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COCHAIN FUNCTORS
FOR GENERAL COHOMOLOGY THEORIES I

ANDERS KOCK, LEIF KRISTENSEN, and IB MADSEN

1. Introduction.

The purpose of this and a forthcoming paper [6] is to study general
cohomology theories (on the category of CSS-complexes) by means of
cochain functors. The emphasis is on cohomology theories of finite type
(i.e. H™ (point) = 0 except for finitely many n). These cohomology theories
are closely related to higher order cohomology operations. We hope that
the setup presented here will enable us to generalize to higher order
operations the results proved in [10].

Part T and Part II are different in the sense that in I we only treat
the usual cochain functor, whereas in II we treat cochain functors for
general theories. The setup, however, in Part I is done in such a way
that it generalizes to the situation considered in Part II.

The only new result contained in Part I is Theorem 3.6, which we
shall state here in a slightly weaker form than in Section 3. Let 0,
denote the set of natural transformations in m variables from the cochain
functor C=C(-,Z,) into itself,

0: CxCx...xC->C
satisfying
degb(xy,. . .,x,) = ¢+ Xdegx;

for some fixed integer ¢ (¢=deg6). We also assume that 0(z,,. . .,z,)=0
if ;=0 for some 4, 1 <¢<m (see Definitions 3.1-3.3). The set O, has
the structure of a graded vectorspace over Z,. It also has a differential
V of degree +1. Before stating our main result on the cohomology of
(Oum, V), we shall mention that Steenrod’s cup-i-product is an element
of O of degree —1.

TrEOREM 3.6. Let 4 denote the mod 2 Steenrod algebra; then

H(O),V) ~ (RER...®G  (m copies) .
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This theorem (or rather as it is stated in Section 3) generalizes the
exact sequences given in [8, Theorem 3.3] and [9, Theorem 2.2].

Theorem 3.6 has several applications. We shall here take the oppor-
tunity to mention some of these:

It is possible to give cochain expressions for higher order cohomology
operations. Such expressions have made possible evaluations of secon-
dary and tertiary operations in low dimensions. This in turn has enabled
us to determine Whitehead products of the form [«,,t,], where «, €
7, +4(8") is detected by a secondary operation and ¢, € x,(S") is the
generator. Elements of this type are for instance #, €, ¢S"),
W, € 77, ,16(S™) or &, €7, .15(S?) (notation as in Toda [13]).

In case «, is detected by a primary operation, such a determination
was carried out by Mahowald [11].

Unstable operations are sometimes not additive. The deviation from
additivity can be determined in the case of secondary and tertiary
operations, [5, Corollary 3.6 and Theorem 4.3] and [8, Section 2 (12)
and Section 3 (11)], respectively. A special case of this was used by
E. Brown [1] to give a definition of the Kervaire-Arf invariant in terms
of cohomology operations. This made it possible for E. Brown and
F. Peterson [2] to solve the Arf invariant problem in dimensions 8k + 2.

Let us also mention that it is possible to deduce various relations
between higher order operations, a Cartan formula for secondary opera-
tions (not quite satisfactory), various Peterson—Stein formulas, and
higher order product structures.

In Part IT we consider general cochain functors. The aim here is,
among other things, to develop a theory which in a “natural” way can
yield information about higher order operations. We believe, however,
that the theory in itself has some interest. The treatment of tertiary
operations given in [10] is rather involved and not quite satisfactory.
We hope it be possible to improve this by use of general cochain functors.

It is well known that general cohomology functors k= {k"} are rep-
resentable, that is, A* is naturally equivalent to [-,k(n)], for some space
k(n). The representing objects k(n) form an Q-spectrum, thus the k(n)’s
have stable k-invariants. The Moore-Postnikov decomposition of k(n)
tells us in which way % is built up from usual cohomology functors.
The idea of Part II is, correspondingly, to build up general cochain
functors. Let us consider the special case

g for n=0,
h*(point) = =, for n=-m,
0 elsewhere.
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Then k(n) is a two stage space with a k-invariant 4 of degree m. Choose
(Theorem 3.6) a cochain representative for 1,

Az O 5 mp) > CHm(e 5 my)

We construct a new “cochain” functor C[4] which is essentially the
cone-construction of homological algebra,

CX) = CUX; ) x CH™(X ;5 7y)

with differential
o(x,w) = (o, dw+A(x)) ,

and addition
(@, 0)+(y,v) = (z+y,w+v+d(4; 2,y)) .

The term d(4; x,y) is a cochain operation measuring the deviation of A from
additivity. Although this addition turns C[1] only into a loop-valued
functor, we are able to define an associated cohomology functor H[A].
The functor H[4) is representable and the representing object is a two
stage space with k-invariant 4. Thus we have H[A]=h. In agreement
with Theorem 3.6 of Part I, we let O(C[4],C) denote all natural trans-
formations (preserving zero) from C[4] to a usual cochain functor C. It
is equipped with a differential V of degree +1. We have

(1) H(0(C[2),0),V) = &(H[A)H),

where G(H[A],H) is the set of stable operations from H[] to H. Note
that elements of 4(H[A],H) may be considered secondary cohomology
operations associated with relations 0=@1. The formula (1) enables us
to repeat the construction. In this way we obtain “‘cochain’ functors at
least for all cohomology functors h of finite type (see Theorem 5.1 in
Part II). Especially one gets cochain formulas for all higher order stable
cohomology operations (see Proposition 4.4 and Definition 5.3 in Part II).

2. The primary cochain functor.
We shall deal with the following categories:

CSS-complexes CSS
CSS-complexes with base points CSS,

CSS abelian groups CSS Ab
non-negatively graded sets Grad Ens
non-negatively graded sets with base points Grad Ens,
non-negatively graded abelian groups Grad Ab
Z-graded sets Grad Z Ens
Z-graded sets with base points Grad Z Ens,

Z-graded abelian groups Grad Z Ab.
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For definition of CSS, see Kan [4]. The category CSS, consists of CSS-
complexes with a base point * in each dimension; d * =%, s;x=x for all
the face and degeneracy-operators d; and s;. Similarly, Grad Ens, and
Grad Z Ens,, have base points in each dimension.

There is of course a system of obvious forgetful functors between the
listed categories. We shall give name to only one of them, namely

(1) O: CSS — Grad Ens.
We shall make use of the following important fact:
THEOREM 2.1. The functor O kas a left adjoint A and a right adjoint L,
A,L: Grad Ens — CSS.

The proof is an exercise in category theory, and is a special case of
the general construction of adjoints for induced functors between dia-
gram categories. In case where [n] € Grad Ens is the graded set with
one element in dimension » and no element in the other dimensions,
A[n] is the standard n-simplex, a CSS-complex whose geometric realiza-
tion is a closed n-simplex.

In case where (7,n) e Grad Ens is the graded set having (the underlying
set of) the abelian group = in dimension » and the 0 group in the other
dimensions, L(x,n) is the usual (acyclic) Eilenberg—-MacLane complex.

The adjoint pair 0O0,L gives a functor-transformation (‘“‘end-adjunc-
tion”)

e: DL g IdGradEns ’
ie. for U € Grad Ens a mapping of graded sets
(2) ey: OLU U,

which is called the fundamental cockain on LU. Cochains in general are
defined as follows:

DEerFiniTION 2.2. The 0-cochain functor C9-;U) for U € Grad Ens is
defined for X € CSS as

CO(X; U) = HomedEns(DX, U) .

For U e Grad Z Ens the n-cochain functor C*(-; U), —co<n<oco, is
defined as Co(-; (8" U),), where (8*U),,,,=U,,, and (8»U), is the non-
negative part of S*U.

For U € Grad Z Ens, we shall in the sequel write LU for L(U,). Also,
put L(U,n) = L(S"T).
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An immediate consequence of Definition 2.2 and Theorem 2.1 is the
corepresentability of the cochain functors, i.e., the existence of an equiv-
alence, natural in X and U,

(3) C™X; U) = Homggg(X,L(U,n)) .
Note that for the fundamental cochain from (2) we have

ey €CYLU; U).
With the usual notation f* for the mapping

ffBoony; U)->CcvX; U)

induced by a CSS-mapping f: X — Y, the isomorphism (3) may be de-
scribed as follows: given z € C*(X;U); the corresponding CSS-mapping
z: X - L(U,n) is the unique CSS-mapping with the property
(4) z = (&) e, )

with e,y € CYL(S™U),; S»U)=0YL(U,n); U), the fundamental co-
chain.
From the right adjointness of L to O we obtain two propositions.

ProrositioN 2.3. Let U € Grad Ens. Then LU 1s injective tn the sense
that for Y a sub-CSS-complex of the CSS-complex X, any CSS-mapping
f: Y > LU can be extended to X.

ProposrrioN 2.4. Let U,V € Grad Ens. Then L(U x V)~ LU x LV.

. The following is a well-known and easy-to-see fact of corepresentable
functors: Given a functor transformation 7

7: II; Hom(-; LU;) > Hom(-; LV);
then there is a unique mapping
(5) 7: TILU, -~ LV

inducing 7.
Assume now that U € Grad Z Ab. Then the usual operations on co-
chains (natural in X),

— +: OX; U0)xCYX;U)»>CYX; U),
induce a CSS-map
(6) 2,%: LUxLU LU

according to (5). In fact, LU is a CSS-abelian group with this structure.
(One might, equivalently, define + as the functor L acting on
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+:UxU U under the equivalence in Proposition 2.4.) We define
the coboundary

é6: OMX; U) - CrY(X; U)
by the usual formula. According to (5) this gives a CSS-mapping
§: L(Um)—»>LWU,n+1).

Since ¢ is a homomorphism with respect to +, § is a homomorphism
with respect to ¥. From d6=0 follows 46 =0, where we write 0 for the
constant map (0 mapping everything to the base point of LU(n+ 2).
(One easily sees that if 0 denotes the graded zero-group, then L0 consists
of exactly one simplex in each dimension, ie., LO is geometrically a
point. By functoriality L0 maps into LU for U € Grad Ab; the image is
then called the base point.)

We note that by the definitions of F and §, if 2, ye CYX; U), then

(x+y)”

Z+j: X->L(U,n),
(0x)"=d o x:

® X - L{U,n+1).

The definition of Eilenberg-MacLane complexes takes the following
form.

DerinrTioN 2.5. Let K(U,n) denote the kernel of §: L(U,n) —
L(U,n+1), i.e., let the sequence

(9) 0> K(U,n) —*> L(U,n) =2 L(U,n+1)
be exact in CSSAb. Denote by 2, , the cocycle

z(U,n) = i#e(U,'n) € Cn(K(U’n)’ U) >
where e(;, ) is the fundamental cochain in (2).

That %y, . is a cocycle is seen by means of the obvious identities in
(10) below, which together with those in (8) will be in constant use.
Let f: X - Y be a CSS-mapping

(f*y)" =gof for yeOMY;U),
(10) f(U, n) = 1EdL(U,n) ’

_#zw, n =1,
"2y, m = O, n-p -

Denoting the cocycles in C*X; U) by Z»(X; U), we get by (8) that
K(U,n) is a corepresenting object for the functor Z»(-; U). For a co-
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cycle x € CX; U), the mapping z: X - L(U,n) factors through the
subcomplex K(U,n) and 2%y ,==.

From 86 =0 it follows that & in (9) factors over K(U,n+1) so that we
have the fundamental exact sequence

0 — K(U,n) —> L(U,n)
(11) 15
K(U,n+1).

We do not claim that § is onto (although it will actually be so if S*U
is non-negatively graded). We claim, however, that § is a Kan-fibering
with K(U,n) as fiber, in a sense which we shall now recall. In [3], a
subcomplex A[n] of 4[n] is defined. Geometrically, A[n] consists of all
(n—1)-faces of A[n] except one. The following is the usual definition of
Kan-properties for complexes and fiberings except that we do not re-
quire the fibre map to be onto.

DeriNITION 2.6. A CSS-complex X has the Kan-property if, for all
¢20, any CSS-map/[q] — X can be extended to a CSS-map 4[q] - X.
A map p: X - Y is a Kan-fibering if for all ¢ =0 the commutative dia-
gram (full arrows)

Al —L—X
A

(12) i /,{ lp
/

/

Alq]—— Y

can be completed by a map h: A[g] > X (dotted arrow) so that the
triangles commute.

ProposITION 2.7 For arbitrary U,n, the mapping & in (11) is a Kan-
fibering. Furthermore, K(U,n) and L(U,n) have the Kan-property.

Proor. We interpret the maps f and g in (12) (with p as ) as a
n-cochain on A[q], respectively an (n+ 1)-cocycle on 4[q], by the funda-
mental corepresentation. We define relative cochain complexes in the
usual way so that the horizontal sequences in the following diagram are
exact:

#
0->0M4,4; U) —Cv4;U) —= OA4; D)
8} 8} " 8}
0 - C™Y(4,4; U) - Cm+(4; U) —— Cn+(4; U) > 0
8} 8}
0 > Om+2(4,4; U) > Cn+2(4; U) .
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We are given g € Z"+1(4; U), fe O™A; U) with §f=i*g. Now it is well
known (or easily seen) that the chain complex in the left column is exact.
Then a simple diagram chase gives h e C*(4; U) with dh=f, i*h=g.
Then k: A[q] - L(U,n) proves the first part of the proposition. The
second is trivial in view of Proposition 2.3. The argument for the third
part is much similar to that of the first: a diagram chase in chain com-
plexes for 4, A and (4, 4).

We recall a few concepts from CSS-homotopy theory (Kan [4]). Let I
denote A[1]. Geometrically, this is the unit interval. The complex I
has two 0-dimensional simplexes, (0) and (1), and one non-degenerate
l-simplex ¢, with 9¢=(1), 9;}=(0). Two CSS-maps f,g: X - Y are
homotopic if there is a CSS-map h: X xI - Y with

R X x(0) = f, hXx(1)=g.

We write f~g if f is homotopic to g; if ¥ has the Kan-property, then
~ is an equivalence relation. The quotient set of Homggg (X, Y) is in
this case denoted Homjpgg(X,Y) or [X,Y]. Let p: X > Y be a CSS-
map. It is said to have the homotopy lifting property if for all Z the
commutative diagram (full arrows)

Zx(0) — X

incl. / g lp
/
l /

ZxI Y

can be completed by a map ZxI - X (dotted arrow) so that the tri-
angles commute. If p is a Kan-fibering, it has the homotopy lifting
property. The cone 7'X on a CSS-complex X is X xI/X x (1). It con-
tains X as a subcomplex. If it contains X as a retract (i.e. the injection
has a left inverse), X is called contractible. A cone is acyclic. Therefore
any contractible complex is acyeclic.

We have in particular

ProrosiTioN 2.8. For any U € Grad Ens, LU is contractible (and thus
acyclic).

Proor. From Proposition 2.3 we get that if LU is a subcomplex of Y,
then LU is a retract of Y. In particular, LU is a retract of TLU.

Obviously, if Y is a contractible Kan-complex, [X, Y] consists of one
element only. In particular, [X,LU] is trivial. We shall study [X,KU];
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this set is in general non-trivial. The abelian group structure of KU
(=K(U,0)) makes [X,KU] into an abelian group.

TuroreM 2.9 (Eilenberg-MacLane). There is an equivalence y
x: [X,K(U,n)]~>H~X; U),

natural in X and U. For f: X - K(U,n), 4([f]) is given by f*2y. ny»
where 2y ) denotes the cohomology class of the fundamental cocycle zy, ).

Proor. First we prove that y is well defined. Let d~b. We shall
prove a ~b (a cohomologous to b). We obviously have (4=8)~0. Since
the 0 map can be lifted over §, we get by the homotopy lifting property
for § that there is an &: X — L(U,n—1) with

G-b=380h.
Therefore, writing z for 2y ,) and e for ey ,_y
a—b=(a=b)*%z = (@Z0)%z = (o h)¥z = h¥3%z = h¥e ~ 0.

For 2 e HYX; U), let « be a representing cocycle. Then y([Z])=2, so
that y is onto. By the definition of ¥, the equivalence

is a homomorphism, and y is induced by this equivalence; so x is a
homomorphism. Thus, to prove y one-one, it suffices to prove the kernel
to be zero. Let f: X - K(U,n) be such that f¥2=6b. Then f=305,
that is, f factors over the contractible L(U,n—1). Hence f~0.

3. An exact sequence of operations.

It is well known how the corepresentability of the cohomology functor
(as expressed by the Eilenberg-MacLane Theorem 2.9) makes it easy to
handle cohomology operations. Here we shall use the corepresentability
of the cochain functor to investigate cochain operations, and to get
a connection between cochain- and cohomology operations. The case of
operations in one variable is the most important. In this form (with
Z,-coefficients) the theorem may be found in [7] and [8]; the two-
variable case is treated in [9]. Here we perform the generalization to an
arbitrary finite number of variables and almost arbitrary coefficients.
In the subsequent paper [6], we shall prove a corresponding theorem (the
one-variable case) for certain general cohomology theories.

Let Up....UpV € Grad Ab.
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DErinITION 3.1. A locally defined cohomology operation A of type
(smU,,...,8™U,,; V) and degree ¢ is a functor transformation

A: ﬁH"‘(-; U,) > Hr(-; V),

i=1
p=3n;+¢q, with the property that for any complex X,
AX)2y,...,2,) =0

if at least one of the arguments 2, € H™(X; U;) is zero. Locally defined
cochain operations are defined similarly, by replacing the letter H by
the letter C everywhere. We do not require additivity neither for co-
homology nor for cochain operations.

DrrFINITION 3.2. An (everywhere defined) cohomology operation A of
type (U,,...,U,; V) and degree ¢ is a family of locally defined coho-
mology operations

yl

of degree g, one for each m-tuple (n,,...,n,) of integers. Everywhere
defined cochain operations are defined similarly, using locally defined
cochain operations.

of type (S™U,,...,8™U,,; V)

MNiy ooy Nmd

Note that the zero condition implies that one may relativise a cohomol-
ogy or cochain operation in any one of the variables; given A as in Defini-
tion 3.1, one may thus for 4 =X define

A H™(X;Up)x...xHw\(X;U,_,)xH™X,4; U,) > H?X,4; V).

Since the functor H™(-; U,)x ...x H"(.; U,) is corepresented by
K(U;;n)x...xK({U,;n,), there is a 1—1 correspondence between
locally defined cohomology operations A of type (S™U,,...,8™U,; V)
and degree ¢ and cohomology classes

A€ HP((K(UI; 7y), %) X ... X (K(Upyny), *); V) ,

p=3n;+q. Similarly for locally defined cochain operations 4 and p-co-
chains on L(U;,ny) X ... x L(U,,; n,) (coefficients in V). It is now legi-
timate to speak about the sef of (everywhere defined) cochain operations
of type (Uy,...,Up,; V). Actually the set is in Grad Z Ab, letting grad-
ing g consist of the cochain operations of degree q. We shall make it
into a chain complex by introducing a differential V of degree + 1.

DErinrTION 3.3. Denote by O(U,,...,U,,; V) the set of everywhere
defined cochain operations of type (U,,...,U,; V). For
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0e OU,,...,.U,; V)

of degree ¢, Ve O(U,,...,U,,; V) is the cochain operation of degree
g+1 given by
m
(VO)(zy,. . .,2,) = 60(2y,. . .,x,)+ > (= 1)P0(xy,. . .,02,...,2,),
i=1
where p,=1 +q+§};11g(xj). (We use here and everywhere the notation
g(x) for that integer for which z € Cv@(X; U).)

Obviously VV=0, and V is a homomorphism with respect to the
abelian group structure on @. Denote by ZO(U,,...,U,,; V) the kernel
of V. We are going to assign a cohomology operation (0) or § to every
0e€Z0O(U,,...,Uy,; V). For each m-tuple of integers (n,,. ..,n,), evalu-
ate 0 on (projfz,,...,projkz, ), where z,, denotes the fundamental
cocycle on K(U,;n;) and proj; is the projection onto the #’th factor.
This gives a family 1 (indexed by m-tuples of integers) of cocycles. The
corresponding family of cohomology classes defines the cohomology
operation &(0) (of the same type and degree as ).

A cohomology operation of the form ¢(0), § € Z@, will be multistable
in the following obvious sense:

DEFINITION 3.4. A cohomology operation 4 of type (Uj,...,U,; V)
and degree ¢ is called multistable if for any pair (X, 4), inclusion¢: 4 >X,
and any integer r, 1<r=<m,

O*A(e*¥By,. . Gy - -, 1¥R,) = (—1)A(By,. . .,0%F,,. . ., 2,) ,
where 2, € H"%(X; U,) for i+, §,€ H"(4; U,) and s=q+372\n,.

By corepresentability, 2 determines, and is determined by, a family of
cohomology classes (with coefficients in V) on (K(Uy,ny),*)x ... x
(K(U,,,my), ), indexed by all m-tuples of integers. We can give an alter-
native description of multistability in terms of this family. Let 1<r=<m.
Denote by o, the additive relation

3 #
C’*(K(Ul; )X ... X (K(U,;m,),%)% ... V) LA LN
O*(K(Ul,nl)x e X (L(Upm,—1),%) % .. x K(Up,,myy,); V) P
1 '3
C’*(K(Ul,nl)x v X (LU, —1),%) x 005 V) QX xax X
C’*(K(Ul,nl) X ... x(B(Un,n,=1),%)x...; V).
Since L(U,,n,— 1) is contractible to its base point, x, the chain complex

in the middle is totally acyclic, and o, induces a homomorphism g,
(“the 7’th suspension”) on cohomology level,
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G, H‘(K(UI; )% ... x(K(U,;n,),*)x ...; V)
—>H“1(K(U1; )X ... X (K(U,;n,—1), %)% ... V) .
A family of cohomology classes b; (7% running through m-tuples of non-
negative integers) corresponds to a multistable operation A if and only
if the s’th suspension of 5,,1,__',"," is equal to
( - 1)881;1

where again q is the degree of A. This is easily seen. “Multistability”
for an operation in one variable is the usual stability.

with s = g+3%n;,

p...,nr—l,....”m

Let us denote the set of multistable cohomology operations of type
Uy s U V) by 6(U,,...,U,; V). We recall Serre’s Theorem on
cohomology of Eilenberg-MacLane spaces. It contains at least this
much: If V is a field and U € Grad Ab, then I:I‘((K(U; n),*); V) is 0
for t <n and consists of products (with one or more factors) of classes
of the form A(2), where 2 EH”((K(U; n),*); U) is the basic class and
Aea(U; V).

Using this theorem, one may describe 4(U; V) as the inverse limit,

lim _ H™+¢((K(U,m),*); V)
under 4.

To do the same for the many-variable case, one has to use the Eilen-
berg—Zilber—Kiinneth map y (exterior cup product)

H*((K(Uy,;10),%); V)Q. .. QH*((K(U 5 mp), )5 V)

v, H*((K(Ul; 1), %) X« oo X (K (U3 my), %); V)
This is an isomorphism if V is a field, U, finitely generated in each
dimension. One may then give a third description of multistability: a
cohomology operation 1 in m variables of degree g is multistable if the
corresponding family {6;} of cohomology classes (% running over m-
tuples of integers) has the property that for 1<r<m
(18...85...®buy, . am = (= 1By, nps, ccomy»
where s=¢+37_}7n;. In this case, we may therefore describe the set of
multistable cohomology operations by
GUy,....Up; V) 2 64U V)Q. . . QUU,; V).
We now prove a lemma on cohomology operations in one variable.

LeMma 3.5. Let V € Grad Ab be finitely generated. Then the sequence

ZOU; V)—>aU;V)->0
18 exact.
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Proor. One might, of course, prove this as in [8]. We shall, how-
ever, present a slightly more conceptual proof, using very little about
the cohomology of Eilenberg-MacLane spaces: The suspension

(1) G: H*"((K(U,n),*); V) > H+»1((K(U,n—1),%); V)
is an epimorphism for = large.

The proof that ¢ is onto the set of stable cohomology operations now
goes as follows. Let 4 be a stable cohomology operation of type (U; V)
and degree q. Denote for short K(U,n) by K,, L(U,n) by L, the funda-
mental cocycle on K, by z,. If we can find a family of cochains
a,€ C9(L,, *; V) (indexed by integers) such that

(2) ity € M2} s
(3) 0ay,y = (—1)‘15“0&”2

(¢ and & as in (9) of Section 2), then, by corepresentability, this family
determin a cochain operation with the required properties as is easily
seen. To construct the family, choose N large. Choose a cocycle in
Mzy} and extend it to a cochain ay on (Ly, *). (Recall that 8: Ly_, - Ly
factors through Ky<Ly.) Then (—1)26%ay is a cocycle on (Ly_y,*),
hence a coboundary; choose

aN_1 € 0N—1+Q(LN_1’ *) With 5CLN__1 = ("' l)q 3““}\7 .
Then (—1)90*ay_, is a cocycle on (Ly_,,*), hence a coboundary; choose
Ay_y € CN-24YLy o %) Wwith day_y = (—1)20%ay_, .

And so forth. The cochains constructed so far satisfy (2) and (3) as is
easily seen using the stability of .. We shall now define g, for {> N and
redefine ay. Put by equal to i¥ay. Suppose that for some M = N we have
defined a, for all ¢ < M and a cochain by, such that

()  t*ay € Az} for t<M,
(iipy) by € Mau},
(ivar) Oapry = (—1)78%by .
(Note that (ii,) can be deduced from (iy) and (ivy) since 4 is stable.)
We are going to define
Gy € Cq+M(LM, *) and bM+1 € Z M+ (KM+1’ *)

80 that (ip,,) — (ivzs4,) hold. Choose a by, € A{zy,,}. Then there is an
ay' € OM+2(Ly; %) with
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’ o ’
(4) day = (—1)16%b)y,, .

Then i*a,,’ is a cocycle on K,,. Since M is large enough, we get by (1)
that the class of the cocycle by —i¥ay,’ is in the image of G, that is, we
can find

we CM-1+(K, *), zeZMH+¢(K, . .%), 1 €CM+e(L,, )

so that
by —itay = ' +ow, O = %z

Extend w to v € CM-1+4¢(L,,, *). Then with r=7"+dv we have

(5) by—ifay =%, or = o%.

Put

(6) Gy = pf' +7, by = by +(—1)2.
Then by (5)

(iar42) ¥ay = by,

and by (4), (5), and (6)
(1Var41) Oay = (— l)q(zs#b.lllﬂ-l'}'(— 1)43%) = (- l)qsszVI+1 .

Finally (iii.,) easily follows from (ivy,) and (is;,,). This completes the
proof of Lemma 3.5.

Recalling the definition of O(U,,...,U,,; V) and V from Definition 3.3,
and the definition of ¢ from Z0 to 4(U,,...,U,; V), we are now able to
state and prove the main theorem of this section. The restrictive hypo-
thesis on the U; and V may be unnecessary (see the remarks after the
proof).

THEOREM 3.6. Let U,,...,U,, € Grad Ab be finitely generated in each
dimension. Let V be a field. Then the sequence
oU,...,U,; V)< ZOU,,...,U,; V)
— 4U,,...,U,; V)= 0

i8 exact, and G(U,,...,U,,; V)26(U,; V)Q...Q4U,; V).

PrOOF. One easily sees that eo V=0. Also, in Lemma 3.4, we already
proved ¢ to be onto if m=1. Because the exterior cup product is an iso-
morphism, we get that ¢ is onto, as well as the last statement of the
theorem. The hard part of the proof is to prove

Kere ¢ ImV.
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It will be necessary for this purpose to generalize the definitions of
0, V, and ¢ (Definition 3.3 etc.) slightly and prove a lemma concerning
the generalizations V,, , , and ¢,, , , of V and ¢, respectively. The proof
of Theorem 3.6 is completed by putting p=¢=0 in this lemma, Lemma
3.10.

We consider in what follows a set of graded abelian groups
Uy o s U Voo Vi, Wy .., W, € Grad Ab;

assume each is finitely generated in each dimension; further, let ¥ be a
field. Let K, I, and J denote an m-tuple, a p-tuple, and a g¢-tuple of
nonnegative integers, K= (ky,...,k,), I=(i1,...,%), and J =(jy,...,J4)s
respectively.

DEriniTION 3.7. A locally defined @-operation 0 of type
Uy o Ups Vayo e Vs Wy o W ILJLK V)
and degree ¢ is a functor transformation (no additivity required)
C*i(-; U)x ... xCFm(+; U, ) x C(+; V) x ... x
x Cp(+; vV, X ZI(+ 3 W) x ... x Za(-; W) —=C(-; V)
where r=3k+ 31+ 3j+1, satisfying the following zero conditions:

O(y, . « 3@y Cape v 5 CpyY1se - 5Yg) = 0
if:
(i) at least one of the variables is 0,
or if:

(ii) at least one of c,...,c

» 18 a cocycle.

Again, we collect such locally defined @-operations to get everywhere
defined ones. Note, however, that we only collect “over K”:

DeFINITION 3.8. An everywhere defined Q-operation 6 of type
(U o s Ups Viyo o 3 Vs Wy o s Wy I3 V)
and degree t is a collection of locally defined @-operations 0 of type
U e s Ups Viyo e s Vs Wopo o . Wy LK V)

and degree £, one for each m-tuple K of integers.

DrrintTION 3.9. Denote by

QUy,..  Ups Viyo oy Vs Woyo . s Wy IJ 3 V)
Math, Scand. 20 — 10



146 ANDERS KOCK, LEIF KRISTENSEN, AND IB MADSEN

or short Qm».2 the Z-graded vector space over V, having in degree ¢
the set of everywhere defined @-operations 0 of degree ¢ and type
Uy e s U Vigo o s Vs Woayo ., W 1,J 5 V)

Let V or just V, denote the endomorphism of @™ ».2 of degree +1

m, D, @’
given by
VO(xy,. . ., %3 Cise v 5Cp3 Y15- -+ -5 Yg)
—60(x1, s Zyy Crye v 5Cp3 Y1se o Yg) +
+zl(—1)"0(x1, cr 0%y T e s Yy e s Yg)
8=

where r,=g(0)+ 3 _lg(x )+ 1.
One easily sees that VV 0 and that the definition generalizes Defini-

tion 3.3 (putting p=¢=0).
We also generalize . Let ZQ™?-2 denote the kernel of V. The homo-
morphism &, , 4, or just e,
ZQmpa —» G(U,,...,Uy; VQH*(L(V1,1,),K(V1,4))Q®...Q®
QH*(L(V 5 1,), K(V 5 1,) ) QH¥(K (W15 51))Q . . . QH*(K(Wy; j,))

is given on a 6 € Z@™™ 2 in the following manner: Evaluate 6 on

(proj*zy,...,proj¥e,. .., proj¥e, , proj¥z;,. .., projz; ) ,

where N is large; hereby is determined (a cocycle and thus) a cohomology
class on

(B(Uy, N),#) % .. % (K(U y N), %) 5 (L(V, 1), K(V,8))
< (L(V p, 5p), K (V p, 5)) % (K(W,51),¥) X « o X (K(W g5 i) %) «

By the Kiinneth-Eilenberg—Zilber Theorem and the Serre Theorem one
gets an element in the said tensorproduct.

Denote G(U,,...,U,; V) shortly by 4™. By induction in m we shall
prove

LemMmA 3.10. Any sequence of the form
Qmre s ZQmpt s MQHM(L(Vy1,4), K(Vy,11))®

®. . -®H*(K(W1,j1), *)®. ..>0
18 exact.

Proor. Let m=0. If 6 € ZQ%?¢, then the cochain

(7) O(proj¥es,, . . ., proj¥e, ,proj¥zy,. . ., proj¥z, )
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is a cocycle on (Ly, K; ) x ... x (K;,*)x ... % (K,q,*), and if ¢0=0, it is
a coboundary on this relative complex, e.g. equal to 8b. Then b, by co-
representability, determines a b e Q%?9, and it is obvious that V&=0.
Also, clearly ¢ is onto in this case. This proves the case m=0.

Now, let 0 e ZQ™? have ¢60=0. For each integer k, one gets a
0, € @Qm-122+1 by requiring that the m’th coordinate on which 6 acts is
a cocycle of dimension £,

ek € @Qm-Lpa+l
= QUy s Upss Voo e s Vs Uy Wy . W LR, T V),
and clearly V,,_; , ;410;,=0, €0;,=0. Using an inductive hypothesis for
m—1, we find to each integer k an element d, € @™~ P 2+1 guch that
Vm—l,jo,q+1dlc = ok .

The corepresenting cochain of d;, can be extended from

(Lipgs *¥) X oo o X (L %) X (Lgy Ky ) X oo X (K, #) X (Kpp %) X 00 X (K;,q,*)
to
(L

ny?
g ®¥) X oo X (L s %) X (L, Ky ) X oo X (L, %) X (K, %) X 0.0 X (qu,*);

doing this for all £, we get a family of cochains which defines a cochain
operation d € @™®4, One easily sees that if z; is a cocycle, then

Vinp,¢® (@15« o3 @ps Cigp v+ 5CipYgpo - - - ¥s,)

= 0(Ty,. . -, TpsCyp - 3 Cipp Y- .,y,q) .
We therefore have

(8) 9 =0-V, .0 € ZQgmra,

The value of y is zero if the m’th variable is a cocycle. Thus, for
each integer k, y defines, by restricting the m’th variable to be of dimen-
sion k, an operation

p € Qm-Lpila
= QU s Upgs Ups Vs o s Vs Whyo o o, Wy (k,I),J; V).

Again one sees that V,,_; ,.1,,%=0. Let &(y) be expressed
zv&v®§v®3v®?v’ vE Nlc ’

where &, e 4m-D, §, e H¥L,K,), B, € H¥(LyKy)®. . . @H*(Ly,K,),
and §, € H¥(K;,%)Q. .. QH*(Kj,, *). By the Serre Theorem and the long
exact sequence for the triple (L, K, *) we get that every g, is of the form
either
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o, = 0*a(%;), veN,',

or
o, = 0*(6,(2)...°6,2)), veN,—-N,,

where & and b, are stable cohomology operations. Using Lemma 3.5 we
find cochain operations ‘“representing’ these, that is, a,b,€ ZO(U,,; V)
with ea=4, eb,=b,. Also use the induction hypothesis (for m —1,0,0))
to find cochain operations «, € ZO(U,,...,U,_,; V) with ex,=&, For
each » € N/, define the operation G, € ™72 by means of the following
family of cochains

(= 1) (proj¥e,,,. . .,proj*e, ) xa(e, )xpB,xy, for m,>k,
0 for n, <k,

x designating exterior cup-product and ¢ being the integer

t = (Z7ing)(9(a)+9(B,) +9(,) +3Poris+ 3 1ds
+(nmg ﬁv)+g yv +28 1 8+ZB—-1.78)

One easily sees that V @, has the property that it is zero if a cocycle

m,p,q "7y
is inserted at the m’th place; also, it is zero if a cochain of dimension +k

is inserted at the m’th place. For each v € N, — N, ', define the operation
G, € @™?2 by means of the following family of cochains

(- 1)'zx,(proj“en1,. . .,proj”enm_l) X [by(€ny,)" - - - bp(€n,) 1% B, xy, for m,=k,
0 for n,+k,

where ¢ is the integer

i (21_19 (b)) +9(8,) +9(y,) +20_1%, +§g=1js) .

Again, we get zero if we insert a cocycle at the m’th place in V,, , ,G,,
and one easily sees that in the (m —1,p+ 1,q9)-sequence

&((Vim,p,aGir) = 0 if k' k.

= (

It is now clear that a suitable linear combination P of such G,’s will
have the properties
() PeqQmre,
(i) (Vin,p,o Pl € @n71P¥L,
(iii) e((Vm’p’q(P) +1p)k) =0 in the (m—1,p+1,q)-sequence.
If we use the exactness of the (m—1,p+1,q)-sequence (which we have
by induction), we find operations ) € Qm-17+1¢ with

Vm—l,p-i—l,q-l(;,k = (Vm,p,qP"'"/")k .
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Together the E,’s determine an operation K € @™:2, Since ¥ is zero if
a cocycle is inserted on the m’th place, one easily gets for a k-dimensional
z,, that
Vo, 0,aB@1s + 3Ty Crse v 3o Y15+ 0, Y,y)
= Vi1, 041, B(®1 3@y Cise v 1 Cp0 Yy - 41 Yg)
(Vin,p, P +0) (@15 . -, 9,) -

This proves that ¢ is in the image of V,, ,, ., and the induction step for
exactness in the middle is performed. That ¢ is onto follows easily from
Lemma 3.5, and from the assumptions we made on U,,...,U,,V,,...,
Vo Wi, .., W, V, which guarantee that the exterior cup product is an
isomorphism. The proof of Lemma 3.10 is complete.

We note the following: If V is finitely generated, the proof works with
no further restrictive assumptions on U and V in the one-variable case

(9) OU; V)2 ZOU; V)—> GU; V) > 0.

This is the sequence used for constructing secondary (and higher) cochain
operations yielding higher order cohomology operations; see [8] and the
subsequent paper [6]. The one-variable case will in [6] be generalized to
“extraordinary cochain theories”. The sequence in Theorem 3.6 for two
variables was the main tool in constructing the secondary cohomology
product [5]; the many-variable theorem we have presented here should
make it possible to get a different approach to the secondary product
in many variables considered by Schweitzer [12]. However, a lot of com-
putation probably has to be done for this purpose.
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