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COCHAIN FUNCTORS
FOR GENERAL COHOMOLOGY THEORIES II

ANDERS KOCK, LEIF KRISTENSEN, and IB MADSEN

1. Introduction.

This is a continuation of the paper [11] (referred to as Part I).

The central part is the construction of higher cochain functors C, on
the category of CSS-complexes yielding general cohomology theories Hy,
of finite type. This is done in Section 5. Roughly, a C|, is constructed
from C(,_; and C as a mapping cone for a natural transformation
Ci_py ~ Oy (C is the ordinary cochain functor). In general, C(,(X) has
the algebraic structure of a graded differential loop (a loop is a set with
a non-commutative and non-associative addition with zero and inverses).

In Section 2 we describe a class of cochain functors called c.g. functors
comprising the C(,’s, and prove that a functor from the class gives rise
to a cohomology theory. In Section 3 the existence of an exact sequence

0O—-~7Z0—-6G-0

is proved for certain c.g. functors. This sequence enables us to prove that
Cy is a c.g. functor provided C,_; is, and to define cochain formulas
for higher order cohomology operations.

For a more detailed description of the content, the reader is referred
to the introduction of Part I.

2. Axioms for cochain functors.

We first put up the four axioms for cochain functors and then derive
various consequences of various combinations of them. All four axioms
together imply the result we want: The cochain functor gives rise to a
cohomology theory (on the category of CSS-complexes).

Let us recall that a set with a binary composition (written +) is a
loop if

(i) there is a two-sided neutral element (written 0).

(ii) for any @ and b in the set, there are unique solutions to the equa-
tions x+a=0b and a+y=>b. We denote the solutions b—a and b-a,
respectively, so that the elements b—a and b a satisfy the equations
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b-a)+a=0,
a+((b=+a)=05b.

A homomorphism between loops is a mapping preserving + and 0. It
will then automatically preserve — and — (considered as binary com-
positions). A chain complex in the category Z of loops is a Z-graded
loop with a homomorphism 6 of degree +1 such that dod is the zero
homomorphism. We let €% denote the category of Z-graded chain
complexes in the category of loops.

We shall consider contravariant functors

(1) C: CSS—>%2.

We denote by C™ the n’th component of C. It is a functor CSS —» .Z.
For f: X - Y a CSS-map, we shall of course denote C(f) by f*. Also,
denote by Z: CSS — €. the functor defined by

Z(X)=Kerd: C(X)-C(X).

(The value of this cocycle functor is of course a chain complex with zero
differential.)

Let us recall the following definitions (see e.g. [7]). A difference co-
kernel for morphisms f,f': A - B in a category is a morphism e: B - C
such that any morphism d: B - D with dof=dof’ has a unique fac-
torization over e. A free sum for the objects 4,, 1€ 4, is an object C
with morphisms ¢,: 4, — C such that given a set of morphismsd,: 4, - D,
A € A, there is a unique morphism g: ¢ —~ D with gos,=d, for all 4 € A.
We use the French notation IT 4, for such a free sum. Difference kernel
and direct product T] A, are defined dually. Difference cokernels and free
sums are special cases of “right roots” or “direct limits”. Difference
kernels and direct products are special cases of “left roots” or ‘“inverse
limits”’. A contravariant functor F is termed right-left continuous if it
transforms difference cokernel diagrams

A_,—’;B_‘.o

into difference kernel diagrams, and free sum diagrams into direct product
diagrams. There are analogous definitions for left-right continuous (con-
travariant) functors, and for left continuous, respectively right continuous
(covariant) functors. Recall that a left adjoint functor is right continuous
and a right adjoint functor is left continuous.

Note that the category CSS has both difference cokernels and free
sums, as well as difference kernels and direct products (for, this is true
for the category Ens, and it is easy to see that one may construct the



COCHAIN FUNCTORS FOR GENERAL COHOMOLOGY THEORIES II 153

limits in question dimensionwise in the category Ens). Also #.% has
difference cokernels and direct products, and the obvious forgetful
functors

2) O, € 2NN @, Ens

preserve these. (This tells us how to construct the inverse limits in €.2.)
For short 0,0 is denoted by C.

We shall need the following concepts concerning algebraic expressions
in the theory of loops.

DeriniTION 2.1. Let F(2y,...,7,) be an n-ary operation built up by
means of +, —, = and 0. We say that F is abelian zero, denoted

F(xy,...,xz,) =0 modAb,

if F(xy,...,2,)=0 is a theorem for abelian groups when — and = are
interpreted as —.

Recall that 4[¢q] denotes the standard ¢g-simplex and that A[q] denotes
the subcomplex of A[g] consisting (geometrically) of all (g— 1)-faces
except one. Again, we refer to [6] for the exact definitions. We used

A[q] and A[q] in Part I, Section 2.
Given a functor C as in (1), a cochain operation § on C in n variables
(an n-ary operation) is the obvious thing: a family of functor transfor-

mations
Omyx ... x(COm > (Cmta

m running through the integers, and with n factors on the left. We do
not require additivity, but we want 0 to be 0 if all the arguments are 0.
The F considered in Definition 2.1 may be thought of as a cochain
operation in n variables.

Finally, let P=P,U...UP, be a covering of {1,...,n} (i.e. P;is a sub-
set of {1,...,n} and UP;={1,...,n}).

DEFINITION 2.2. An n-ary operation F(z,...,%,) is called P-normed
if for all 1 <j<k we have
F(z,,...,x,) =0 if x;,=0fori¢P;.

If P is the “trivial” covering {1}U...u{n}, then we will use the word
normed instead of P-normed.

DErFINITION 2.3. A contravariant functor C': CSS -~ €.Z will be called
a cohomology generating functor (or c.g. functor) if it satisfies the following
four axioms:
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Axiom 1. C is right-left continuous.

Axiom 2. Let F be an n-ary operation and let P be any covering of
{1,...,n}. Suppose that F is abelian zero (Definition 2.1) and P-normed
(Definition 2.2). Then there exists an n-ary P-normed cochain operation D
on C with

D(éxy,. . .,0x,) + 6D(xy,. . .,x,;) = F(zy,...,2,).

Axiom 3. If A is a subcomplex of X, then the induced map

i*: O(X) > C(4)

18 onto.

AxioMm 4. For all ¢z 0, C(4[q],Alq]) is acyclic. (Here C(A[q], A[q]) of
course means the kernel of the restriction C(d[q]) - C(Alq)). It is a
€ L-object, and to say that it is acyclic is simply to say that every cocycle is
a coboundary.)

An alternative formulation of Axiom 1 is given by the obvious
ProrositioN 2.4. Axiom 1 holds for C if and only if each

C": CSS — Ens
18 right-left continuous.

- We deduce some consequences of the various axioms. The first of
these does not use anything about CSS but its being a diagram category
Ens?, ie. a category of functors 2 — Ens. This description of CSS is
given by Kan [9]. The category £ has as objects the non-negative
integers p,q,7,. .., and as morphisms the wellknown face and degeneracy
operators. We use the letters d, d’ etc. to denote arbitrary morphisms
in 2. If X: 2 - Ens is a CSS-complex, then X(p) is the set of its
p-simplices. If d: p — ¢ is a morphism in 2, X(d) is the application of
the operator d to the p-simplices; of course, we shall write d instead of
X(d). The proposition to be proved now will be well known to category
theorists.

ProrosrITioN 2.5. A contravariant functor C: CSS — Ens s corepresent-
able if and only if it is right-left continuous.

By the two propositions 2.4 and 2.5 we immediately get
CoroOLLARY 2.6. If C satisfies Azxiom 1, then each C™ is corepresentable.

Proor or ProrosiTION 2.5. Recall the pair of adjoint functors from

Part I, Section 2, A
CSS :&——; Grad Ens.
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Let ¢ denote the end-adjunction ¢: A0 — Idggg, and % the front-adjunc-
tion #: Idgraamns > 04. Recall that A[p] is 4 acting on a graded set
with one point * in dimension p and ¢ in other dimensions;
n(x) € A[p] is the basic simplex of the standard simplex and is denoted
t If d:p—gq, denote by d: A[q] - A[p] the CSS-mapping given by
d(tg) = diy.
The construction of a candidate L for a corepresenting object for C

goes as follows:

L(p) = C(4[p)) ,

L(d) = Cd) ford: p—>gq.

(Note that in case C is the usual n-cochain functor, this is precisely the
construction of Z, (acyclic Eilenberg-MacLane complex) given in e.g.
[6].) Then L corepresents C' on all standard simplices

C(4[p]) = L(p) =~ Homegs (4[p], L) .

What we have to do to get this isomorphism in general is to write an
arbitrary CSS-complex X as a direct limit of standard simplices and use
the limit preserving properties of C. Intuitively this can be done: take a
disjoint union (=free sum) of standard simplices, one for each simplex
in X, and glue them together correctly. This is a direct limit construction.
Formally, this argument looks as follows.

Lrmwma 2.7, The following diagram is a difference cokernel diagram,
SJunctorial in X, in the category CSS:

ADAOX —=2, Aox °X,
€anx

Proor. The following equation always holds for front- and end-
adjunctions:

(3) Oey © ngy = gy -

Suppose we have a CSS-map h: 40X - Z with hodQOex=hoe qx.
Apply the functor 0. Then the map

(4) Ohonpx: OX > 0Z
gives a factorization of Ok over Oey, for

Ok o npx © Oex = Oh o 0A0ex © Npapx
= Dh o DSADX ° Nganx = Dh;

the first equation is naturality of  with respect to Dey, the next
is the assumption on %, and the last is just (3). Also, (4) is the only
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possible factorization of Ok over Oey, as is seen by multiplying a pos-
sible factorization on the right by #gx. By (3), O¢yp is an epimorphism,
and therefore one can conclude that (4) is of the form Ok, k: X - Z.
Since O is faithful, £ is a unique factorization of % over e¢x. This proves
the lemma.

The proof of proposition 2.5 is completed as follows. Since 4 com-
mutes with free sums, we may write

40Y as T 4g(s)],
seY

where g(s) is the dimension of the simplex s. From the lemma we there-
fore get the difference cokernel diagram, natural in X (for suitable p’s
and ¢’s in the summands)

(5) IT 4(p] 3 I14[q]1~>X .
0x

040X

Let P,;, i=1,2, denote the functors ¢ and Homggg(:,L) respectively.
Both are contravariant and right-left continuous. Therefore, applying
them to (5), we get two difference-kernel diagrams in Z.

(6) TI P:(4lp]) € 11 Pi(4[q]) < PyX).
Now,
P,(A[p]) = C(A[p]) = L(p) ~ Homegg (A[p],L) = Py(4[p]) ,
so that the two diagrams (6) are isomorphic, natural in X. In particular,

P,(X)~ Py(X). Proposition 2.5 is proved.

In general, one cannot define the homology of an object in ¥.Z. If,
however, Axiom 2 holds for C: CSS - €%, we can define a cohomology
functor H corresponding to C, H: CSS - Grad Z Ab. For any complex
X, we define on Z(X) (i.e. on the kernel of §: C(X) — C(X)) a relation ~,

(7) z~y < dc¢ with x=y+dc.

Axiom 2 will guarantee that this is a congruence relation. Reflexivity is
obvious. Symmetry: apply Axiom 2 and get a normed operation D with

D(0, 075, 03) + 0D(21, %5, @) = (%1 (Tg+T3)) = (%1 = T5) +23) .
If z=y+dc and y is a cocycle, then
y =z + d(c+D(y,y,0c)) .
Transitivity: apply Axiom 2 to the expression
(((-751'*':”2) +a5) = x4) = ((xy=24) + (23 +3))
and find the corresponding normed D. Then, if
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x=y+06b, y==z+dc
and z is a cocycle, we have
x =z + 6((c+b) + D(z,c,0b,2)) .
Finally, ~ is compatible with + ; apply Axiom 2 to the expression
(@1 + @) + (g + ) = (@1 +5)) = (¥p+7),
and find the corresponding normed D. Then, if x and y are cocycles,
(x+da) + (y+6b) = (x+y) + d[(a+b) + D(z,6a; y,6b)] .

So we define H(X) to be the graded loop obtained by factoring out by ~
in Z(X). Obviously, H is a functor. The loop structure on H(X) is
actually the structure of an abelian group, as is easily seen using again
Axiom 2. For a pair (X,A4) we define C(X,A4) to be the kernel of the
restriction *: C(X) - C(4). Not only is C(X,4) € %, but the natura-
lity and normalization properties in the D’s, used in the proofs so far,
show that (7) also defines a congruence relation on Z(X,4). We thus
have

ProrosiTioN 2.8. Let C: CSS — L satisfy Axiom 2. Then (7) defines
a congruence relation on Z(X), respectively on Z(X,A). The quotient is
in Grad Z Ab and defines a functor H=H(C)

H: CSS - Grad Z Ab,

respectively a functor, also denoted H, from the category of pairs of CSS-
complexes to Grad Z Ab.

Also, for z € Z*(X) denote by % its equivalence class in H*(X).

ProrostTioN 2.9. Let C: CSS — €.F satisfy Axioms 2 and 3. Then the
SJunctors H™ defined in the preceding proposition gives for any pair AcX
of CSS-complexes a long exact sequence

. > HvX,4) L HX) 2> HMA) 25 H (X, 4) >... .
Proor. By Axiom 3 we have a short exact sequence of ¥.%’s
0->(0(X,4)->C(X)->C4)~0.

Now the proof is, with a little care, as for abelian groups. Axiom 2 is
not used except to assure that H is defined.

Next, we combine Axioms 1 and 2. If d+ A4 c X, the CSS-complex X4
can be described as a difference cokernel
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{

(8) A— X 1 X/4,
14

where p maps 4 constantly to a point * in X,

ProrosiTioN 2.10. Let C: CSS — €. satisfy Axioms 1 and 2. Then for
a pair (X, A), the following “excision’ holds: q in (8) induces an isomorphism

H~(X/|A, +) ~ HY(X, A).

Proor. Applying C to (8), we get by right-left continuity of C a dif-
ference kernel diagram in €%

0(4) % C(X) < C(X/4) .
P

From this one gets by chasing elements another difference kernel dia-
gram

i o
9) C(4,*) 4_*? C(X,*) «—— C(X/A,x),

v
but here p* is the zero map, so that ¢g* is the kernel for i*. However,
one easily sees that C(X,4) also might be described as the kernel of ¥
in (9), so that ¢* in (9) is an isomorphism onto C(X,4). The proposition
then follows.

If Cn is right-left continuous, we denote the corepresenting objects
(existing by Corollary 2.6) by L,,. It is well known and easily seen that
transformations v between the corepresented functors give rise to homo-
morphisms 7 between the corepresenting objects (and conversely); we
have e.g.
+,~,%: L,xL,~L,,

(10) é: L,~L,.,.

Each L, is thus a loop in the category CSS. Denote the kernel of § in (10)
by K, ; it is a sub-CSS-loop of L,,, and it corepresents the functor Z».
From §6=0 follows 66=0. So é: L, - L, ,, factors over 4

(11) §=100,

where i is the inclusion K, ., <L, ,,. Axioms 3 and 4 will give proposi-
tions on the “geometric structure” on L, and K,. We recall the geome-
tric concepts from Part I, Section 2.

ProrposiTiON 2.11. Let C: CSS -~ €% satisfy Axioms 1 and 3. Then
for all m, the corepresenting object L, for C™ is contractible.
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Proor. Axiom 3 gives that L, is injective: If 4 < X, a CSS-map from
A4 to L, can be extended over X. Now the proof is as for Proposition
2.8 in Part I.

ProposrTioN 2.12. Let C: CSS — €& satisfy Axtoms 1, 3 and 4. Then
for all n, $: L, -~ K, ,, is a Kan-fibering, and K, and L, have the Kan-
property.

Proor. Copy the proof of Proposition 2.7 in Part I, replacing every-
where C?(-; U) by C». Of course, one must be careful in the diagram
chase, since now the objects in the diagrams are loops only. All the

exactness properties in the diagrams are now given by definition or by
Axiom 3 or 4.

Bringing in all four axioms for C, we may finally get at the main theo-
rem, justifying the name c.g. functor (‘‘cohomology generating”) for
such a C.

TuEOREM 2.13. Let C: CSS - %% be a c.g. functor (Definition 2.2).
Let K, denote the corepresenting object for Z», and ¢ the corresponding
natural transformation Hom(-,K,) -~ Z". Then we have the following
diagram, natural in X € CSS,

Homgg(X, K,) — Z"(X)
[X,K,] —— HYX),

where the vertical maps are taking equivalence classes under homotopy and
cohomology, respectively. Furthermore, y is an isomorphism, and H is a
cohomology theory.

Proor. If the diagram commutes, y must be defined by
(12) 2([f]) = [*2a)

where 2, is the basic cocycle. We must prove that (12) well-defines .
Suppose f~g by a homotopy ~. Then f=g~0 by a homotopy

B =hx(goprojx), projx: Xxd[l]-X.

Then, since § has the homotopy lifting property (i.e., the Kan-property),
f=g lifts over 6: L,_, - K, that is,

f':'g =3do k,
with %: X —» L,_,. Then
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f¥z, g%z, = (f=9)¥2, = (8 o k)¥2, = k¥6%(2,) = k¥de,, ~ O,

and thus f¥z, ~g¥z,. Hence y is well defined by (12). To see that y is a
monomorphism, put a loop structure on [X,K,] by means of + on K,.
By the very definition of + on K,, ¥ becomes a homomorphism, so we
need only check that it has zero kernel. Let f: X - K, have f¥z,=06b.
Then f=00b, that is, f factors through L,_, which is contractible (Pro-
position 2.11); thus f~0. Clearly, y is onto. The fact that H* is a
cohomology theory is proved already: long exact sequence and excision
in Propositions 2.7 and 2.8. Theorem 2.13 establishes the homotopy
axiom. The theorem is proved.

3. The exact sequence again.

The existence of an exact sequence of (one-variable) operations can be
proved under rather general circumstances. Let C and C’ be c.g. functors
(Definition 2.2), and H, H' the corresponding cohomology theories.
Let L,, K, , respectively L,’, K,’ denote the corresponding Eilenberg—
MacLane complexes. A family A of functor-transformations (no ad-
ditivity required, but 0 must be preserved)

Ay,: H™ —> H'™+4, —oco<n<oo,
is called stable if for Ac X and all n
An10%(8) = (—1)26%2,(2), 2eH™4).

Let G(H,H') denote the graded abelian group of stable cohomology
operations between H and H’'. Also, let O(C,C’) denote the set of every-
where defined functor-transformations 6 ={6,} (no additivity is required,
but 0 must be preserved),

6,: C"— (C'ntq —oco<Mm< o0,
Obviously 0(C,C’) inherits a loop structure from C’. We can put a differ-
ential V of degree +1 on the graded loop O(C,(C’),

_ | 66(x) = 66(x) for degl even
(1) Vo() = lﬂé(x)+t§0(x) for deg 0 odd .

Then VV=0; V will be a homomorphism if C’(X) is a chain complex of
abelian groups for all X. Let Z¢(C,C’) denote the kernel of V. Define

e Z0(C,C") - G(H,H')

in the standard manner as follows. If 6 € Z0O(C,(’), let 6 act on the basic
cocycles z, € C*(K,); this defines a family of H'-classes on the K’s and
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thus a cohomology operation by the corepresentation theorem. It is
easily seen to be stable. Also eocV=0. We shall need two properties
which a pair of c.g. functors C' and €’ may have.

(A) For each g the cohomology suspension
(2) o: H'"™a+Y(K(n+1),x) > H"(K(n), *)
is an isomorphism if » is sufficiently large .

Let pr; be the projection from K(n) x ... x K(n) to the ’th factor.

(B) For each ¢ the homomorphism
Ipr*: ITH™Y(K(n),*) > H™([]1K(n),*)

is an isomorphism if » is sufficiently large .

REemARK 3.0. If H”(point)=0 for » large, say »n= N, then K(N +7) is
i-connected. Further if H' is a usual cohomology theory, one may
show (e.g. by a spectral sequence argument) that (A) and (B) are ful-
filled. It will follow from the material of Section 5 that (A) and (B) are
fulfilled even if H' is not a usual cohomology theory, but only a coho-
mology theory of finite type (that is, H'*(point)=0 for all but a finite
number of n).

THEOREM 3.1. Assume that C and C' are such that (A) holds. Then the
sequence
0(C,0") =~ Z0(C,C’') —> GH,H') - 0
18 exact.

Proor. The proof that ¢ is onto can be copied almost word by word
from the proof of Lemma 3.5 in Part I, interpreting (—1)?y as y if ¢ is
even, and as (0=y) if ¢ is odd. In the last case, the equation (6) in that
proof is replaced by

bursr = 0=((0=03ppy) +2) .

We proceed to prove exactness in the middle. Let r € Z0(C,C’) with
&(r)=0; let, for example, r be of odd degree g. We shall construct ¢’-
cochains 6(e,) on L, satisfying

66(611,) —"5#9(61,_‘.1) =r(e,) VYn.

Choose N so big that (2) is an isomorphism for n>N. Choose a C'-
cochain 6(zy,;) on Ky, so that 66(zy,;) =7(2y+1). (This can be done,
since £(r)=0.) Now it is easy to construct C’-cochains 6(e,) on L,,
PN, and 0(z,) on K,,, p< N +1, satisfying the equations

Math. Scand. 20 — 11
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(3)n 00(2541) = 1(2p41), nEN,
(4)n 80(e,) = of 0(zp41) = 7(en), nsN,
(6)n i*0(e,) = 0(2,), n=<N.

We shall construct 0(zy,,), 0(ey.,) so that the equations (3),,, (4),, and
(5), hold for n<N+1. Choose 0'(zy.s) and 0'(ey,;) so that (3)y,; and
(4)y41 hold. We do not know that (5)y,, holds. But 0(zy.,) =¥ 6 (ey.q)
is a cocycle on Ky,,. Now, use that the suspension is an isomorphism
to get a cocycle z € Z'(Ky,,) and cochains we C'(Ly,,), w' € C'(Ly4q)
with -
M =w,
#w+0w') = O(zsa) =50 (en) -

Let D(x,y,2) be a normed operation with
(6) VD(z,y,2) = ((z+y) + (®=2)) ~ (+y).
By Axiom 2 such a D exists. Now put

0(zy12) = 0'(2y42) + 2,

O(en+1) = (0'(en+1) + W+ 0w')) + D(86' (1), 0w,0%6" (2y5)) -
Then (3)y., still holds, and (5)y.,, holds since ¥ on the D-term is zero.
And (4)y,; holds since in our case éD=VD.

Now, construct 0y 5(ey4s), Onia(ens) ete. in the same way. The family
thus constructed defines a cochain operation 6, and by (4),, VO=r.
This proves the theorem for degr odd. For degr even, the proof is
in principle the same, but of course the D to be used is not that in (6).

We shall derive some consequences of this theorem. First, let C*™ be
the c.g. functor defined by:

(C*mp(X) = CP(X)x ...x CP(X) (m factors)
(7) 0(xys. « 3 %p) = (024,...,02,)
(xl" . '7:”) + (yl" . "ym) = (x1+y1" . "xm+ym) .

It is obvious that the corepresenting objects of (C*m)? (respectively
(Zxmyp) are L(p)X ...xL(p) (respectively K(p)x ...xK(p)). More-
over, if (C,C’) has the properties (A) and (B), then so does (Cxm,(C’).
The cohomology theory H*™ associated to C*™ is nothing but H®...®H
(m summands).

Lemma 3.2. If the pair (C,C’) has the property (B), them the homo-
morphism
(8) (H.H)®...©uH )~ aH™H'),
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taking (A,,...,4,) into the operation A,(2,)+ ...+1,(2,), is an isomor-
phism.

We leave the proof to the reader.

Let us now assume that both (A) and (B) hold for (C,C"). Then by
Lemma 3.2 every stable cohomology operation is additive. Combining
Theorem 3.1 and Lemma 3.2, we get an exact sequence

(9)  OCxm C") s ZOC™,C") —> GH,H')®. . .QGH,H') - 0.

Note, that 0(C*m,C’) is the set of n-ary operations from C to C' (see
Section 2). Using (9), we may measure the deviation from additivity of
elements in ZO(C,C’). Let A be a “primary” cochain operation from C
to €', that is, 1 e ZO(C,C'). Then the operation ().(x-}-y)—'-l(x))*l(y)
in ZO(C*2,C') maps to zero by e. Hence there exists an operation
d(A;-,+) in O(C*%,C’) so that

(10) Vd(i; 2,y) = (Mz+y) = Az)) = Ay) .

Moreover, one may choose d(1; z,y) such that in addition it has the
property

(11) dA;z,y) =0 if z=0o0ry=0.

This is trivial if C’ is an abelian-valued cochain complex, since for each
d(4; -, ) satisfying (10) the operation

has the desired property. In the general case one has, of course, to use
Axiom 2. The argument goes as follows. Let d(4;x,y) be a cochain
operation satisfying (10) and let us e.g. suppose that degl is odd.

The operation

F(2),2,,%3,7,) = (x2+ (((‘x3+xl) = (@4 +T,)) ~ (.’1:3—'-:174))) !

is abelian zero and P-normed, where P={1}u{2}u{3,4}. Hence, there
exists a P-normed cochain operation E(x;,z,,%;,%,), such that VE=F.
We substitute in £

2, = 0d(; z,y) - 8d(4; z,0) ,

z, = d(4; oxz,dy) -~ d(A; dx,0) ,

2y = 6d(A; z,0),

z, = d(4; 6x,0) ,

and get a cochain operation e(z,y). Now, observe that the operation
dl(x!y):
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di(x,y) = (d(4; 2,y) - d(4; 2,0)) + e(z,y) ,

has the properties
le(x:y) = Vd()'; x,?/) ’
dy(x,0) = 0.

In a similar way one may define a cochain operation d,(x,y) such that

Vdy(2,y) = Vdy(2,y) ,
do(x,y) =0 fxz=00ry=0.

This completes the argument.

4. Some constructions.

Let C, be the usual cochain functor with coefficients in the graded
abelian group = (see I) and let C’ be a c.g. functor. We suppose through-
out this section that the pair (C',C,) has the properties (A) and (B) of
Section 3. Asin Part I, in the formulas we shall denote the degree of z
by g(=).

Let k: C' - C, be a “primary’
Put

2

cochain operation, i.e. k € ZO(C',C,).
Ck)(X) = O'MX)x C t90-1(X) (as sets)
and define coboundary and addition in C[k](X) by

1 oz, w) = (0, k(x)— (— 1)9% dw)
(1) (x,w) + (&', w') = (x+2', w+w'+ (- 1p®Rd(k; z,2")) ,

where d(k; -, -) is a fixed cochain operation measuring the additivity
defect of k (cf. (10) and (11) of Section 3). It is easy to see, that (1) gives
C[k](X) the structure of a graded loop, and that ¢ is a homomorphism
of degree +1.

The two difference — and ~ are given by

9 (x,w) = (&', w') = (x~a', w—w'— (= 1)9®d(k; «’,x=2')) ,
(2) (x,w) — (@', w') = (z=2", w—w' — (- 1)®d(k; x-2',2")) .

We shall call C[k] the cone construction.
ProrosritioN 4.1. The cone construction C[k] is a c.g.-functor.

Proor. It is almost trivial that C[k] satisfies the Axioms 1, 3 and 4,
and the proofs will be omitted.

In order to verify Axiom 2, let F(,,..,£,) be an m-ary operation
which is abelian zero (Definition 2.1) and P-normed (Definition 2.2), P
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being any covering of {1,...,m}. The cochain functor C, is abelian-
valued. Hence,

F((@y,wy),. o o @y wp)) = (F(2g5. . o, 2),Ep(y, . . ., 2,))

where dp(xy,...,,) is some linear combination of terms of the form
d(k; -, *).

Since § commutes with +, -, — and 0, and since F' has even degree,
we have VF(§,,...,§,)=0. Thus

Vdgp(zy,. . .,x,) = (= 1)9®kF(z,,...,2,) .
Let Dy(zy,...,z,) be a P-normed operation with

VDg(2y,. . . %) = F(2y,...,%,) .
Then

is “primary” and maps to zero in G((H')x™ H,). We apply the exact
sequence

o((¢"yxm,C,) — Zo((C")*m,C,) —= G((H')*™,H,) - 0,
and get a P-normed operation E in 0((C")*™,C,) having
VE = kDy + (—1)*®d(k; Dy6,0Dg)—dy .

A straightforward computation shows that the operation Dy in
o((C[k])xm,C,), given by

DF((xl’wl): s ’(xm’wm)) = (DF(xl" . ’xm)’(_ l)y(k)E(xlr' . ’xm)) ’

has the desired properties. This completes the proof.

REMARK 4.2. The Dy constructed has the further property that
jDp=Dyg, where j: C[k] - C’ is the projection.

Let L'(n), respectively L(z,n), be the corepresenting objects for C'7,
respectively CZ%, and let K'(n), respectively K(m,n), be the corepresenting
object for Z'», respectively Z7. (L(z,n) is an abelian CSS group, since
C% is an abelian group.) The corepresenting object for C*[k] is

L(n) = L'(n) x L(m,n+g(k)—1),
and the map d from L(n) to L(n+1) is given by
(3) § =8 x(k=(=1)®3,)
(cf. (10) of Section 2).
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In Section 2 we proved that the CSS-map 4, is a Kan fibration
(4) K(z,n+g(k)—1) > L(zw,n+g(k)— 1) > K(7,n+g(k)) .

Since % is a “primary” cochain operation, the CSS-map % defines a map
from K'(n) to K(n,n+g(k)). Let

(5) K(m,n+g(k)—1) > K(n) > K'(n)

be the fibration induced from (4) by means of k. The formula (3) tells
us that the total space K(n) of (5) is the representing object of Z»[k].
The cohomology functor H[k] associated with C[k] is by Theorem 2.10
naturally equivalent to the functor [+,K(n)]. Since K(n) (up to homo-
topy type) depends only on the homotopy class of &, it follows that the
cohomology functor H[k] depends only on the cohomology operation
k: H' -~ H_, and not on the choice of a representing cochain operation.
We proceed to the description of some exact sequences associated with
the cone-construction. First, let us consider the obvious short exact
sequence of c.g. functors

(6) 0 C,—% Clk] 4> ¢ >0,

where degox= —g(k)+1; degj=0. Associated with (6) there is a long
exact sequence on cohomology level (the cone-sequence)

(7) ... > Hpro® Sy prepp] 1, grasi By pgreetr

Clearly, (7) is natural with respect to induced maps and coboundary §*.

From (7) we see that if H'*(point)=0 for n sufficient large, the same
is true for H[k].

Moreover, using (7) one may prove that if C is a c.g. functor so that
properties (A) and (B) of Section 3 hold for the pair (C,C’), then the same
is true for (C,C[k]). Let C'’' be another c.g. functor, and let H' be the
associated cohomology functor. The functor G(H', -) applied to the
sequence (7) yields a new sequence

(8)
.~ GH",H,) % G(H",H[k]) 2> GH",H') Lo GH"H) > ...,

and we have

THEOREM 4.3. The sequence (8) is exact provided (A) and (B) holds for
the pairs (C",C"), (C",0,) and (C”,C[k]).

Proor. We shall not go into details with the proof but just mention
that it is based on the following diagram with exact columns
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(9) 0 0 0 0
t ? 3 3
> GH",H,) ~fos GH", H[k]) o> a(H" H) Fos\ a(H" ) -
3 i
oo > ZO0",C,) 2 zzp(o" Ok]) = za(o" 0yt zco(c",o,,) ...

t + 4
oc”,c,) (9(0”,0[76]) o, c) o, c,)
where
6g(0) = x00,
(10) 70 =];ce;9 if deg0 i
ey (0) = o eg0 is even ,

ko O+ (—1y9®d(k; 66,60) if degf is odd.
Here d(k; -, +) is a cochain operation such that
(11) Vd(k; z,y) = k(x+y) — (k(z)+k(y))

(see Section 3 (10) and (11)).
Similarly, one may apply the functor 4(-; H'') to (7) to get a sequence

(12) ... < GH H") <= GH[K),H") «E— 6H H") L ...,
and we have

THEOREM 4.3 a. The sequence (12) is exact provided the properties (A)
and (B) hold for the pairs of c.g. functors involved.

Proor. We restrict ourselves to prove exactness of the sequence
GH,H") <= oH[k,H") L4l H"),

leaving the two other cases to the reader.

Let 1 e G(H[k],H") be an element which maps to zero by 4*. We may
suppose (without real loss of generality) that g(4) and g(k) are even.
Let A € ZO(C[k],C"') represent 1. Then A, € ZO(C,,C") given by

Aq(w) = A(0,w) + d(4; (0,8w), (0, — bw))

represents 4*(1) (see (10) and (11) Section 3 for definition of d(4; -, +)).
By Theorem 3.1 there is a u € O(C,,C"') such that

du(w)=pd(w) = A(w) .
Now, consider the operation A: (C'')® — ¢,

A(21, 20, 3, %4, T5)
= (@,+2;) = (((xl"'(xz"‘ (x4+x5))) = (23+ (%'*‘%))) - xs) .
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A is abelian zero (Definition 2.1) and 4 is P-normed, P being the covering
{1}u{2,4}u{3}u{56}. Choose by Axiom 2 a P-normed operation E in
0((C"')=8,0"") with VE=A.
Substituting in E(x,, s, 23,24, 25)
z, = M0z,0), wx, = A(0,k(x)),
xg = pok(z), w, = d(1; (0,k(6x)), (0, —k(dx))) ,
as = 6d(1; (62,0), (0, k(z)))
we get an operation e: C' - C"' with the property e(z)=0 if dz=0 and
such that
() = ((l(x,O)—'n p(k(@))) = d(4; (82,0), (O,k(x)))) + e(x)
is an operation in ZO(C',C").
Finally we show that j*(1,)=1. Let (z,w) be a cocycle in C[k] (i.e.
=0 and dw="k(x)). We have to show that A(z,0)= u(k(z)), and A(z,w)
are cohomologous. This follows from

Mz, 0)= u(k(z)) = Ax,0) = (aﬂ(w)T(z(o,de(a ; (0,8w), (0, -—6w))))
~ M=,0) = (0= (2(0,)+d(2; (0,6w), (0, —aw)))) ,
M, w) = A(,0) + (4(0,w) + Vd(4; (2,0), (0,%)))
~ M,0) + (A(0,w) +d(2; (0,6w), (0, — 6w))) .
together with a simple application of Axiom 2.

Now, suppose that (C",C,) and (C’,C,) have properties (A) and (B) of
Section 3. Then, copying the definition of secondary operations for
usual cohomology theory (see e.g. [12]), to each “relation”

(13) ak=o0,
where @ € G(H,,H,), we shall assign an operation (in fact a set of opera-
tions) Quik: HOC[K] ~ HC, .

The construction goes as follows. Choose a representative a € Z0(C,,C,)
for @. Thus, by exactness of the sequence

0(C",C,) = Z0(C',C,) —*> G(H',H,) - 0,

there is an operation 6 in @(C’,C,) such that Vf=ak. Define
quk: O[k] - C, by

(14) quok(z,w) = O(z) + (— 1) a(w) + d'(a; (— 1)9®dw, k(z) — (— 1)9® dw) .

Here d’'(a; #,y) is a (fixed) cochain operation such that
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d'(a; x,y) = ay) + (= 1)®a((—1)"®z) — a(z +y) ,
d'(a@;0,y) = 0.

Then que*eZ O(C[k],C,) and thus defines an operation Quéke G(H[k], H ).
Note that Quék is only determined by the relation @% =0 up to an element
in G(H',H,).

By Theorem 4.3 a we have an exact sequence

.« G(H, H) <= G(H[k],H) <"~ aH" H) E— GH H)« ...,

where k*(B)=pk. Let ¢ € G(H[k],H,) and put &*p=a. The relation
k*3*=0 implies that @k=0. Therefore Qué# is defined and one easily
sees that "
E*Quak = &*p = 8
for every choice of Qudk, that is, Quék—¢ is in the image of j*. Thus
there exists a choice of Quak which is equal to ¢.
We have proved

ProrositioN 4.4. Every stable cohomology operation from H[k] to H, i3
of the type Quak.

5. The higher cochain functors.

The higher cochain functors C[k,,...,k,_,] (shortly Cy), which are
special c.g. functors of finite type, are defined by iterated use of the cone
construction given in Section 4. The definition of C, is therefore in-
ductive.

Let my,7y,7,,. .. be graded abelian groups of finite type, that is, x;
has only a finite number of components different from zero.

Put Cy=0C(-;n,) and define inductively C[k,,...,k,_;] to be the
cone construction C[k,,...,k,_,)[k,_;], where k,_; (the (r—1)th k-inva-
riant) is in Z O(C[k,,...,k,,],C(-; ®,_;)). Since we are working with
graded coefficients, we may without loss of generality assume that
g(k,)=t+1. Then from the very definition it follows that

r—1

CH(X) = TT O™ X ; 7,)(X) (as sets) .

$=0
Coboundary and addition are given by
E = (2, k() =4, . . kopy(@y,. . ., 2, )+(=1)2,),
F4§ = (- @ Yt (= D3 @pe e Zis)s GuoeeoYsd)ee-) s

where Z=(z,,...,x,) and 7= (yy,...,¥,).
The string of c.g. functors

(1)
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(2) oo > Oy Oy Cpp 1> ... 15 Cy,

where j is the projection, has an inverse limit C(, in the category of
graded differential loops.

It is clear that O, satisfies Axiom 1, Axiom 3 and Axiom 4 of Sec-
tion 2. The remark 4.2 in Section 4 tells us that Axiom 2 is also fulfilled.
Hence C, is a c.g. functor. As usual, let us denote by L,(n), respec-
tively K(,(n), 1 Sr < oo, the corepresenting objects of C7,, respectively Z,.

We have ©
Liy(n) = HL(m,n+i) .

The CSS-complexes K(,(n) may be organized in a Moore-Postnikov
tower (see [18]) with K ,(n) as inverse limit:

Kn)
+
T
K(m,_y,n+7r—1) > K y(n) — K(m,;n+r+1)
Vi ~
(3) K(mt,_pn+7—2) > Kq_p(n) = K(m,q5n+7)
Vi

iy
K(my; n+1) > Kopn) —2 K(mg; n+3)
$i
Kipn) — K(my;n+2).

Using a CSS-version of Browns representation theorem [4] and the
Moore-Postnikov decomposition of a CSS-complex, one gets the following
factorization theorem.

THEOREM 5.1. Given a cohomology theory h with the property:
(4) h*(point) = 0 for n sufficiently large .
There exists a c.g. functor C(y such that h=HC ;.

REMARE. Even if condition (4) does not hold, Theorem 5.1 may be of
use since every cohomology theory can be “approximated’ by theories

satisfying (4). Leaving details to the reader we give the definition of
such “approximating’ theories k), '

Rf(X) =Im (h?(X, XP-N-1) —» BP(X,XP-N-2)),
CoroLLARY 5.2. Given a pair of c.g. functors (C,C") such that H satis-
fies (4) and H' 13 of finite type. Then conditions (A) and (B) of Section 4
are fulfilled.
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Proor. By Theorem 5.1 we may assume that C'=C\, for a suitable
choice of k-invariants. If r=1, such that Cjy is a usual abelian chain
complex, the corollary is just Remark 3.0. In the case >0, apply the
cone sequences (Section 4),

(7) o> Hy->Hey>Hy>Hy—~> ..., 157
and induction over . This completes the proof.

Since C(,=lim_C(,, we get a natural transformation
(5) HC > lim _HC,.

Even though we cannot do homological algebra with the (loop valued!)
c.g. functors, we can do enough hand work with Axiom 2 to get informa-
tion about the kernel of (5); we can prove that the following sequence
is exact for all n:

0 - im® A% > HA —~ lim HP) >0,

where 1im® is the first derived functor of lim__ as defined in e.g. [17].
The proof is omitted.

We proceed to discuss cohomology operations of r-th kind. Let
ky,k,,. . .,k,_; be k-invariants

(6) I?i: H[El""’ﬁi—l]_’H(';ﬂi)
with cochain representatives

(7) ki: C[kl" . ’ki—-I] -> C(' > ni);
ky: O+ 5 m9) > C(+ 5 my).
We state

DErFINITION 5.3. A stable cohomology operation of the r-th kind is an
additive relation
k1t H(osmp) > H(sm,)

k, being in G(Hqy,H(+;m,)) and j*-! being the projection Hy-> Hy,
(Hop=H(-; ny)).

Note that the cone sequence gives information about indeterminacy
and domain-of-definition of such r-th kind operations.

By Proposition 4.4 every k, is of the form Quikr-1, 8 e GH(*; mp_y),
H(-;m,) and 8%,_,=0 (Theorem 4.3.).

We shall verify that the axioms given by Maunder [14] hold. This
needs some preparations, namely the concept of derivation of the func-
tors C, and H,. The iterated projection j*-1: C(,) — Cqy (=C(*; 7))
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is a cochain operation, and one may therefore define a functor
Ci,p: CSS » €Z (the first derivative of C(,) by
(8) Cip = Kerjr-1.

If k.: C,y > C(-; »,) is a primary cochain functor, then the restriction
k¢, 1 of k, to C, , (the derivative of k,) is of course again a primary
cochain operation. Thus we may describe C, ;) as the c.g. functor

(9) O(r, )= C[k(z, 1) - "k(r—l, 1)] .

The procedure may be iterated to obtain c.g. functors

O(r, 8 = C[k(s-u, a)) ye e k(r. s)]

and operations
ke, 90 Co0—> 05 7,) .

Alternatively, C, »=Ker jr-e,

Remark. The c.g. functor Cy,; is nothing but C(-;m_,;), to be
precise, there is a primary cochain isomorphism «: C(*; m_;) = Cy 4y
of degree t—1. In the sequel we shall not distinguish between C(: ; 7,_;)
and Cgy ;5. Thus, in particular, the stable operation

75(1,:—1): Hyy oy~ H(:;m)
is also considered as a stable operation from H(-; m;_,) to H(-; m,).

The whole pyramid of cohomology operations

ko ko .k K
I?(r,l) E(r—-l, Do {?(2,1)
(10) : .
E(r,r—z) ]%(r—l,r—z)
(r, r-1)
has the following two properties:
Fgsa,of 9 = 0, 0ss<tsr, (= F,0) »

11
() ¢+1,8 = Quierr,nke,s)

To see this, e.g. for the case ¢=r—1, choose cochain representatives for
the &’s. Then

k(r. r—-l)kr—l(x) = kr(o’kr—l(x))
+%,6(0,2) = £k, (0,2) ~ 0,

proving the first assertion. For the second assertion, see the proof of
Proposition 4.4.
By the very definition of the C, , there is a short exact sequence
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(12) 0> Cig = Cip 2= Cy >0
with an associated long exact sequence
a8 ",’r-a
(13) voo > Hy g —> Hpy = Hg>Hp 9~ ... .

(If s=r—1, then (11) reduces to the cone sequence (7) of Section 4.)

Now, assume that 7,,. . ., 7, are graded Z,, vector spaces (of finite type).
Then the string
I?(r, r—1)» E(r—l, r—2) ¢ I?"(2, 1) 751

yields a chain complex of 4(Hg, Hz,)-modules
(14) D,——‘lL» ,_1—>...—>D1—il->Do—>O,

d, being “matrix multiplication’ by 75(,.,_1). The next proposition shows
that our definition of operations of r-th kind agrees with that of Maun-
der’s.

ProrosiTION 5.4. If l?q_ o tn (10) s replaced by E(,’ 9(Jf 1)L, the re-
sulting pyramid 18 a pyramid of cohomology operations associated with the
chain complex (14) in the sense of Maunder [14].

Proor. It is easily seen that Axioms 0-4 (of [14]) are satisfied. One
only has to use the exact sequences

R
.—>H(‘)-—>HQ_1)——>tl H(l)"’"')
. '—*H(t—l)'*H(l) - H(l)")""

Proor oF Axiom 5. Let Y be a subcomplex of X and let 2 be a class
in H_;(X) which restricts to a class § in H_;(Y). Suppose that
k,_1(9)=0, or equivalently, that

k,_y(8) € Im(j*: H(X,Y;n,y) > H(X; 7,)) .

It then follows from a suitable “cone-sequence’ that § may be lifted to
a class (y,w)” in H)(Y). Let us denote by w’ a cochain in C(X; x,_,)
which restricts to w. The cochain k.0, k,_,(x) — (—1)"éw) in C(X;x,)
is actually a cocycle and represents both &*k,(y,w)" and a class of
I?(,.. r—0(j*)"1k,_,(2). We have proved that

0¥k (y,0)" € ke, p-0(5%) 1 Byoa(2)
This completes the proof of Axiom 5 and the proof of the proposition.

Next, we shall demonstrate how, by means of H,, one may derive
the spectral sequences of Atyiah-Hirzebruch [3] and Adams [1]. No
new results are obtained.
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The cone sequences
.= Hrir (e s m ) > Higy — Hig ) — HW7(— ;) - ..

fit together in an exact couple

i i
20, . 1 4/, .
co > Hp gy H™2 (e s ) — Hghs) — HYY(  7,0) -
+ +
. > HZ:_) - H™r( ) - Hzg'_ll) — H™MT3(., Tpy1) > oo
+ {
> Hz'—l) - Hn+r(. ; nr—l) > H:;-;—l - Hn+r+2(, : 7'6,.) -~ ...
+ 4

Assuming 7, to be homogeneous of degree zero, the exact couple reduces

to the Atyiah—Hirzebruch spectral sequence

(16) E$? = HP(-; HL,(point)) = H?(-;%_,),

16
EpT & HPY(-).

The differential d, in this spectral sequence is the additive relation

k
Hﬁq%.r) S Hp+r+1(, > n—q+r)
(17) |7
&
(- ) —> HER,

There is a commutative diagram with exact columns

¥ {
H (-g+r,—@) > H (—g+7)
l fr—l l J’r—l

(18) H(-; ”—q) = H(-q+l, - H(—q+1)

} }

H(—q+r, —g+D) = H(—q+r, —g+1) »

! '

the left side vertical sequence being the long exact sequence associated
with the short exact sequence of c.g. functors

0~ C’(—q+r, —g+1) ™ 0(—q+r, -9 C(—q+1,— y > 0.
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Thus we have
(19) dr = E(—q+r, —q)(jr_l)_l .

This result was obtained by Maunder in [15].
If we apply the “functor” G(H,,+) to the exact couple (15), we get
a new exact couple (Theorem 4.2) and therefore a spectral sequence with

El = a(H(r)’H(' H 7'53)) >

20
(20) By, = G4Hy,Hy) .

We shall not treat this spectral sequence in detail, but only mention that
results on the differentials may easily be derived.

Finally we shall “functionalize’ the r-th kind operations from Defini-
tion 5.3. Let f: X - Y be a CSS-map. Then the functionalization of
k,(j-1)-1 is defined to be the additive relation &7 f*j- or, in detail,

Hlky. . k)Y) 5> ... 4 HRYY) L HyY)

| |
4
Hlky,...,k)(X) <~ Hlkgy,- - -, kgp] ~— ... «— H (X).

Information about indeterminacy and domain-of-definition is given by
the sequences (5.13).

The following relations are easily checked on cochain level (notation
as in (10))

(21) kg, 008 = kg, q4n
and
(22) fod = &oj.

Using the definitions just given of r-th kind operation (Definition 5.3)
and of functionalized operation together with (21) and (22), one can get
a family of Peterson—Stein-like formulas using only the well-known rules
for additive relations. We shall give only one such relation; let s<r—1

f* j;r j--v g j‘;r jor-D+a fx j-s
(23) 2 jg(r,s)&_. Jrr-Drafx joo — [’5(’,8) Jr-Dreg-s fx j-u
The left hand side of this relation is an r-th kind operation followed by
f*; the right hand side is a functionalized s-th kind operation followed
by an operation of kind r—s. The inclusion relations (23) then express
that these two are congruent modulo the indeterminacy of the relation
in the second line of (23).
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