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EXTREMELY AMENABLE SEMIGROUPS II

E. GRANIRER

Introduction.

We continue in this paper the study of extremely amenable semi-
groups begun in [10]. We shall freely make use of the notations of [10].

Let 8 be a semigroup. Throughout we use multiplicative notation for
products of elements of S. If fem(S) and a € 8, let

fa(s) = f(as)r fa(s) = f(SG)

for any s € S. Define r,,1,: m(S) - m(S) by l,f=f,, r.f=F%

If fe m(S), let K(f) denote the set of reals ¢ for which there is some
net in {r.f; @ € 8} which converges pointwise to the constant function
c-lg. (1g is the constant one function on 8, sometimes denoted by 1.)
We call S extremely right stationary if K(f)+0 for each fem(S). This
definition is analogous to the definition of right stationary semigroups
given in Mitchell [17].

Let A <m(S) be a uniformly closed left invariant (that is, f, € 4 for
any fe 4 and x € S) subalgebra of m(S) with 1€ 4. A linear functional
@ on A4 is a mean if ¢(f)=0 for any f=20, fe 4 and ¢(1)=1. We say
that the subalgebra 4 is extremely left amenable (ELA) if there is a
multiplicative left invariant mean on 4. 8 will be an ELA semigroup
in case m(S) is ELA. For any uniformly closed left invariant subalgebra
A of m(8S) with 1 € 4, we denote by H 4 the ideal of all h € A which have
a representation

h = ;fj(gj— a,gj)
for some f;,9;€ A and a;€8, n=1,2,.... By K, we denote the linear
subspace of all A€ 4 with

h = ?(gj—la,g,)
for some g;€ A and a; € 8,n=1,2,... . In case 4 =m(S) we write H=H ,

and K=K ,.
We have the following characterisation of ELA semigroups:
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94 E. GRANIRER

THEOREM A. Let S be a semigroup. The following conditions 1.-6. on
S are equivalent:
1. 8 is ELA.

2. S is extremely right stationary and in this case, for any f e m(S),
= {¢(f); ¢ a multiplicative left invariant mean}

(¢n analogy to Mitchell’s result in [17]).2

3. For each h € H there is some s € S with h(s)=0 (there still may be
some h in the uniform closure of H with h(s)=+0 for each s € S even though
S is ELA).

4. S 1s left amenable and for each left invariant mean u on m(S),

w(fgz) = p(fg)

for any f,g € m(8) and each x € §.

5. 8 is left amenable and each extreme point of the set of left invariant
means on m(8S) is multiplicative.

6. S is left amenable and K is uniformly dense in H.

For subalgebras 4 <m(S) one has

THEOREM B. Let A be a uniformly closed left invariant subalgebra of
m(S) with 1 € A. The following conditions 1.-5. on A are equivalent:

1. 4 is ELA.

2. inf{|1-2|l; he H,} = 1.

3. sup{h(s); s€ 8}20 for each h € H ,.

4. H 4 is not uniformly dense in A.

5. There is a mean ¢ on A such that p(g9,) = p(g?) for each ge A and
z € S or such that ¢(gg,) =[p(g)]? for each ge 4, z€S.

Conditions 1.-4. of theorem B have known analogues for left amenable
semigroups (compare for example with theorems 17.4 and 17.15 in
Hewitt—Ross [12]2).

Conditions 1, 3, 4, 5, 6 of theorem A do not have analogues for left
amenable semigroups.

Applying theorem B and theorems 17.4 and 17.15 in Hewitt—Ross [12]
to the space of (uniformly) continuous bounded functions on the abelian
topological group @, (U=UC(G)) C(G)=C, one has the following

THEOREM. Let G have a montrivial continuous homomorphic image G’
which is a subgroup of a locally compact abelian topological group. Then:

1 Mitchell’s proof does, however, not carry over to the extreme right stationary case.

2 Theorem 17.4 in [12] is due to Dixmier [5] while theorem 17.15 in [12] in slightly
different form is due to M. Day [24, pp. 281-282 and p. 286]. Theorems related to theorem
17.15 in [12] appear also in E. Folner [7] and R. Raimi [20].



EXTREMELY AMENABLE SEMIGROUPS II 95

(1) UC(G) and C(Q) are not ELA even though they admit an tnvariant
mean.

(2) Hy[H) 1s uniformly dense in UC(Q) [C(Q)] while K [K] is not
uniformly dense in UC(G) [C(G)].

(3) sup{h(x); x € G}20 for each h € Ky while sup{h(z); z € G}<0 for
some h € Hy;.

(4) inf{||1-2||; he Hy}=0 while inf{||1—5|; he K¢}=1.

Some refinements of this theorem are also obtained.

In the last part of this work we give a fairly general construction of a
big class of ELA semigroups. This construction is inspired by the main
example in [10]. It comes out from this construction that any left cancella-
tion semigroup is a subsemigroup of some left cancellation ELA semi-
group. The fact that the classe of ELA semigroups is so rich seems to
us surprising in view of the fact that the only right cancellation ELA
semigroup is the trivial §={e} with e2=e. We also remind the reader of
this section about some open questions on amenable semigroups. In
what follows we specialise the above construction to build a certain left
cancellation ELA semigroup. We study it by determining all its ELA
subsemigroups and all its left amenable subsemigroups. We show that
many of its subsemigroups are not left amenable.

1. Extremely right stationary semigroups.

Some NotaTtioNs. By my(S) we denote the space of bounded com-
plex valued functions on § with

Ifll = sup{|f(s)]; s € S}.

The w*-topology on m,(S) is the weakest topology which makes all linear
functionals of 7,(S) continuous. This topology is not dependent on
whether [,(S) are the complex or real functions on S (with countable
support and with {3|g(s)|; s € 8} <co. If B=my(S) then w*—clB is the
closure of B in the w*-topology. For fe m,(S),

O(f) = w* — cl{r,f; a € S}

and K(f) is the set of reals ¢ such that cl, the constant c-function on 8§,
is in O(f). The set K(f) may be empty.

LemMa 1. (a) Let B<m,(S) be a norm bounded set. Then the w*-topology
and the pointwise convergence topology coincide on B. (See Mitchell [17,
P 249, lemma 3]).

(b) If g € O(f) where f € m(S), then ||f|| 2 |lgll. Hence O(f) is w*-compact.

(c) If f e m(8) and g € O(f), then O(g) =O(f).
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Proor. (a) Let B,={fem,S); ||fllSr}. Then B, is w*-compact (see
[15, p. 22]). But the pointwise convergence topology on B, is Hausdorff
and is weaker than the w*-topology. Hence these two topologies coin-
cide on B,. Now B<B, for some r> 0, which proves (a). This proof is
simpler than that of |17].

(b) If a,xze 8, then |r,f(z)|=|f(za)| =|If|l. If now 7, f—g in w*,
then f(xa,) — g(x) for each x in S by (a). Hence |jg||=|f|-

(e) rq: m(8S) - m,(8S) is w* continuous (see Mitchell [17, pp. 246-247]
proof of lemma 1(c)). Hence

7a[0f] = w* — el {ro.f; x € 8} < O(f) .

REMARK. (a) is equivalent to: If f, is a norm bounded net in m,(S)
and f e my(8), then f, — f in w* if and only if f,(x) - f(x) for each = in S.
Furthermore, if f, is a norm bounded net, there is a subnet which con-
verges pointwise (that is w*) to some f in m(S).

Lemma 2. Let foem(S), xg € K(f), and F € m(S) be any function which
can be represented as

F = lz.fj(gj—la,gj) + 9(fo— 1) ,

where f;, g; and g belong to m(8) while a; are elements of S. Then, if S is

extremely right stationary,
l1eO[1-F].

Proor. By decomposing the g,’s into real and imaginary parts we can
assume that F is represented as

F = gfj(gj—la,-gj) + g(fo— 1) ,

where g; € m(S) are real valued and f; € m,(S). We show at first that some
function

? fl(-l)(gg-l’—la’.g}”) € O[1—-F], where f{PemyS),g>em(S).

There is a net {a,} =8 such that (r, f,)(x) - &, for each x € S. By pos-
sibly taking a subnet we can assume that r,_f; — f{in w* (that is point-
wise) and (by a further subnet), that r, g, > ¢{® (pointwise) and so on,
for each f;,g;, 1<j=<n. Hence we can assume that 7, (fo—ax,1) >0,
(pointwise), (see lemma 1(b)) and r, f; —f{° (pointwise), r,,g; > g5
(pointwise) for some f{P in m(S) and ¢§" in m(8), for 1 <j <n. Therefore
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lim, (7, (1-F))(x) = 1 — zf(l) O 1, 9)(z)

for each z in S. Since on O[1—-F] the pointwise topology coincides
with the w*-topology, we have that
1= 3PPl gf") € OL-F.
We show now that
S D@ _] o2
1—- §f§~ (957 —14,9;7) € O[1-F]
for some f{® € m,(S) and ¢ e m(S), 1=j<n—1. In fact there is a net

7ps SUCh tha,t limﬁrbﬁgs)( )=c for each x in 8. This is true since g, is
real valued and § is extremely right stationary. Hence

lim 7,,(95 = 15, 95")(2) = 0
8

for each = in S. By possibly taking a subnet we can assume that

lim r,,,gP(x) = g?(x) and 11m Topls (@) = fP()
B
for each « in § and each 1<j<n—1. Hence

li;n o [1 _ g 1o (! —la]g}-)]( x) = [ Z Jielr a;9§2))] (x) .

Therefore

zf(z) @) _ agjz) e 0 [1 Zf(l) D _ (1))] < O[1-F]

by (c) of lemma 1. We can hence assume that a function of type
1-f(9—1,,9), where g € m(S) and f € m,(S), belongs to O[1—F]. Using
the same argument as above there is a net r, such that lim(r.g)(x)=d
for each z in S for some real d. Hence

limry,[1—f(g—lo,9))(x) =
for each z in S which shows that 1 € O[1 - F] by (c) of lemma 1.

THEOREM 1. Let S be a semigroup. Then S is extremely right stationary
if and only if S is extremely left amenable. In this case, if f, € m(S) then
o(fo)=o for some multiplicative left invariant mean ¢ if and only if
& € K(fo).

Math. Scand. 20 — 7
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Proor. Let S be extremely right stationary and «, € K(f,). If

(*) F = ﬁ::fj(gj— a,g;) + 9(fo— o) »

where g; € m(S), g, f; € m,(S) and a; € 8, then 1 € O[1 - F] by the previous
lemma. Hence ||[1 —F||=||1||=1. This shows that the set of all functions
which have a representation (*) (which is an ideal of m,(S) denoted by J)
is not norm dense in m,(S). Hence there is a maximal ideal M containing
J ([15, p. 58, 20A]). M is necessarily closed, the quotient Banach algebra
my(S)[M is the complex field and the natural homomorphism my(S) —
my(S)/M is a nontrivial multiplicative linear functional ¢ such that
o(M)=0 ([15, p. 60, 20D]). Hence ¢(J)=0. If now B<S§ then 152=1p.
Hence ¢(1z)=[p(15)]2. Thus ¢(lp)=0 or 1. Hence if f20 is a step
function then ¢(f)=0. If now f=0 and f e m(S) then f can be approxi-
mated uniformly by non-negative step functions. Thus ¢(f)=0. Fur-
thermore ¢(1)=0 or 1. If ¢(1)=0 then ¢(f)=0 for each fe m(S) with
f20 and by decomposing we would have ¢ =0, which cannot be. Thus
@(1)=1 and ¢(f) is real for f € m(S). Thus ¢ is a mean on m(S) such that
@(J)=0. Taking in (*) f;=0 and g=1 one has ¢(f,) =«,. Since f—f, e J,
o(f)=¢(f,), hence ¢ is a multiplicative left invariant mean on m(S)
such that ¢(fy)=«, (and § is ELA).

Conversely, assume that ¢ is a multiplicative left invariant mean on
m(8S). Then we can regard ¢ as belonging to the Stone-Cech compacti-
fication of S. Hence there is a net of point measures 1, € /,(S) such that

1,,(f) = f(s:) = o(f)

for each f in m(S). Hence

1o,(fo) = f(®s,) = (re,f)@) > @(f2) = 9(f)

for each x € 8. Therefore S is extremely right stationary and moreover
o(f) € K(f) for each f e m(S), which finishes this proof.

ReMARk. Using the same argument as in lemma 2 and theorem 1
above one could give a much simpler and entirely different proof to
theorem 1 of Mitchell [17, p. 250]. The explicit construction of the sub-
linear functional pg of [17] prior to which lemmas 2, 3, 4, 5 had to be
proved ([17, pp. 247-250]) would thus be saved. Using this idea we
would, however, lose the information about the sublinear functional pp
which is interesting for its own sake.
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2. Extremely amenable subalgebras of m(S) and applications.

Lemma 3. Let X be a set, {t ; « €I}, a semigroup of mappings from
X to X, and T,: m(X) - m(X) be the linear operators defined by

(T f)) = f(t,x) for zeX.

Let A be a uniformly closed subalgebra of m(X) with 1€ A, and such that
T,A<A for each « € I. Let H 4 be the ideal of A of all h having a represen-
tation

h = ij “797

for some f;,9,€ A, x;€1, n=1,2,....

Then the following statements are equivalent:

(a) There is a multiplicative mean ¢ on A such that (T, f)=¢@(f) for
each fe A, xel.

(b) sup{h(x); x € X}20 for each k in H ,.

(c) inf{|[l—Al; he H, }=1.

(d) H 4 is not uniformly dense in A.

(e) There is a mean ¢ on A such that ¢[g(T,9)]=@(g?) for each ge A,
xel, or p[g(T,9)]=[p(g))? for all ge A4, x e I.

Proor. Let ¢ be a multiplicative mean on 4. If he H, and d=
sup {#(x); x€ X} then d1—-A20 and d1—h e A. Thus 0=Z¢p(d1—-h)=d.
Hence (a) implies (b).

(b) = (c): Let he H,. Then —heH, and sup{—h(z); ze X}20.
Hence inf{h(x); € X}<0. If ¢>0 there is some z,€ X such that
h(z,) <e. Hence 1—h(x,) >1—¢ which implies that |1 —2||=1—e. There-
fore ||1 —h|| 2 1 for each k € H, and since 0 € H,, (c) holds true. That (c)
implies (d) is clear.

We show now that (d) implies (a): 4 +144 is a subalgebra of m(X)
which is norm closed. One has in fact

max {|[Ref], [Imf|} = If]l £ Refll+|[Inf]

for any femy (X). Also H,+tH, is an ideal of 4 +¢A4 which is not
norm dense. For, if fye 4 and ||fo— (h+3h')||<e with A, &’ in H 4, then
Ilfo— %] < &, which would imply that H, is dense in A. Hence there is a
maximal ideal M of A4 +1i4, which is necessarily closed, such that
H,+1iH <M (see Loomis [15, p. 58, 20A]). Therefore (4 +:4)/M is the
complex field and the natural homomorphism 4 +14 — (4 +¢4)/M is a
nontrivial multiplicative linear functional ¢ on 4 +14 such that p(M)=0
([15, p. 60, 20D and p. 68, 22F]). This shows that ¢(H ,) =0 and in partic-
ular that ¢(f—7,f)=0 for each fin A and « in I. We show now that ¢



100 E. GRANIRER

restricted to A is real. If ge A is such that ¢(9)=«+148, S0, then
f=(@—«1)1is in 4 and ¢(f)=1. Since ¢ is a nontrivial homomorphism
and 1€ 4, ¢(1)=1. The series

o —1- _eovm

35 (-ir@

converges uniformly in 2 € X to e¢. Hence e~ € 4+14 and gp(e-)=
e "N =¢>1. But |e-#| <1, which contradicts the fact that ||p|| < 1. (This
is a well known standard argument.) This shows that ¢ restricted to A
is real. If now fe 4 and 05f=<1 and ¢(f)<0, then ¢(1—f)>1. This
cannot be since ||p||<1. Hence ¢(f)=0, and ¢ is a multiplicative mean
on A such that ¢(T,f)=¢(f) for each x € I. We might add here that
A<m(X) has to be a lattice as is well known (for a simple proof see
R. G. Douglas [6]). If ¢ is the mean in (a) then it clearly satisfies (e).
Conversely, introduce 7', f=f, for fe A, x €I and let at first ¢ be a

mean such that .
p(99.) = ¢g®) if ged,xel.

¢l(f+9)(fat+9.] = 2l(f+9)7],

o(f9.) +(af.) = 2¢(fg)

for f,ge A, « € I. Taking f=1 one gets ¢(g,)=¢(g) for all ge 4, xel.
Now

Then

hence

¢lg—9.)% = o(¢® +¢[(9.)*] - 2¢(99.) = O
since (g,)2=(g?),. Thus
lp(flg—9.))12 £ e(fHellg—g.)% = 0

(lp(fufo)1? = @(fi) @(fy?) as in the Cauchy-Schwarz inequality). Hence
p(H,) =0, ¢(1)=1. Thus H, is not dense in 4 and (d) holds.
In the second case let ¢ be a mean such that ¢(gg,) =[¢(g)]2. Then

el(f+9)(fo+9.] = [p(f+9)]2.
Hence

(*) o(f9.) +o(f.9) = 29(f)9(g) -

Taking f=1 one gets ¢(g,)=¢(g) for ge 4, x e I. Taking f=g, in (*)
one has
9(9.2) +9((9.).9) = 2[9(9)]*.

But (g,), = g, for some g € I. Thus
9(9°) = 9(9.%) = [p(9)]?
and replacing g by f+g¢ and expanding one gets that ¢(fg) = ¢(f)p(9).
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Thus ¢ is even a multiplicative mean on 4 which satisfies ¢(7',9) = ¢(g)
forael and ge 4.
Specialising to semigroups one has

THEOREM 2. Let 8 be a semigroup, A =m(S) be a norm closed subalgebra
with 1€ A and f,€ A for each fe A and s€ S. Let H , be the ideal of all b
tn A which have a representation

h = gfk(gk_laggk)

for fr.gr in A and a; in 8, n=1,2,....

Then the followtng statements are equivalent:

(a) There is a multiplicative left invariant mean on A.

(b) inf{||1—A|; he H }=1.

(c) sup{h(s); s€S}=0 for each h in H,.

(d) The uniform closure of H 4 is not equal to A.

(e) There is a mean @ on A such that p(gg,) = @(g?) for each s in S and
g € A or such that ¢(gg,) =[p(g)]? for all s€§ and ge 4.

REMARKS. 1. Conditions (a) to (d) of this theorem are analogues for
extreme left amenable subalgebras 4 <m(S) of the conditions for left
amenable subspaces 4 <m(8) given in theorem 17.4 (due to Dixmier)
and 17.15 (due to M. Day) in [12,p. 231 and p. 235].

We do though not assume that § is a left cancellation semigroup in
order to get that (d) implies (a). This condition is imposed on § in theorem
17.5 of [12] in order to show that the analogue of (d) implies that 4
admits a left invariant mean.

2. It has been shown by S. P. Lloyd in [14] that if S is left amenable,
then a mean ¢ is an extreme point of the set of left invariant means on
m(S) if and only if for each f,g in m(S) the function F(s)=¢(fg,) is left
almost convergent to ¢(f)@(g), that is,

wF) = o(f)e(g)

for each left invariant mean x on m(S). The constant function c-1 is
obviously left almost convergent to ¢. Hence § is ELA if and only if
there is some mean @ for which the function F(s) = ¢(fg,) is tdentical with
the constant function ¢(f)g(g), for each, f,g € m(S).

3. Let A4, be left invariant subalgebras of m(S) containing 1, and such
that for each «,f there is a y such that 4,u 4,<A4,. Let A=UA,.
If each A, admits a multiplicative left invariant mean so does 4. In
fact, let

b= ;"g,«fi— o)
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with f;,9, € A and a; € S. Then f;,g; € A, for some «. Hence
sup{h(z); €S} 2 0.

3. Application to topological groups.

Let G be a topological group and LUC(GQ) =m(G) be the space of left
uniformly continuous functions on @ (that is, f € LUC(Q) iff for any ¢>0
there is a neighborhood V of the origin e of G such that |f(va)—f(x)| <e
for any x € G and ve V).

LemMma 4. Let Q,G' be topological groups and ¢: G - G' a continuous
homomorphism onto. If LUC(G) admits a multiplicative left invariant
mean, so does LUC(G").

Proor. Let g(g)=g¢' for g in @ and let ¢ be a multiplicative left in-
variant mean on LUC(G). Define ¢’ on LUC(G') by ¢'(f")=¢(f (¢))
where f'(¢)(9)=f"(g') for f’ in LUC(G).

Since g is continuous, f'(¢) e LUC(®) for any f' € LUC(G@). Hence ¢’
is a well defined mean which is multiplicative, as easily checked. Now

f)9) = f'(eaeg) = [f'(@)1a(9) -

Hence ¢’ is left invariant.

LeMMA 5. Let G be a totally bounded group for which LUC(G) admits a
multiplicative left invariant mean @. Then G ={e}.

Proor. If a e G and a+e let U be a symmetric neighborhood of e
such that a1 ¢ U2 Let fe LUC(G®) be such that f(e)=1, f(x)=0ifz ¢ U,
and 0Sf<1 (see A.Weil [23, p.13]). If V={; f(x)>4} then G=
U071V for some {a,,...,a,}<@. Hence 37f, ()2 % for each z in G.
Thus ne(f) 2 4 which shows that ¢(f)> 0.

If now f(x)>0 for some z€ @, then x € U and so z ¢a-1U. Hence

Sa(x)=0. Therefore ff,=0 which implies that
0 = o(ffa) = [o(f)? > 0

and cannot be.

LeMmMA 6. Let Gy be any subgroup of a locally compact abelian group Q
with identity e. If Gy {e} then LUC(G,) does not admit a multiplicative
left invariant mean.

Proor. Let a € Gy< @G be such that a+e. Let y be a continuous char-
acter of G such that y(a) + 1 (see Hewitt—Ross [10, p. 345]). Then the con-
tinuous homomorphic image of G, by y is a nontrivial totally bounded
subgroup of the circle group. Apply now the previous two lemmas.
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THEOREM 3. Let @ be a topological group which has a non-trivial continu-
ous homomorphic image Q' such that

(a) G’ is a subgroup of a locally compact abelian group, or

(b) G’ is a totally bounded group, or

(¢) @ s a discrete group.

Then LUC(G) and a fortiors C(G) do not admit a multiplicative left
tnvariant mean.

Proor. (a) Invoke lemmas 4, 6.
(b) Invoke lemmas 4, 5.
(¢) Invoke lemma 4 and theorem 2 of Mitchell [16] (for a different

proof see [8]).

RemMARK. Furthermore, if G is any nontrivial additive subgroup of a
locally convex linear topological space or any subgroup of a direct product
of groups G, which satisfy (a) or (b) or (c) of the previous theorem, then
LUC(@) (and hence C(G)) does not admit a multiplicative left invariant
mean. (Locally convex linear topological spaces have sufficiently many
characters while a nontrivial subgroup of such a direct product has a
nontrivial continuous homomorphic image G’ which satisfies (a) or (b)
or (c) of the previous theorem.)

It would be interesting to characterise those topological groups for
which LUC(GR) or C(G@) admits a multiplicative left invariant mean.

Let @ be a topological group K, [K] be the linear subspace of func-
tions in LUC(G®) [C(G)] which can be represented as

h = ; (fie—laf)

for some f, e LUC(®) [f, € C(Q)], a, €@, n=1,2,.... Let Hy [H;] be
the ideal of LUC(@) [C(G)] of all functions » which can be represented as

n
h = ?fk(gk—'lakgk)
for some f;,g9, € LUC(®) [f.9, € C(G)] and a, € G, n=1,2,....

THEOREM 4. Let G be a topological group which is amenable as a discrete
group and has a nontrivial continuous homomorphic G’ which salisfies (a)
or (b) or (c) of the previous theorem. Then:

(a) Ky [K¢] 48 not morm dense in LUC(G) [C(G)] but Hy [H(] is
norm dense tn LUC(G) [C(G)].

(b) sup{h(z); x€ G}20 for any he K, but sup{h(z); ze G}<0 for
some h e Hy.



104 E. GRANIRER

(c) inf{|[1—A|; he Kc}=1 but inf{||1 —h|; ke Hy}=0.
(d) LUC(GR) [C(R)] admits a left invariant mean but not a multiplica-
tive left invariant mean. (See [12, theorem 17.4 and 17.15].)

REMARK. In particular G+ {e} may be any locally finite or solvable
group (or a weak direct product of such groups) which satisfies (a) or (b)
or (c) of theorem 3. Such groups are amenable as discrete, see von
Neumann [19] and Day [2, p. 516-517].

ExampLE. Let G be the set of positive reals with usual multiplica-
tion. Let A =C(Q@) be the set of all functions which are uniformly continu-
ous with respect to the metric |x—y|=d(z,y). (These functions are not
necessarily in LUC(G).)

If ae@ and fe A then f(x)=f(ax) and f,€ A as can directly be
checked. For fe A let

(p(f) = limz—-bof(ax) = hm:c—)Of(x) = (P(f) .

Hence the ‘“huge” subalgebra 4 <(C(G) admits a multiplicative in-
variant mean while LUC(@) does not. Hence H , is not dense in A while
HLUC(G) iS dense iIl LUC(G).

4. Further information on ELA semigroups.
THEOREM 5. Let 8 be a semigroup. Then the following statements are

equivalent:

(a) S is ELA.

(b) For each finite set {g,,...,g,}=m(S) and {a,,...,a,}<8 the func-
tions 91—13,91,- « s 9n—1a, 90 have a common zero in S, that is for some
xo €S,

9x(%o) — gr(agxo) = 0
Jor each k, 1 <k=<n.
(c) Each h e H has a zero in S.

Proor. (a) = (b): By [10, (5) of theorem 3] the finite subset
{a4,...,a,} <8 has a common right zero, that is a,x,=0 for each 1 =k < n.
That (b) = (c) is clear. Now (c) = (a) since if h € H, then h(z)=0 for
some x € 8. Thus sup{h(s); s€S}20 and so 4=m(S) admits a multi-
plicative left invariant mean.

ReMARKS. 1. Condition (c) does not hold for left invariant norm closed
subalgebras 4 <m(S) which contain the constants and admit a multi-
plicative left invariant mean. In fact, let S be the additive positive integers
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and A=c be the set of fem(S) for which lim,  f(n)=¢(f) exists.
@ is a multiplicative left invariant mean on A. Consider f(n)=1/n.
Then f(n)—f(n+1) does not have a zero in S.

2. There is no analogue to conditions (b) and (c) for amenable semi-
groups or even for the additive integers Z. In this case H is replaced by
the linear space of all & such that

m

h(n) =k21 (fe(m) =filjx +n))
for some {j;,....5.}<Z and {fy,....fi}<m(Z). If h(n)=exp(—n?)—
exp(—(n+ 1)), then A(n)=0 implies that n+ 1= +n, that is, n=1% ¢ Z.
3. If H is the norm closure of H in m(S) then there may be f in H such
that f(s)+0 for each s in S. In fact let §={1,2,3,...} with the multi-
plication ¢vj=max(¢,j). Let g,(s)=1 if s=n and 0 otherwise. Let

f = ilo:z—n(gn—lngn)z .

Then f(n,)=0 if and only if g,(n,)=g,(nvn,) for each n=1,2,..... If
n >n,, then nvny=n. Hence 0=g,(ny)=g,(n)=1 which cannot be. This
example also shows: the fact that § is ELA does not imply that
{9n—1s,9,)7 have a common zero in S, when {g,}=m(S) and {a,}<S.

THEOREM 6. Let S be a semigroup. The following conditions are equiv-
alent:

(a) S is left amenable and u(fg,)=u(fg) for each left invariant mean u
on m(S) and each f,g € m(S) and x € S.

(b) S is left amenable and each extreme potnt of the set of left invariant
means 1s multiplicative.

(c) 8 is left amenable and K is uniformly dense in H.

(d) S ¢s ELA.

Proor. (d) = (a): Let R<S be a right ideal and fem(S). If ae R,
B uf) = W) = MO ] = p(f) = p)

for any left invariant mean u, since 1z(ax)=1 for each x € S.

Let a € S be fixed and R={s € §; as=s}. Then R is not empty, (see
[10, theorem 3]) and is clearly a right ideal. Furthermore 1g(s)g(as)=
1(s)g(s) for each s €S and g € m(S). Hence 1zg,=1rg and

w(f9s) = u(flggs) = u(flgg) = u(fg)

for each a € 8, f,g € m(S) and each left invariant mean x on m(S). If (a)
holds then H is not dense in m(S), since u(H)=0 and u(1)=1 for.each
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left invariant mean u on m(S), and by theorem 2 one gets that (d) holds.
Hence (a) < (d).

(d) = (b): Let u be an extreme point of the set of left invariant means.
Then by a result of S. P. Lloyd (see [12]), for any f,g € m(S), the function
F(x)=pu(fg,) is left almost convergent to w(f)u(g), while from the first
part F(x)=u(fg) for each z € S. Hence

p(fg) = u(F) = p(f)ug) .

Thus x is multiplicative.—A different proof which does not use Lloyd’s
result (whose proof is rather difficult) runs as follows: Let u be an
extreme left invariant mean and fem(S), 0= <1, be fixed. Let vem(S)*

be defined b,
© defined by v(g) =p(fg) — p(f) 1(9) -

One has »(1) =0 and »(g,) =(g) for s€ S and g e m(S) (since (a) holds).
If g=0 then
(u+7)(9) = p(@) [1—p()] + p(fg) = 0

(n=2)(g) = pl(1 =gl +u(flulg) 2 0,

since 0=f=<1. Since u is extreme, »=0 and so u(fg) =u(f)u(g) for all
Jrgem(S) with 0=f=<1. If fem(S) is arbitrary, then f=«f, —ff, with
&, 20, 0=f;<1. This readily implies that x is multiplicative.

(b) = (d): The set of left invariant means is w* compact and convex
and as well known has to have an extreme point, by the Krein—-Milman
theorem ([12, p. 460]).

(d) = (¢): K<H is clear. If K is not norm dense in H then there is
some hy € H and a bounded linear functional ¢ on m(S) such that p(K)=0
and @(hy)=1. Thus ¢(f)=¢(f,) fora € 8, f € m(8), and ¢ is left invariant.
Hence ¢=ap,—pp, where g;,p, are left invariant means and «,820
(see [9, p. 55 footnote]). By (a) <= (d) above ¢;(H)=0 and ¢,(H)=0
and so @(hy)=0 which cannot be.

(¢) = (d): If u is a left invariant mean on m(S) then u(K)=0 and
#(1)=1. Hence K (and therefore H) is not norm dense in m(S). Apply
now theorem 2.

and

- REMARES. 1. One is tempted to conjecture now that if S is a left
amenable semigroup and yx a left invariant mean on m(S) then the func-
tion F(x)=pu(fg,), if not equal to the constant u(fg) for each z € S, is at
least left almost convergent to u(fg) for f,g € m(S). That this is not true
is shown as follows: Let S be a left amenable semigroup which is not
ELA (for example the additive integers) and let 4 be an extreme point
of the set of left invariant means. Let f,g e m(S) and F(z)=u(fg,).
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Then by the result of S.P. Lloyd in [12], u(F)=u(f)u(g). If the con-
jecture would hold then u(F)=u(fg) which would imply that S is ELA.

2. The mere fact that K is dense in H does not yet imply that S is
even left amenable. In fact if G is a free group on two generators then @
is not left amenable (von Neumann [19]). Hence K and a fortiori H
are dense in m(Q@) (see [12, p. 235]). We see though from above that the
fact that H is not dense in m(S) forces K to be dense in H.

Main example.

Let I be a linearly ordered set (by ‘> say) with no last element.
For each ¢ € I let S; be a semigroup with identity e, and such that

e; & [S;—{eJ18;—{e;}] and S; + {e},

where §;—{e;} = {s€8;; s+e;}. (For example the additive non-nega-
tive integers or a free semigroup on any number of generators. In fact,
if T is any semigroup, one can adjoin to 7' a new element {e} and define
in 7"=T U{e} the multiplication et=te=¢ for any te T, e*=e and #,1,
to be as in 7' if £,,¢, both belong to 7'. Then 7" is a semigroup which con-
tains 7' as a two sided ideal. 7" has left (right) cancellation if 7' has (res-
pectively). Clearly e ¢ T'7T.)

Let S consist of all functions s defined on I such that s(¢) € S; for
each 4 € I and such that the set {i; s(7)=+e¢,} has a last element say 1,€ [
(that is, s(i,) +e;, but s(3) =e; if 1 >1;). We define d(s) =1, to be the degree
of s. (The element e such that e(¢) =e; for each ¢ € I does not belong to S.)
We define in S the following multiplication:

8(4) it §>d),
(st)(6) = | s(i)t(i) asinS,if i=d(t),
0 it i<d().

In any case s(¢)i(s) +e,; if 1=d(t) since then ¢;+e; and because of our
condition imposed on 8;. Clearly, if d(s) <d(t), then st=¢. Furthermore

(*) d(st) = d(s) vd(t) = max{d(s),dt)} for any s,teS.

The associativity of multiplication is shown as that of the semigroup of
example 2 in section 8 of [10]. Let now s,t € 8. Then there is some 4>
d(s)vd(t). (I does not have a last element.) Let ¢ €S;, c+e;, and let
h e 8 be defined by h(s)=e, if i+1%, and h(ty)=c. Then d(h)=1,, thus
sh=th="h. Hence any two elements of S have a common right zero and
8o S is ELA. If all 8; have left cancellation then S has. In fact let st =su.
If d(t) >d(u), then for ¢=d(¢),
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8(1)i(1) = (st)(t) = (su)(t) = s(t) = s(t)e; .

Hence #(i)=e; which cannot be. Hence d(f)<d(u) and by symmetry
d(t)=d(u) =1,y (say). If >4, then u(s)=e;=4(z). If i=4, then

8(ig)u(to) = (su)(d) = (s8)(io) = (o) ¥(to) -

Hence u(¢y) =1(3). If 7 <17y, then
1(i) = (st)(3) = (su)(t) = w(s)
which shows that u=¢.

ReMAREs. 1. We did not assume that the semigroups §; are left
amenable. By the remark at the beginning of this example one has
that any left cancellation semigroup can be a subsemigroup of a left
cancellation ELA semigroup. This wealth of left cancellation ELA semi-
groups seems to us all the more surprising in view of the fact that there
are no right cancellation ELA semigroups (except the trivial S={e} with
e?=e¢). This fact provides strength to the conjecture of John Sorenson
that any left amenable right cancellation semigroup has to have left
cancellation. Additional strength to Sorenson’s conjecture is provided
by lemma 4 of [9] to the effect that any left amenable right cancellation
semigroup S which is periodic (that is, if ¢ € S then ¢2*=¢" for some n,
[13, p. 113]) is a group (and is hence amenable). To the best of our
knowledge Sorenson’s conjecture is still open. We add to it the follow-
ing weaker one: Let S be a left amenable right cancellation semigroup
which is in addition extremely right amenable (that is, if a,b € S then
ca=cb=c for some ¢ € S). Then S has to have left cancellation and is
hence the trivial semigroup containing identity only.

2. The situation is entirely different if one sided cancellation is re-
placed by two sided cancellation. It has been shown by A. H. Frey in
his thesis [8] (which unfortunately has not been published):

TrEOREM (A. H. Frey): Let S be a cancellation (that is two stded) sems-
group containing nmo free subsemigroup on two generators. If S is left
amenable then so is every subsemigroup of S.

The question of whether each subsemigroup of a cancellation left
amenable semigroup is left’ amenable can be reduced to the, apparently
easier, question of whether each subsemigroup of an amenable group is
left amenable (it would then, by symmetry, be right amenable and hence
amenable). Both these questions are raised in Frey’s thesis [8, p. 90].
In fact if S is a cancellation left amenable semigroup then any two right
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ideals of S have nonvoid intersection. Using a theorem of Ore (Ljapin
[13, p. 392]) one has that the semigroup S can be embedded in a group
G,. If G is the subgroup of G, generated by S, then @ is left amenable.
In fact, one can find, by Day’s generalization of the Markoff-Kakutani
fixed point theorem (see Day [3]), a mean ¢ on m(G) such that L,p=¢
for each s € S. Hence

La-l(p = La—l(Ls‘p) = Le(p =@,

where e is the identity of @, for each se S. If now ge @, then g=s,"1. ..,
where s; €8 and ¢;= +1. Hence Lp=¢ for any ge G and @ is left
amenable. This argument seems to us more direct than that in (c¢) of
theorem 2 in [17]. Thus the question of whether each subsemigroup of S
is left amenable is reduced to the question of whether each subsemigroup of
the left amenable (hence amenable [12, p. 234]) group @ is left amenable.
Now each subgroup of G is left amenable ([12, p. 234]). Thus Frey’s first
question is reduced to whether the group G can contain a free subsemi-
group on two generators or not (again asked in [6]). As noted by Frey
in [6], if G' contains such a subsemigroup, then the subgroup generated
by it cannot be a free group (von Neumann [18] or [12, p. 236]). It is
interesting to note that a group G can be generated by a free semigroup
on two generators and need not be a free group. Such an example is
given by K. Appel and F. Djorup in [1]. An example of the same kind
was also known to A. H. Frey (written communication).

We do not know the answer to Frey’s question and we add to it the
following easier one: Let S be a left amenable subsemigroup of the
amenable group G. Does this force S to be right amenable? (Equiv-
alently, is any cancellation left amenable semigroup also right amenable %)
We refer the reader for further questions of the above type to M. Day
[2, p. 520]. The analogues of the above questions for ELA semigroups
become trivial, since there are no cancellation ELA semigroups (except
the trivial one).

We continue now to study the semigroup S constructed from the semi-
groups §; for ¢ in the linearly ordered set I.

We specialise I to be the real line I = R with its usual linear order and
8, to be the free semigroup on two generators {a,,b,} with adjoined iden-
tity e, for —oo<x<oo. Hence S will consist of all functions f defined
on R such that f(z) € S, for each real  and such that {z; f(x)+e,} has
a last element x, € R, which is the degree d(f) of f. We know already
that S is a left cancellation ELA semigroup. Our first purpose is to find
all ELA subsemigroups of S. If 4<8, denote d(4)=sup{d(f); fe 4},
—oo<d(4) =S +oo.
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ProrosiTioN 1. 4 subsemigroup T <8 is ELA if and only if d(T) > d(f)
Jor each f € T (i.e., this supremum is not attained).

Proor. If d(T') is not attained and f,g € 7', then there is some he T
such that d(k)>d(f)vd(g). Hence fh=gh=~h and T is ELA. Conversely,
if d(g)=sup{d(f); fe T} for some g e T, then we claim that g and ¢2
do not have a common right zero in 7. In fact if gh=g2%h, then h=gh
and so

d(h) = d(g) vd(h) = d(g) .
If now zy,=d(g), then
€xPUTo) = h(xy) = g(@o) h(2,) .

Hence g(x,)=e,, which contradicts the fact that d(g)=z, Thus T is
not ELA. In particular if d(7")= + o0, T is ELA.

We find out now which subsemigroups of S are left amenable.

It is clear that those subsemigroups 7' for which d(7’) is not attained
are ELA and a fortiori left amenable. Hence we should decide which
ones among the semigroups 7'c8 for which d(7) is attained are left
amenable.

ProrosiTiON 2. Let T be a semigroup for which d(T)=w, is attained.
Let
To={feT;d(f)=x} + O
and
80 = {f(xo); f€To} < Sy, -

Then T s left amenable if and only if 8° ts commutative.

Proor. T, is a two sided ideal of 7' because of the equality d(fg)=
d(f)vd(g). Hence T is left amenable if and only if 7'; is left amenable
(see end of [10]). Define ¢: Ty - 8° by ¢(f)=f(x,). Then, since d(f)=
d(g) ==, for any f,g € T, we have by the definition of multiplication in
S that

(f9)(xo) = [ (o) 9(o) -

Hence ¢ is a homomorphism onto 8° and so 8° is left amenable (see Day
[2, p. 615 (c)]). Furthermore S° does not contain the identity e,, because
of the definition of 7',. Consider now S,, as being embedded in the free
group G on the two generators {a,b,}. Let G, be the subgroup of G
generated by 8° (<=8,,). By [14, p. 96], G, is a free group. But since G,
is generated by the left amenable semigroup S° G, has to be left amen-
able (see the preceeding remark 2) and hence amenable [12, p. 234
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(17.11)]. By Day [2, p. 516, (G')] G, is generated by one element.
Hence G, and so 8° are commutative.

Conversely, assume that S° is commutative. Let fe T, be fixed
(then f(x,) € 8°). If h,g € T, then

s if x>z,
@f)=) = (9@ f(wo) if =z=2,,
f(x) if x<z,.

Hence (gf)(2f) = (Af)(gf) as directly checked. (It is only needed to check
that the value of these functions coincide at x =2, since

(kf)(x) = e, for z>x,
and
(kf)(@) = f(z) for z<z,

for any k€T, For s=s, the commutativity of S° implies the rest.)
Hence T'yf is commutative and so 7' is left amenable.

ReMmarks. 1. Call a subsemigroup 7'< 8 bounded if d(7') < +oco. If T
is generated by the finite set {f,...,f,} =8 then

d(T) = max{d(f;); 1=i<n}

is attained. In fact d(f¥)=d(f;) and so if g€ T, then g is a product of
powers of the f;’s. Hence

d(g) < max{d(f); 1sisn} = d(fy,)

say. Since f; €T, d(T)=d(f;). In particular any finitely generated
subsemigroup of S is not ELA (as in example 2 of section 3 of [10]).

It can be directly checked that if A is a subset of S and T’ the semi-
group generated by 4, then d(4)=d(T).

2. Let T be a bounded subsemigroup of S. Then there are f,g € § such
that the subsemigroup U generated by {T'U{f,g}} is not left amenable.
In fact, let

zg =d(T)+1

and f,g be defined as: f(x)=e, if x+2, while f(z,) =a,,, g(z)=e¢, if z+2,
while g(z,) =b,,. Then

d(f) = d(g) = @y = AT U{f,9}) .

Now Uy={heU; d(h)=2z,} and VO={h(x,); h € Uy} is the semigroup
generated by {a,,,b,,} which is a free semigroup on two generators and
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hence by no means commutative. By proposition 2, U is not left amen-
able.

We should notice here that the subsemigroup X of 8 generated by
{T'u{f}} is left amenable. For this semigroup X,={h e X; d(h)=2,},
and V0= {h(xy); h € X,} is the subsemigroup of S, generated by {a,,}
(which is commutative).

In view of the general construction of this section it seems that the
structure of (left cancellation) ELA semigroups is extremely interesting
and worth investigating. It would be especially interesting to know
how far our construction is from representing the general ELA semigroup.
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ERRATA AND ADDENTUM TO [10]

On p. 182: Last row y should be replaced by ¢.

On p. 190: In row 18: Delete the word »multiplicative«.—In row 21: Delete
»Since @(A) is either 0 or 1, @(S,) =1«.—In row 22: Instead of »Since @(dS) =¢(S,)
=1« should be »Since ¢(dS)=1«.

On p. 184, Cor. 4: The assumption that each two right ideals of S, have non-
void intersection can easily be removed. Since if a,b€S,, apply Cor. 4 as stated
in [10] to the semigroups {an}{°, {b7}°. Let then ay,b, €S satisfy a(aa,)=aa,.
b(bb,) =bb,. Any se€b,S N a,;S will satisfy as=bs=s which is even more than as-
serted in this Cor. 4.

On p. 196 to Prop.7: Remark: If § is ELA (or LA) and I <S8 is a right ideal
then I is ELA (LA) since ¢(I)=1> 0 for any left invariant mean ¢ on m(S). The
converse is not true since if S={e,,e;} with e;e;=¢;, i,j52, then the right ideal
I ={el} is ELA but S is not even LA.
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