ON SUBGROUPS OF THE FIRST KIND

N. OLER

In his fundamental work on discontinuous groups C. L. Siegel [1] calls a discrete subgroup H of a locally compact group G which satisfies the second axiom of countability a subgroup of the first kind if the following conditions are satisfied. There is a fundamental domain F relative to H of finite measure which has only a finite number of neighbours and which is normal. A translate Fh of F by an element h in H is called a neighbour of F if $Fh \cap F$ is not empty so that the condition that F has but finitely many neighbours means that $F^{-1}F \cap H$ is finite. That F is normal means that the covering of G by the family $\{Fh : h \in H\}$ is locally finite, that is, every point of G has a neighbourhood which meets Fh for only a finite number of $h \in H$. It is furthermore clear that if F is normal, then there exists an open set U such that $F \subset U \subset FH_0$ where H_0 consists of those h in H for which Fh is a neighbour of F. On the other hand, the existence of such a set U together with the finiteness of H_0 implies normality of F.

We are interested here in the fact, pointed out by Siegel (see [1, p. 683]), that if G/H is compact, then H is of the first kind. For the compactness of G/H implies the existence of a fundamental domain F having compact closure and the conditions that H be of the first kind are clearly met by such an F.

We observe that the compactness of F implies rather more in respect of normality namely that an open set U satisfying the condition $F \subset U \subset FH_0$ is realizable in the form FV where V is an open neighbourhood of the identity, e, having compact closure. For the assumptions on G provide that there exists a sequence (V_i) of open neighbourhoods of e in which $V_{i+1} \supset V_i$, $i = 1, 2, \ldots$, is compact and $\cap V_i = e$. Since $F^{-1}FV_i$ is compact and H is discrete, it follows that $F^{-1}FV_i \cap H$ is a finite set and, choosing i sufficiently large, $F^{-1}FV_i \cap H = H_0$. In regard to normality, we have, in these circumstances that for any x in G there is a neighbourhood V of e which is independent of x such that Vx is covered by a

Received August 4, 1966.

This work has been carried out while the author was a Science Faculty Fellow of the National Science Foundation.
finite number of translates Fh, $h \in H$, this number being at most the number of elements in H_0.

The above observation leads us to make the following definition: A discrete subgroup H is uniformly of the first kind when there exists a fundamental domain F relative to H of finite measure for which $H_0 = \overline{F}^{-1}F \cap H$ is finite and there exists an open neighbourhood V of e such that $\overline{F} \subset \overline{F}V \subset FH_0$. Stated in these terms what we have observed above is that if G/H is compact, then H is uniformly of the first kind. What we are now going to show is that the converse assertion holds. It is a special case of the following

Theorem. Let G be a locally compact σ-compact group with left invariant measure m. Let A be a subset of G of finite measure which is such that there exists a covering $\{A\lambda: \lambda \in \Lambda\}$ of G in which, for some compact neighbourhood V of e, $AV \cap A\lambda \neq \emptyset$ for only a finite subset of Λ. Then \overline{A} is compact.

Proof. Let $A_0 = A \cap A^{-1}AV$ where V is as given. Denoting AA_0 by \overline{A}, we have that $m(\overline{A}) \leq |A_0|m(A)$, where $|A_0|$ is the number of elements in A_0. It follows that $m(\overline{A})$ is finite.

The hypotheses on G provide that G is the countable union of compact sets, say $G = \bigcup C_i$, in which we may assume that $C_i \subset C_{i+1}$ for $i = 1, 2, \ldots$.

Suppose that \overline{A} is not compact. Then for each i, $\overline{A} - C_iV^{-1}$ is not empty since C_iV^{-1} is compact. Let x be any point in $\overline{A} - C_iV^{-1}$, then $xV \cap C_i = \emptyset$. But $xV \subset \overline{A}$ so that \overline{A} has a compact subset which by the left invariance of m has measure $m(V)$ outside C_i for each i. Since $m(V) > 0$, this contradicts the fact that $m(\overline{A})$ is finite. It follows that \overline{A} is compact.

Reference

University of Aarhus, Denmark

And

University of Pennsylvania, Philadelphia, PA., U.S.A.