ASYMPTOTES OF CONVEX BODIES

VICTOR KLEE

For two subsets A and X of Euclidean d-space E^d, let

$$\delta(A, X) = \inf \{ \|a - x\| : a \in A, \ x \in X \} .$$

The set A is a j-asymptote of X provided that A is a j-dimensional flat with

$$A \cap X = \emptyset \quad \text{and} \quad \delta(A, X) = 0 .$$

Thus X admits a 0-asymptote if and only if X fails to be closed, and X admits a j-asymptote if and only if X's orthogonal projection on some $(d - j)$-dimensional flat in E^d fails to be closed. For each convex body C in E^d (closed convex set with nonempty interior) let αC denote the set of all integers j such that C admits a j-asymptote. If $\alpha C \neq \emptyset$ then (as noted in [2]) $\alpha C = \{ j : 1 \leq j \leq d - 1 \}$ when C has no boundary ray and $\alpha C = \{ j : 1 \leq j \leq d - 2 \}$ when C is a cone. Here we settle a problem raised in [2] by showing that every set of integers between 1 and $d - 1$ can be realized as the set αC for suitably constructed convex bodies C in E^d. The construction is adapted from [1].

Theorem. For each set $J = \{ j : 1 \leq j \leq d - 1 \}$ there is a convex body C in E^d such that C contains no line and $\alpha C = J$.

Proof. The assertion being obvious for $d \leq 2$, we proceed by induction on d. Suppose the assertion known for E^d and consider a set J of integers between 1 and d. We want to produce a convex body K in E^{d+1} such that K contains no line and $\alpha K = J$. Let C be a convex body in E^d such that C contains no line and

$$\alpha C = \{ h : 1 \leq h \leq d - 1 \ \text{and} \ h + 1 \in J \} .$$

Choose an extreme point p of C (possible since C contains no line) and let

$$X = C \quad \text{if} \ 1 \notin J, \quad X = C \sim \{ p \} \quad \text{if} \ 1 \in J .$$

Received November 19, 1966.

This research was supported in part by the National Science Foundation, U.S.A. (NSF-GP-3579).
In each case X is a convex F_{a} set and hence is the union of an increasing sequence $Y_{1} = Y_{2} = \ldots$ of compact convex sets such that $\|y\| \leq i$ for all $y \in Y_{i}$. Let E^{d} be embedded as usual in E^{d+1}, so that $E^{d+1} = E^{d} \oplus Rz$ for a line Rz orthogonal to E^{d}. Finally, let

$$K = \text{con} \bigcup_{i} (Y_{i} \oplus i^{2}z),$$

so that X is the orthogonal projection of K on E^{d}. On p. 101 of [1] it is proved that K is closed, whence of course K is a convex body containing no line. Plainly

$$\alpha K = \{h + 1 : h \in \alpha X\},$$

for $A \oplus Rz$ is an asymptote of K in E^{d+1} whenever A is an asymptote of X in E^{d}. From the choice of C and from the care in defining X when $1 \in J$ it follows that

$$\{h + 1 : h \in \alpha X\} = J.$$

Thus to complete the proof it suffices to show that $\alpha K \subset J$, or equivalently that $j \in \alpha K$ implies $j - 1 \in \alpha X$. Note first that no asymptote of K is parallel to E^{d}, for K is closed and lies in paraboloidal region

$$(*) \quad Q = \{y \oplus rz : y \in E^{d}, \ r \geq 0, \ \|y\| \leq r^{1}\}$$

whose intersection with any translate of E^{d} is compact.

Now consider an arbitrary j-asymptote A of K. For each $r \in R$ let A_{r} denote the $(j - 1)$-flat $A \cap (E^{d} \oplus rz)$ and let P_{r} denote the orthogonal projection of A_{r} on E^{d}. Note that $A_{r} = A_{0} + r(A_{1} - A_{0})$, whence $P_{r} = A_{0} + r(P_{1} - A_{0})$ and

$$(\ast) \quad \delta(P_{r}, A_{0}) = r \delta(P_{1}, A_{0}).$$

If $P_{1} = A_{0}$ then $A = A_{0} \oplus Rz$ and A_{0} is plainly a $(j - 1)$-asymptote of X. If $P_{1} + A_{0}$ then $\delta(P_{1}, A_{0}) > 0$ and it follows from (\ast) and (\ast) that

$$\delta(A_{r}, Q \cap (E^{d} \oplus [0, 4r]z) \geq \delta(P_{r}, \{y \in E^{d} : \|y\| \leq 2r^{1}\})$$

$$\quad \geq \delta(P_{1}, A_{0})r - 2r^{1} - \delta(A_{0}, \{0\}),$$

whence $\lim_{r \to \infty} \delta(A_{r}, Q) = \infty$ and A is not an asymptote of K. This completes the proof.

REFERENCES