032 ... >0
and

IA

a,2a;, 0= ...<0.

By the same method as in Theorem 3.1 we obtain
@/(E,¢) = inf, min, |a,— (+2n) .

Now consider the elements with even and odd indices separately. In
Theorem 3.1, by the symmetry, we only used the positive elements for
the construction, and we might equally well have used only the negative
ones. Hence the same method is applicable here, too. In case (ii) assume
for the sake of simplicity that
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@ 2a,2 ... 2ay >0, a,<0forv>N.

The infinite part is treated as above, and the finite problem is solved by
the system

b4

b4k, =d, v=12..,N-1,
(3.6) { v+ y+1 v N

ky = aay, O0<a<l,

as before by a final correction of k,. Here the notation conforms with
the one used in Theorem 3.1.

ProrostTiON 3.2. Let A be the operator A or E. Then, for every
v=1,2,... there exists an open disc C,c{{: —n<Rel{=<xn} containing a,
8o that

C,nC, =0 for vy
and
B(A,l) 21 for L&UC,.

Here O denotes the empty set.

Proor. Between any two neighbour points a,,a,,,, there exists a real
o, such that @x(4,0,) =1 as proved in the preceding two theorems. We
choose -

Cr = {C: IC_ %(9{"9&1)[ < %]Q,"Qoﬂl} ¢

According to the determination of K we can also apply this construction
to the points nearest w or — =, respectively 0, by taking the neighbour
points used above as & or —z, respectively 0. Now @x(4,() can be cal-
culated by the same methods as were used for @x(A4,(), and we obtain
Dr(4,8) = inf, b min (| +a,), 12— a,)
and
Py(5,0) = inf, ;' [t~ a,),

v=1,2,....

Let £ ¢ U,C,, and for an arbitrary C,, let o be the real point in oC,
which has minimal distance from a,. Then

k:llc""al >3 kv_llg_avl = qu(A’Q) z1,
and consequently ®x(4,l)=1. Here 9C, denotes the boundary of C,.

4. Stability and .weak G-stability.

- DEFINITION 4.1. The equation (1.1) is stable if all solutions are uni-
formly bounded on R+.



ON THE STABILITY OF LINEAR DIFFERENTIAL EQUATIONS ... 187

For a discussion of consequences of this property in connection with
indefinite metric we refer to Krein [9].

LemmaA 1. Suppose that 14 is self-adjoint and B(t) is periodic with period
1, Bochner integrable and has domain H. Then U(0,t), satisfying the equa-
tion
U@)—-AU¢) = 6B@)U{t), U0)=I, 0=6<251,
18 an analytic function of 0.
Proor. Standard methods show that
U(o’t) = z 6 Un(t) s

n=0
where

UO(t) = exp (tA) ’
t

U, @) = f [exp(t—s)A] B(s) U, _4(s)ds, mn=1,
0

and the series is absolutely convergent in the uniform operator topology.

LeMMA 2. Assume that —1 & sp(U), where U corresponds to the equa-
tion (1.1) with the symmetry condition (1.2), then its Cayley transform
V=4yU-=I)(U+1I)! is compact and D-s.a.

Proor. Since U—1I is compact and (U +I)-! is continuous the first
assertion is clear. The second one is obvious by the D-isometry of U.

ProposiTioN 4.1. Let A(t)=A + B(t), where either
A =4 and B()e #(K(A))

or

A=F and B(t)e #(K(5).
Further assume that A has simple eigenvalues,
D4 = —A*D,
and B(t) is compact with domain H, satisfying
DB(t) = —B*()D a.e..

Denote U(6,1) by U, and its Cayley transform by V,.
Then the spectrum of V, with zero excluded consists of simple real eigen-
values, and V,! exists, 0S0=<1.

Remark. With ||B(+)||z=||KB(:)|| we obtain .#(K(A)) as the interior
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of the unit sphere in the normed linear space of operators on H, satisfy-
ing the previous regularity conditions and ||K B(-)| < .

Proor or ProprosiTION 4.1. Direct calculation yields, for A=4, U,

represented as a matrix with boxes
cosa, sina,
( . ), v=1,2,...,
—sina, cosa,

along the principal diagonal and 0 in all other positions, and for 4 =5
as a diagonal matrix with entries exp(ia,), »=1,2,.... Hence V, is
represented as a matrix with boxes

. ( 0 tan ‘}a,)
)
—tania, O

along the principal diagonal and 0 in all other positions, respectively
as a diagonal matrix with entries —tanj«,. We observe that the spec-
trum of V, with zero excluded consists of simple real eigenvalues. By
the construction of C,, »=1,2,..., it is immediately seen that ¢ ¢ U,C,
implies e* ¢ sp(U,), that is,

.exp (i) —1

=1 ————= —t Ve,
J@) =i oy = —tandt ¢ sp(7)
where 0<6<1. We observe that Q,=f(C,) are symmetric with respect
to the real axis. Consequently 92,nsp(Vy) =60, k=1,2,..., and for
A€ of,

Ry(0) = (AI-Vg)?

is an analytic function of A and 0 separately. Thus the projections
1
E0) = — f R,(6) dA
2m
22k

are continuous for 0< 0 <1, and we can use the same argument as Alm-
kvist [1] (which depends on [4, Lemma VII.6.7]), to conclude that there
is exactly one simple eigenvalue 1, of V¥, in each £,. Since V, is D-s.a.
and £, is symmetric with respect to the real axis for all k, the eigenvalues
A, are real. By the construction of K(A4), Px(4,0)=1. Hence, according
to Proposition 3.1 (ii), A= 0 is no eigenvalue of V,, 0 < 6 <1, which proves
the last assertion.

ReMAREK. A self-adjoint operator D satisfying
DA = —A*D, A=A respectively A=5,
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is represented as a matrix with boxes

&, iﬂ.)
R «,, B, real ,
(—iﬁv Xy Y ﬂ
along the principal diagonal, and 0 in all other positions, respectively as
a diagonal matrix with real entries y,, where v=1,2,... . D-positiveness

of V, is equivalent to the conditions

min (8, +«,,5,—«,) > 0,
respectively ay, <0, »v=12,....

Let (e,),—; be the same orthonormal basis of H as in theorems 3.1 and
3.2. For n=1,2,... the linear subspace which is generated by
{e),€s,. . .,€,} is denoted by H,; the space S, is H, regarded as an
n-dimensional space and ¢, : 5, — H, denotes the corresponding iso-
morphic and isometric embedding. The same symbols are used for the
inner product and norm in 5, as in H. The projection P,: H - H,
is defined by
o] n
P, (2 “i%) =2 a6

i=1 i=1
For operators T': H - H we set
WP, T, =T, : H,>H,,
and the corresponding embedded operator is
T,=P,TP, =1,7,,'P,,
mapping H -~ H,.

Lemma 3. Consider the equation (1.1) and denote the solution operator
corresponding to £, (t) by %,. The operator U, =1, U, 1, P, is the em-
bedded operator. Then, as n — oo,

(i) 4,(t) > A(t) a.e. in the uniform operator topology,

(ii) U,—1I, > U—1I in the same topology as above, and hence U,z — Ux

wmn norm, x € H.

Proor. (i) is clear by the compactness of A(f) (see e.g. [11, p. 189]).
For the proof of (ii) we use the standard methods of Lemma, 1.
For x € H we define
z, =, 'P,xe H,.

If the operator D is chosen according to the remark after Proposition 4.1
we obtain
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DP, = P,D for n=0,2,4,..., respectively n=0,1,2,...,
hence D, x=DP,x. The definition

[xn’yn] = (gnxmyn)
yields

[xmy'n] = [an:P'ny] .
Let 4 be an operator with domain H. Then, for z,y € H

[Mnxmyn] = [Anx:y] .

ProrosiTioN 4.2. Consider the equation (1.1) with the symmetry condi-
tion (1.2), where A(t) satisfies the assumptions of Proposition 4.1. We
denote the solution operator %,(0,1) corresponding to o, + 0B,(t) by Ugy,
where 001 and n=1,2,.... Further

Upn = tnontn™ Py
1;;1. = i(%On—jn)(%On'l'jn)_l ’
Von = ta¥ontn™ P .
Then
(i) DP,=P,D, and ¥, exists and is D,-s.a., and sp(¥,) consists of
simple etgenvalues +0;
(ii) Voo — Vox in morm as n — oo, where n is even in the case A=41;
(iii) ¢f V4 18 D-positive, then 77, 18 D,-positive and V, is D-positive.

Proor. The first property in (i) is clear from the choice of the operator
D. Thus
A*$)D, = — D, A,(t)
and hence
DA n(t) = — A * (1) D, -

We observe that B(t) € #(K(A)) implies that B,(t) € #(K(4)). With
D(A4,L) defined as Px(4,L) extended only over the numbers a, cor-
responding to 5, we use Proposition 4.1 and the finite dimensionality
to conclude that the second part of (i) holds true.

(ii) Direct calculation yields

(UOn+In)(V0n_ Vo) = i[(UOn_In)—(Uo—I)]'l'
+[(Up+1) = (Ugp+1,)1V,,
hence for all x € H

I(Uon+ 1) (Ven—Vo)zl| >0, m—>co.

Now
In = ‘n(%m+jn)—1’m_lpn(Uan+In) ’
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which implies
1Pn(Veon— Vo)l = In(Vor— Vo)l

S e (%on+F0) a7 M U+ 1) (Ven— Vol

= ”(%lm-*'jn)_l” €n >

where lim,,_, &, =0. Since there is a neighbourhood of {= —1 which for
all n has void intersections with sp (%,,), as is seen from the construction,
the resolvent is uniformly bounded in 7, and consequently

”Pn(Von_ Vo)x“ -0 as n—>oo.
Hence

IVont— Vel = [Pa(Ven— Vo2l +[(Pp—I)Vez| >0, n—>oo.
(iii) Since V P,=P,V,, it follows that
D, Vo Ppx, Pz = (DVyP,2x,P,x) = 0,
and hence ¥, is Z,-positive. We define

fn(e) = inf (@n%nxn’ xn)’ 0=6=1,
[kenll=1
that is, f,(0) is the least eigenvalue of 2, %;,. Since ¥4, is an analytic

function of 6, f,(0) is continuous. If ¥7, were not 2,-positive, then

fo(1)<0. Now f,(0)>0, and hence f, (n)=0 for some 7 € (0,1), which
contradicts (i). Thus for all ze H

0 = (DnY1nns Tp) = (DV 12, @) .

The continuity of the inner product and property (ii) imply that
(DVyz,x) =2 0.

Remark. The D-positiveness of V, implies that sp(V,) is real and we
can obtain a proof of Proposition 4.1 if ¥ is D-positive without extending
Pk(4,0).

DerinITION 4.2. The equation (1.1) is weakly G-stable if for its solu-
tions u(t) the function [u(t),v] is bounded uniformly in ¢ for v € G< H.
This is equivalent to the condition

I[Um2,y]| £ M(x,y) < o,
where x € H, ye G=H, m=0,1,2,..., and M(z,y) is independent of m.

We can now state our main theorem.

THEOREM 4.1. Let A(t)=A + B(t) satisfy the assumptions of Proposition
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4.1 and assume further that V is D-positive. Then the equation (1.1) with
the symmetry condition (1.2) s weakly G-stable for @=R(V,).

REMARK. See the remark after Proposition 4.1 for the conditions on A
implying D-positiveness of V.

Proor. According to the propositions 4.1 and 4.2 the corollary after
Proposition 2.3 is applicable for V=7V, and U="U,.

REMARK 1. We observe that the weak R(V,)-stability implies stability
with respect to the norm ||-||={-, -}

Remark 2. If dimH < oo, then R(V,)=H and weak R(V,)-stability
implies stability.
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