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ON THE RELATION PQ-QP = —<I

B. FUGLEDE

We show that the characterization given by Dixmier [1] of the (self-
adjoint) solutions of the equation PQ—@QP = —il, interpreted as by
Weyl and v. Neumann, cannot be weakened in a certain manner which
might have appeared plausible.

TaEOREM 1. In the complex Hilbert space 5 =L*R) there exist two
self-adjoint operators P, Q and a dense subspace @ of H# such that

@ < domP ndom@, PO < @, QD < D,
and that

a) (Pf.Q9) — (@f,Pg)= —i(f.g) for every f,g € dom Pndom@;
b) the restrictions of P and @ to @ are essentially self-adjoint;

c) the pair (P,Q) is not unitary equivalent to any direct sum of Schré-
dinger pairs (p,q).

The example which we propose to construct in order to establish this
result makes use of another example serving to prove the corresponding
assertion concerning the question of commutativity of self-adjoint opera-
tors:

THEOREM 0. In the complex Hilbert space S =L*R) there exist two
self-adjoint operators X, Y and a dense subspace @ of H# such that

® <cdomXndomY, XO < 9, YO c o,
and that
a) (Xf,Yg) — (Yf,Xg)=0 for every f,g € dom X ndom Y ;
b) the restrictions of X and Y to @ are essentially self-adjoint;
c) X and Y do not commute.

This result was essentially established by Nelson [2, p. 606]. My own
example is simpler than that of Nelson, and since the actual construction
will be used in the proof of Theorem 1, I begin by presenting my ex-
ample to Theorem 0.
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It should be noted that the property a) in Theorem 1 implies XY —
YX < —il, and hence (XY — YX)p= —ip for every ¢ € . The verifica-
tion of this weaker form of the commutation relation in our example
would have been simpler than the stated form a). Quite similar remarks
apply to a) in Theorem 0; only the weaker form of a) is established in
the quoted example of Nelson.

Proor or THEOREM 0. We denote by p,; and g, the following operators
on the space 2’ of all distributions on R:

paf(@) = —idf(x)/de,  quf(x) = 2f(x).

By restriction of the graphs of these operators to L%x L? one obtains
the self-adjoint Schrodinger operators p and g on s# = L2 Next, put

(1) o= 2n)} X=e1 Y =cop,

Then X and Y are self-adjoint (and = 0). If we denote by X, the operator
on &' defined by
Xaf(@) = e f(2),

then X is the restriction of X; to L? in the sense explained above for p
and q.
We define @ as the subspace of J# generated by the family of functions

™ exp (—ra?+cx), neN, reR, r>0, ceC.

These bounded functions do belong to 5. Since @ contains all the
Hermite orthogonal functions, @ is dense in J#.
Defining the Fourier—Plancherel operator F on 5 by

a—»+4-00

(@ = o lim [t f@)dt in ot
we have -
(2) FgF =p, FqF'=-p, FXF'=7.

It is easily checked that ® =domgndomX and that @ is invariant
under ¢, X, F, F-1, and also under multiplication of two of its elements.
Consequently ®=dompndom Y, and @ is invariant under p, Y, and
under convolution of two of its elements.

Applying relation (2), FXF-1=7, it is easily verified that

(Yo)(x) = p(x+iw) for ped, xeR,

1 For the purpose of the present example it would suffice to consider the functions
exp (—rx?+cx) with r and ¢ as above. The factor z# is, however, included in view of the
proof of Theorem 1.
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and hence that
(3) (XY—Y{(_)_q;:O for p e D,
(4) Y(Yp) =@ for ped.

LemMa 1. If pe @ and fe domX, then ¢f € dom X, ¢*fe domX, and
X(¢f) = ¢ Xf = Xof,
X(pf) = (X@)x(Xf) .
If pe @ and fe domY, then ¢f e dom Y, and

Y(gf) = Yo Yf.

Proor. The case f e dom X is straightforward, and the case fe dom Y
is derived by Fourier transformation.

Levmma 2. If p € @ and f,g e domXndom Y, then
(X (@), Yigg)) = (Y(ef), X(#9) -

Proor. Since X and Y are self-adjoint, it follows from (3), (4), and
Lemma 1 that

(X(¢f), Y(99) = (Xof, Yo Yg)
= (Y(Yp Xof),q)
= (YYp YXg Yf, g)
= (¢ XY‘? Yf’ g)
= (X(Yp Yf), p9)
= (XY(¢f), 99)
= (Y(gf), X(py)) -

In order next to prove statement a) of Theorem 0, we shall apply Lem-
mas 1 and 2, taking for ¢ the function ¢, € @ defined for ¢>0 by

@e(x) = exp(—ex?),
and letting ¢ -~ 0. Clearly
lims—-)o(ps(x) = 17 limc»O(Y(Pc)(x) =1

pointwise for z € R. Moreover the functions ¢, are uniformly bounded
(for small ¢), and so are the functions Yg,:

(Y@ )(@)| = lexp(—&(x+iw)?)| < exp(ew?).
According to Lebesgue’s convergence theorem we infer that

of~>fi (Ye)f~>f in

Math. Scand. 20 — 6
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for every fe s as ¢ > 0. It follows, therefore, from Lemma 1 that
X(pf) = @/ Xf) > Xf,  Y(of) = Yo, Yf - Yf

in 5 as ¢ > 0, provided Xf, resp. Yf, is defined. Applying Lemma 2
with ¢ =¢,, and letting ¢ -~ 0, we obtain statement a).

In verifying statement b) it suffices to consider the case of X and to
show that (X|®)*<X. Suppose accordingly that (X|®)*g=h. For
every o ® and fe ® we have ¢fe @, and hence (X(¢f),9)=(¢f,h).
Since X¢p € @, X¢ is bounded, and hence

(X(¢f), 9) = (Xof,9) = (f, Xog) = (. §h) .
Since @ is dense in 57, it follows that
Xpg = ¢h.

Recall that Xog=X,pg=¢ X9 (where X g(x)=e*g(x)). Choosing
p e P so that ¢(z)+0 for all x € R, we conclude that X g=5h. Since
g,h € L?, this means that Xg=~h.

Finally, statement c) follows from the well-known fact that the Schro-
dinger operators ¢=w-!logX and p= —w-'logY do not commute.

Note that the couple X,Y isirreducible (i.e., X and Y do not commute

simultaneously with any self-adjoint projection operator = 0,I). This
follows from the corresponding property of the couple (g,p).

Proor or THEOREM 1. We denote by P;=p;+ X,; the operator on
2’ defined by
Puf(x) = —idf(@)/de + e f ()

with w=(2x)}. The operator P on 5 =L? is now defined by restricting
the graph of P; to L?x L2 Next we put

(5) Q = FPF1,

F being the Fourier-Plancherel operator. The subspace @ is defined as
in the proof of Theorem 0. In terms of the operators X and Y, defined
in (1), we have the inclusions

(6) P>p+X, @>q+7,

of which the latter follows from the former on account of (2). Note
that ®=dompndom X =dom P, and that @ is invariant under p and X,
hence under P. By Fourier transformation similar assertions are derived
with @ in place of P.

It will follow from the proof of statement b) which we give below that
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P is the closure of its restriction to @, and hence also of its restriction
to dom (p+ X), that is,
P = (p+X)**.

We propose now to show that P (and hence Q) is self-adjoint and
unitary equivalent to p. Denote by U=wu(q) the unitary operator of
multiplication by the function

(7) u(x) = exp (iw=1 eo%)
of modulus 1. Since idu/dx + e** u(x)=0, one easily obtains
(8) P =U"1pU.
Next we make pertinent additions to Lemmas 1 and 2 above.

Lemma la. If o e D and fe domP, then ¢f and @xf are in dompn
dom X <«dom P, and

P(ef) = p(ef) + X(¢f) = pp f+ ¢Ff ,
Plo+f) = (pp—pXo)+f + (Xo)+(Ff) .
If pe @ and fe dom@, then ¢f € domgndom Y =dom@, and
Qef) = 9(@f) + Y(ef) = (ap—qaYo)f + Yo Of .

Proor. The assertions concerning P(¢f) follow from the elementary

identity (for fe 2")
Py(¢f) = palef) + Xalgf) = po f+ oPaf

because X (¢f)=X¢ fe L? when fe L% (Recall that X¢ is bounded.)

In order to establish the assertions concerning P(p+f) we note that,
for fe domP, the distribution p;f=Pf—X,;f is a (locally integrable)
function, and so f is (locally) absolutely continuous, and p;f= —if’.
Hence we obtain for g € @, fe domP:

[Xolpef @) = e [ po—nf dt

[= <]

[ e gt —te= 01 de

—00

[

| @oa—0 12O +ir @

—00

[(Xpp @+ [ Xpie-010d.

I
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By partial integration we get

b b
[@o@-t 50 d = [ (Xey@-050 @t + (Xpdz—1 @)

Since (X¢)' € @< L?, and fe L?, we infer, letting a - — o0 and b - + o
through values such that f(a) and f(b) remain bounded,

[ @oe-nrma= [ @pre-nseoa,

because
(X@)(xz—t) >0 as |f| > oo,

Inserting this in the above evaluation, we obtain
Xolp#f) = (X@)x(Pf) — (pXo)«f .

Both terms on the right belong to 5# = L2, and consequently ¢xf € dom X.
But ¢«f € domp (for every fe 5#), and thus

¢xf € domp NndomX < domP
in view of (6). Moreover,

P(pxf) = plp*f) + X(pxf)
= (pp—pXo)xf + (X)*(Pf) .

Finally the assertions concerning ¢(¢f) are derived from those regard-
ing P(pxf) by Fourier transformation, cf. (5).

LemMmA 2a. If g € D and f,g € domPndom@, then
(P(@f), Qleg)) — (Q@f), Plyg) = —i(ef.99) .

Proor. It is well known and elementary that
(vf,99) — (af,p9) = —i(f.9)
for f,g e dompndomgq. Clearly,
(Xf.q9) — (af, Xg) = 0
for f,g e domXndomg. By Fourier transformation this implies that
(Yf,pg) — (of, Yg) = 0
for f,g € dom Y ndomp. According to a) of Theorem 0
(Xf, Yg) — (Y[, Xg) = 0
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for f,g e domXndom Y. In view of (6) we obtain, by adding the above
four relations,

(Pf>Qg) - (Qf:Pg) = "'i(th) ’

provided f and g belong to the domain of p, X, ¢ and Y (and hence of
P and Q). Replacing f,g by ¢f,¢g, now with f,g e domPndom@, we
arrive at the assertion of Lemma 2a on account of Lemma la.

In order to prove statement a) of Theorem 1, we shall apply Lemmas
la and 2a, taking for ¢ the function ¢, € @ defined for ¢>0 by ¢,(x)=
exp(—sx?), and making ¢ -~ 0 (cf. the corresponding part of the proof of
Theorem 0). Just like the families (p,) and (Y¢,), the families (pp,) and
(qp,—qY@,) are uniformly bounded for small ¢, as we shall now see.
Writing ex?=1¢> 0 and ¢(2iwx — w?)=s, we obtain

|pp(x)| = 2¢|x| exp(—ex?) = 2¢ttte™,
(9) (99— 9Y®,)(x) = (1 —e~%) x exp(—ea?).

Let ew?=< %, and suppose first that 2ew|xz| < 3. Then [s| <1, hence

[1—e5| < els| < ec(2w|a|+w?),
and
(gps— 9 Y @) ()| £ (2wt + wiettt) ,

which is uniformly bounded. In the remaining case 2tw|x| >4 we have

ex? = elz|? > |z|/(4w), le=8| = expew?,
and so by (9)

l(ap.—qY@)(@)| < (1+exp(ew?)) 2| exp( - |2|/(40)),

which is likewise uniformly bounded in z for small e.

Combining these results on the uniform boundedness of the functions
e, and qp,—q Y, with the fact that these functions tend pointwise to 0
as ¢ > 0, we conclude that

(pp)f =0, (99,—qY@)f—~0 in 5#

for every f e o as ¢ - 0. It was shown similary in the proof of Theorem
0 that ¢,f - f and (Y¢,)f > f in /£ as ¢ > 0. Applying Lemma la, we
now obtain

P(p.f) > Pf, Qlof)~>Qf i

as & - 0, provided Pf, resp. Qf, is defined. Consequently, the assertion
a) of Theorem 1 follows from Lemma 2a with ¢=¢,, ¢ > 0.

In verifying statement b) it suffices to consider the case of P and to
show that (P|®)* < P. Suppose accordingly that (P|®)*g="h. For every
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pe® and fe D we have ¢f ¢ D, and hence (P(¢f),9)=(¢f,k). Since f
and pf are bounded, we get

(P(@f).9) = (p(ef) + X(9f), 9)
= (p¢f+¢pf+fo, g)
= (pp.fo) + (9, 2 9) + (9, Xf g) .

Since this equals (¢f,%)=(p,f) for all p € D, and since (p|P)*=p,? it
follows that fg € domp, and

(10) p(fg) = —ofg—Xfg+fh.

Taking f € @ to be real, and noting that pf= — pf, we obtain, evaluating
both members of (10) as distributions,

ofg+fpag = of 9—Ff Xag +fh.

Choosing, for example, f(z)=exp(—x2)+0, we conclude after division
by f that
Pyg = Pag+Xag = h.

Since g,k € L2, this means that Pg=h.

It remains to establish the assertion ¢). If the pair (P,@) were (simul-
taneously) unitary equivalent to a direct sum of m copies of the Schré-
dinger pair (p,q), then the cardinal m would have to be 1 because p
has a simple spectrum, and so has P since it is unitary equivalent to p
by (8). The only possibility is, therefore, that there exist a unitary
operator W such that

P=W-lpW, Q= W-gW.

Combining this with the previous relation (8) we find that the unitary
operator V= WU-! must commute with p. Since p, or —p, has a simple
spectrum, there is a function v with |v|=1 such that

V=ov-p), W=VU-=v-pu.
In a similar manner it follows from the relations
Q=WlqW = W-1FpF1W

and (see (5))
@ = FPF-! = FU-1pUF-!

that the unitary operator
FAWFU- = v(q)u(p)u(g)™

2 This follows by Fourier transformation from the relation (g/®)*=g¢, which in turn
is established just like the analogous relation for the operator X in the proof of Theorem 0.
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commutes with p, and hence with e for every A € R. Using twice the

identity
e f(q) = f(g+AD)e

which holds for any bounded measurable function f on R, one therefore

obtains
(g + AL u(p)u(g+AI)"t = v(g)u(p)u(g)! .

Introducing the abbreviations
(11) (@) = u@+A/u@), o) = vie+i)fv@),

this leads to wv,(q)u(p)=u(p)u,(q), hence by Fourier transformation
F...F- (cf. (2)
v(—p)ulg) = w(g)u,(—p) .

Being identical with v,(—p), the operator u(q)u,(—p)u(g)~! commutes
with e? for every u € R. Proceeding as above, we infer that

u(q) uy(—p)u(g)t,
uy(—p)u,(q)

w(q + pl) uy( — p)u(g +ul)
(12) %,(q) ux(—P)
for all 2, u € R. Inserting the expression (7) for u, we get from (11) and (1),

uy(x) = exp (ige®*), 0= wl(e?-1),

u,(x) = exp (i0e”®), o= wlew—1),
u,(q) = exp(ice®?) = exp(ioX),

uy(—p) = exp(ipe~*?) = exp(ipY),

and consequently from (12)

i0X ieY _ 6Y ioX
(13) e e et ¢

for all p,¢ in the range of the function w-1(¢®*—1) of the real variable 1,
in particular for all g,o € [0, + oo[. Since the inverse e—X of ¢ieX like-
wise commutes with e%¥, and hence with e-%¥, (13) actually holds for
all real g,0. But this means that the self-adjoint operators X =e»? and
Y =e®? commute, and hence that ¢ and p would have to commute,
which is actually not the case. The hypothesis that the pair (P,Q) be
unitary equivalent to a direct sum of Schrédinger pairs (p,q) is there-
fore false. This completes the proof of Theorem 1.

The author has not been able to decide whether the pair (P,Q) con-
structed in the present paper is irreducible.
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