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L? ESTIMATES FOR (PLURI-) SUBHARMONIC
FUNCTIONS

LARS HORMANDER

1. Introduction.

The work of Carleson [2], [3] on interpolation by bounded analytic
functions of one complex variable was based on estimates of the form

2n

(1) Jirrdusc, [1remas.
D 0

Here p denotes a positive measure on the open unit dise D, and either f

is a harmonic function and 1<p<oo or f is an analytic function and

0<p<oo. Carleson found that (1.1) is then valid if and only if for all

real 6 and r>0

(1.2) w{z; zeD,|z—e¥ <r} < Cr,

where C is some other constant. The estimate (1.1) is closely related to
the Hardy-Littlewood maximal theorem. Using arguments introduced
by Smith [7] in generalizing that result to several dimensions, we shall
prove some new estimates of maximal functions in section 2. As shown
in section 3 they lead to a simple proof of Carleson’s estimates and their
extensions to harmonic functions of » variables. Thus if £ is a bounded
open set in R* with (2 boundary and if 1 <p < oo, we prove that

(13) [ du s ¢, [ i do

Q2 o2

for all harmonic functions f in 2 if and only if the positive measure u
on 2 has the property
(1.4) w(BNnO) = C'r1if Bis any ball with center on 922 and
radius r .
In particular, (1.3) can be applied to analytic functions of several

complex variables if Q< C*. However, if f is required to be analytic, a
larger class of measures x can be used in (1.3). This is obvious when 2
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is not a domain of holomorphy for clearly no restriction on u except that
the total mass be finite is needed near a boundary point of 2 which is
in the interior of the hull of holomorphy. Also for domains of holomorphy
a larger class of measures can be used in (1.3) when f is analytic than
when f is merely harmonic. Indeed, in section 4 we shall obtain a neces-
sary and sufficient condition for (1.3) to hold when £ is a strictly pseudo-
convex domain. This condition is analogous to (1.4) but strictly weaker.
Instead of balls B it involves sets which are much larger in the directions
of complex tangents to d£2 than in other directions. For the precise state-
ment see section 4.

It is useful to consider positive subharmonic or plurisubharmonic
functions throughout, for |u| is subharmonic if % is harmonic, and |f|? =
exp (p log|f|) is plurisubharmonic for every p> 0 if f is analytic.

2. Estimates for maximal functions.

In this section we estimate mean values of an integrable function over
certain families of sets. Applications to subharmonic and plurisubhar-
monic functions will be given in sections 3 and 4 respectively.

Let M be a locally compact topological space and m a positive measure
on M. Set M'=M xR,, where R, is the open positive real axis. We
assume that to every X =(x,t) € M’ thereis assigned a subset By of M
so that the following hypotheses are fulfilled:

(i) Bx ts tntegrable with respect to m.
(ii) There exist constants k and K with 1 <k < K such that

8skt, By,o N By,y+9 => By,9<By,kp-
(iii) There is a constant C, such that for the same K as in (ii)
m(B(z,Kt)) = Clm(B(:c,t)) .

ExampLE. Let M be a metric space and define By, , to be the set of
points in M with distance <¢ from x. Then (ii) is fulfilled if s <kt im-
plies that ¢+ 2s < K¢, that is, if 142k < K. Conditions (i) and (iii) are of
course also fulfilled if M =R" with the Euclidean metric and Lebesgue
measure, C;=K", or if M is a compact Riemannian manifold with the
Riemannian metric and element of integration. (Another example will
occur in section 4.)

For every fe Li (M) we define a “maximal function” by

(2.1) FfX) = sup fm dm/m(By), XeM'.

By DBx By

Here we use the convention 0/0=0.
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Our estimates of f involve a non-negative subadditive function (k)
defined for all subsets K of M’, such that u(&;)  u(l) if E; /E. For
example, u(#) may be the outer measure of E defined by a positive
measure on M’, or u(E) may be an outer measure of the projection of
E on M. The latter case with the outer measure defined by m leads to
the original Hardy-Littlewood estimates. Following Carleson [3] we
assume

(iv) There is a constant C, such that

w(X; Xe M',By<By} < Cym(By), YeM.

THEOREM 2.1. If the conditions (i)—(iv) are fulfilled, we have

2.2)  wX:f(X)>s) < 01023—1f|f] dm, feLM(M), s>0.

The proof depends on the following variant of a covering lemma due
to Aronszajn and Smith [1], used in a similar context by Smith [7].

LemmaA 2.2. Let E be a subset of M' such that t is bounded when
(x,t) € E and for no infinite sequence X;=(x;,t;) € E the sets Bx,- are all
disjoint. Then one can find finitely many points X ;= (x;,t;) € K such that
the sets B x; are disjoint and

E = U {X; Bx<Bg;, ki) -
J

Proor oF LemmMA 2.2. Let T =supf{t; (x,t) € £}, and choose X,=
(x1,¢,) € E with kt;=T,, which is possible since k>1. If X,,..., X,
have already been chosen, we let 7'; be the supremum of ¢{ when (x,f) € &
and By, , does not intersect By, ,...,B Xjop0 if such points (x,?) exist.
We then choose X;=(x;,¢;) with kt;2T); so that X; € B and By, is dis-
joint with By, when ¢<j. By hypothesis this construction must break
off after a finite number of steps. For every X e £ we then have
BxnB X7.+0 for some j. If j is the smallest such index we have t < T'; if
X =(,t). On the other hand, kt;=T'; so that t <kf;. From condition (ii)
it follows then that Bx < B, k), and this proves the lemma.

Proor oF TuEOREM 2.1. Let 0<e, 0< T and set

Er = {X:(x,t)eM’; 0<t=sT, f|f]dm>s(e+m(BX)) .
Bx

If X; € B, p and By, are disjoint, we have
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(2.3) S s(e+m(By)) £ 3 [ If| dm < f|f| dm .
J 7 Bx, i

Hence the sequence X; must be finite, so we can apply Lemma 2.2 to

E,p. Writing B, p={X; Bx<By for some Y €E,}, we obtain

E.p< U {X; Bx < By, g} -
J

In view of the conditions (iv) and (iii) and the inequality (2.3) it follows
that
(B, p) S Z X BXCB(wj,Kt,')}
J

=0, Z m(B(Ij,KIi)
J

€103 3 m(Byx) S C10ys™ [ If] dm.

J M
When ¢} 0 and 7 "o, the set E, 5 increases to the set {X ; f(X)>s}.
This proves (2.2).

ExampLE. When M =R" and B, , is the ball with radius ¢ and center
at z, we can take for K any number >3 and C,=K". If m is Lebesgue
measure and g is the outer Lebesgue measure of the projection on M the
inequality (2.2) is valid with C,C, replaced by 3". More generally, (2.2)
follows from (iv) with C, replaced by 3.

IIA

If m(By)+0 and we apply (2.2) to the characteristic function f of By,
noting that f(X)=1 when By < By, we conclude that (iv) must be valid
with C, replaced by C,C,. Apart from the size of the constants, the
condition (iv) is thus essentially equivalent to (2.2) when (i)-(iii) are ful-
Jilled.

In some applications given by Carleson [2] it is important that one need
not assume (iv) to be fulfilled for every Y € M’. This is proved in the
following theorem.

THEOREM 2.3. Assume that (i)—(iii) are valid, that m(By)>0 for every
Y € M’ and that for u-almost all Y = (y,t) the condition (iv) s fulfilled with
Y replaced by (y,Kt). Then (iv) is valid for every Y € M' with C, replaced
by C,0,.

Proor. Given Y we set £={X; Bx<By} and denote by E’ the set
of all X=(x,t) € £ such that (iv) is valid with Y replaced by (x,Kt).
Then EN\E’ is a nullset with respect to u, so we have u(E)=u(f’). Let
E.p be the set of all X=(z,t) € B’ such that m(Bx)>¢ and t<7. If
X; € B,y and By, are disjoint, it follows from the inequality
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2 m(Bx,;) < m(By)
and the fact that m(B x;) > € that there are only finitely many X;. Hence
Lemma 2.2 can be applied, and we obtain a finite number of points
X,;=(x;,t;) € B, p such that
E.p< U {X; Bx< By gy} -
J
Hence
/’L(E;,T) = 2 /.L{X H BXCB(xj,Ktj)} 02 E m(B(zi,Kli))
0,0, 3 m(By) < C,Cym(By) .
Since E, 5 /B’ when ¢ 0 and T o, it follows that u(E')<C,Cym(By),
which completes the proof.

IA 1A

Using Marcinkiewicz’ interpolation theorem, which we prove in the
simple case we need, we can derive an L? estimate from (2.2).

THEOREM 2.4. Let the conditions (i)-(iv) be fulfilled. Then we have
(2.4) f 8?-1g(s) ds = C,Cy(p/(p— 1))”f |f|?dm, felLr(M),1<p<oco,
0
where g(s)=u{X ; f(X)>s}.

Very mild assumptions concerning the continuity of By as a function
of X guarantee that f is semi-continuous from below. If u is a measure
in M’ we can then rewrite (2.4) in the more useful form

@4y [1f@P du 5 C.Coplplp= 1) [1f P dm,  feLr().

Proor or THEOREM 2.4. Let ¢ be a number with 0<e<1 to be de-
termined later, set f; =f where |f|<se and f; =0 elsewhere, and define f,
so that f=f,+f,. Then we have f; < se so it follows that f(X)>s(1—¢)
if f(X)>s. By Theorem 2.1 we therefore have

g(s) < 0yCy(1—e) 151 f \f| dm

|fl=se
which implies that
f s0-1g(s) ds < CyC,(1—¢)-1 f f so=2(f| dsdm
0 o<s<|flle

= C,0;(1=¢)tetP(p—1)1 | |f|P dm .

If we choose e=1—1/p, the theorem is proved.
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3. Estimates for subharmonic functions.

Let 2 be a bounded open subset of R® with a C? boundary . (The
results can easily be extended to the case of a Riemannian manifold with
boundary.) By SP(2), 1<p< oo, we denote the set of non-negative sub-
harmonic functions # in 2 such that

(3.1) lim fu(y+eN)1’ do(y) < .
&0

Here N(y) denotes the interior unit normal of w at y, and dw is the sur-
face element on w. It follows from (3.1) (see e.g. Garding-Hormander
[4]) that » can be defined on w so that

lirr; [u(y +eN(y)) — u(y)|? do(y) = 0.

Note that if % is harmonic and |u| satisfies (3.1), then |u| € SP.
THEOREM 3.1. Let u be a positive measure on §2 such that

(3.2) f du(@) < 061,  yew, 6>0.
le—y| <o

Then there is another constant C' such that

(3.3) fup du < C'p(p/(p—1))P Jup do, uweSP(Q), l<p<oo.

2
Conversely, (3.2) is fulfilled if for some p the estimate (3.3) is valid when u
i8 continuous in Q, positive and harmonic in Q.

Proor. For (y,t) € o x R, we denote by B, , the set of points in w at
distance <t from y (measured in R"), and we define

#(y,t) = sup % dojw(By, ) .
8=t B(y, 5

If z is a point in 2 with distance d to w, and @’ is a point on w where this
shortest distance is attained, we have

(3.4) u(x) £ Ca(x',d) .

We postpone for a moment the proof of this quite well known fact in
order to show first that it implies (3.3). Indeed, (3.3) is obvious if the
support of u is a compact subset of £2, for on such a set we have

ur(x)gofupdw.
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On the other hand, if 4 has its support in a neighborhood K of w which
is so small that the map K 5 — (2’,d(x)) is one to one and has a C!
inverse, the estimate (3.3) is an immediate consequence of Theorem 2.4.

To prove (3.4) we introduce the Poisson kernel P(x,y) of w, where
e 2 andy e w. It follows for example from the solution of the Dirichlet
problem by integral equations that

P(z,y) = Cd(z)|z—y|™.
Now we have

(3.5) u(w) < j P(w,y)uly) do(y)

for by the definition of subharmonic functions we have the corresponding
inequality where £ is replaced by the set 2, of points of distance >e¢
from (22, and this gives (3.5) when & — 0. The triangle inequality implies

dw)+ 1o —y| S 20 —a|+[a—y| S Blo—yl, wc yeo.
Hence for some C
u@) S O [dd+ e~y uly) doly) .

The part of the integral where |#' —y| <d can be estimated by

d | uly)doy) s Cula,d) .
B@',a)
If £ is an integer =1, the part of the integral where
2k-1d < &' —y| < 2%d
can be estimated by

dr-ngna-h f u(y) do(y) £ Cdi-n2n0-0(2kdyn-1g(’,d) .
By, okd)
The right hand side can be simplified to ¢’ 2-*4(z’,d), and since 3 2% =1
we obtain (3.4).

Finally, to prove that (3.2) follows from (3.3) we only have to apply
(3.3) to the Poisson integral of a continuous function on the boundary with
values between 0 and 1 which is equal to 1 in By, ,; and 0 outside B, sy,
for the Poisson integral will be bounded from below by a constant inde-
pendent of ¥ and é when |y —z| <d.

In view of Theorem 2.3 the hypothesis (3.2) can be seemingly relaxed :

THEOREM 3.1°. Assume that in a netghborhood of w we have for ji-almost
all xe 2
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(3.2) du(y) = Cd(x)*1,
le—y| < 4d(x)

where d(x) is the distance from x to w. Then (3.2) and (3.3) are valid for
some other constants.

The simple verification may be left to the reader. Instead we shall
show that Theorem 3.1’ contains the following result of Carleson [2]
(see also Shapiro and Shields [6]):

THEOREM 3.2. Let z;, j=1,2,..., be a sequence of different points in the
open unit disc in C, and assume that
(3.6) IT lz;—2l/Il1—2%] > ¢ > 0, k=1,2,...,
Jij+k

for some constant c. Then we have

37 2=z If)P < C’f If(e®)Pdo, feHP, p>0,
where HP is the Hardy class.

Proor. Since log|f| is subharmonic, we have |f|}? € 82, so it is suffi-
cient to prove that the measure u having the mass 1—|z;|2 at z; for every
j and no mass elsewhere satisfies the hypothesis (3.2)" with 2 equal to
the unit disc. To do se we note (cf. Carleson [2]) that

1- IZ—sz?‘ll—Ejzl—z = (1- |z|2)(1’"’zj|2) |1—»§j‘5|_2 .

Since an inequality e-% < T] (1 —«;) where 0 <«; <1 implies that Y«;<a,
it follows from (3.6) that

.zk(l—Izjlz)(l—|zk|2)]1—zj2k|—2 < loge?, k=1,2,....
13g*

If |£—2| <4(1—|z|), we have

1—20] = 1—[2]*+ [e]|]C—2] = 6(1—]z]) .
Hence
(I-1z?) = (2+36loge=?)(1—[2]) ,
Js Jzj—2rl<4Q—|2z))

which proves (3.2)" and so (3.7).

We refer the reader to Carleson [2] or Shapiro and Shields [6] for the
proof that (3.7) with p=1 implies the interpolation theorem that for any
bounded sequence w; there is a function fe H* with f(z;)=w;, j=1,2,... .
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4. Estimates for plurisubharmonic functions.

Let 2 be a bounded open set in C* with a C2 boundary w. We assume
that w is strictly pseudo-convex, that is, if p € C*(C") is a function which
is <0in 2 and >0 in (22 and has no critical point on w

n n
D Pg(2)[0z;02, t;8, > 0 if zew, 0kteC® Y t,dploz; = 0.
Jk=1 1

Let PSP, 1 <p< oo, denote the space of non-negative plurisubharmonic
functions » in £2 belonging to the class S? defined in section 3. Boundary
values € L?(w) of functions in PSP are then well defined.

For every boundary point x of 2 the tangent plane z, of w, which is
of real codimension 1, contains a unique ecomplex hyperplane =,°. For
t>0 we denote by A, , the set of points at distance =<t from the ball
in that plane with center at x and radius ¢}, and we set B ,=
A pno. If we compute the area of B, , for small ¢ using the projection
of w on x, as local parametrization of w near x, we find that the area of
B, » can be estimated from above and from below by a constant times
(¢3)2m-Df =¢n  thus
(4.1) Cit" 2 o(Bg,y) = O™

when ¢ is less than some constant 7' which we can choose so large that
A, > w for every z € w.

The definitions made are essentially invariant under an analytic change
of variables. For the first order part of the Taylor expansion at x of an
analytic isomorphism will map 4, , linearly on a set which is contained
in the set A, g, defined at the image 2’ of » relative to the image £’
of Q, if K is sufficiently large and ¢ is small. The remainder term in the
Taylor expansion will not move the image of a point in 4, , more than
by a constant times (¢!)%. Hence one can choose K’ so that the image of
A,y is contained in A4’y g, for small ¢ and arbitrary z € w. Since the
roles of 2 and £’ can be interchanged, an opposite inclusion is valid for
another K’'. In view of this remark it is in fact easy to extend the results
of this section to manifolds.

LEMMA 4.1. There is a constant K such that if s <2t and x,y € w, the
condition B(z, s)nB(W):I:@ impltes B(z, s)CB(y, K-

Proor. We may assume that ¢<T, for By gy=w for every K21
otherwise. The hypotheses imply that

lt—y| < tt+t+st+s < 3(TH+1)¢E.

Hence the unit complex normals of the planes x,° and z,° when suitably
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normalized differ by a vector which is O(t?). The maximal distance from
points in 4, , to 7,° is therefore O(t)+ O(ttst)=0(t). This implies the
statement of the lemma.

In view of Lemma 4.1 the hypothesis (ii) in section 2 is fulfilled by
the sets B, and (4.1) shows that the condition (iii) is fulfilled. Let
@(z,t) be the coresponding maximal function on w xR

Lemma 4.2, Let w be strictly pseudo-convex. For xz € Q2 we denote by
d(x) the distance from x to w and by x' a point in » where the distance s
attained. Then there is a constant C such that

(4.2) w(x) £ Ci(x',d(x)), wePSPQ), 2.

Proor. The statement is trivial when z is in a compact subset of Q
(cf. proof of Theorem 3.1) and it follows from (3.4) when n=1. It is
therefore sufficient to prove the lemma when d(z) is small and n>1.
We do so assuming first that (2 is strictly convex at z’, that '=0 and
that x,, is the plane x,,=Imz,=0. In a neighborhood of 0 the set Q is
then defined by

Ty, = Imz, 2 @(@y,...,%5,1),

where ¢ is equal to a positive definite quadratic form 4 in a'=
(%15 . s %9,_1) apart from an error which is o(|z’|?).

Set V={leC; |Re{|<Im{}. When z,€V and |z,| is sufficiently
small, the set where ¢(z') <Imz, closely approximates an ellipsoid in
R?*"-2 with center at the origin and half axes proportional to (Imz,)?.
Indeed, if we put x;=(Imz,)}y; when j=1,...,2n—2, the equation can
be written

‘p(yl(Imzn)}: e ’yzn—Z(Imzn)t Rezn))/Imzn =1 ’

and the left hand side converges to A(y,,. . .,¥s,_s,0) in the C? topology
as a function of y,,...,¥,,_» When 2z, > 0. For sufficiently small z, e V
we obtain as a trivial case of (3.4)

(4.3) w0, 02) S C [ u@z)do@”),
P(@)=23n
where z"' =(2,,...,%,,_,), the projection of =’ on the unit sphere in

R?-2 jg denoted by ¢(z’’) and do is the element of area on that sphere.
With g=|2"’| the element of area on w is bounded from below by

da'’ dxg,_; = 0**3dpda(x’) dxg,_, .

When 2, € V and |z, is sufficiently small we have seen that the equation

al
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Xgn = (') = (00, %y,_,) Permits us to use o, z,,_; and x,, as parameters
instead of o, x,,_, and ¢. For fixed o, z,,_; we have

1 = 9o/0x,, ¢, < Cdofoxy, 0,

where the last inequality follows from the fact that |z, ;| <#,, < Co?.
For small ¢ we obtain with positive constants C, ¢', "’

udw 2 C up**—4 da,, do(x’") dxy,
L2 vonst,2neV
= C f ULy, "2 Ay, do(x"') dxy, 4
zon<t,zneV
20" f #(0,. . .,0,2,)2,," 2 dx,,_,dx,, .
xonst,zneV
The last inequality is a consequence of (4.3). Since u(0,...,0,2,) is sub-
harmonic we can estimate u(0,...,0,3it) by the mean value of
u(0,...,0,2,) over the disc |z, — }¢t| < }f, which gives the estimate

u(0,...,0,4it) < Ct—™ f udw .

xop<t

Since the constant only depends on lower bounds for the second order
derivatives of ¢ near 0 and upper bounds for the modulus of continuity
of the second order derivatives of ¢, this proves that (4.2) is valid for all
z in a neighborhood of a point on w where w is strictly convex. Now the
assumption that o is strongly pseudo-convex means that in a neigh-
borhood of any point on o one can make an analytic change of variables
mapping w to a strictly convex surface. Since our preceding arguments
were purely local, this completes the proof of Lemma 4.2.

Combining Lemmas 4.1 and 4.2 with Theorem 2.4 we have now proved
the first half of the following theorem.

THEOREM 4.3. Let u be a positive measure in a bounded open set Q<Cm
with a C? strictly pseudo-convex boundary w. Assume that there is a con-
stant C such that
(4.4) f du < O, zew, t>0.

A@p
Then there is a constant C' such that

(4.5) fupdy < o'p(p/(p-l))vfuv do, uePSPQ), 1<p<oco.
2
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If f is analytic in 2 we have with C'' =8C"

(4.6) [ifrauns ¢ [ifpdo,  p>o,

Q

if f belongs to the Hardy class HP. Conversely, if (4.6) is valid for some p,
it follows that (4.4) must be fulfilled.

Since (4.6) follows by applying (4.5) to u=|f|}?, with p replaced by 2
in (4.5), it only remains to prove the last statement. It is closely related
to the results on the boundary behavior of Bergman’s kernel function
proved in section 3.5 of Hérmander [5], although we are concerned with
the Szego kernel rather than the Bergman kernel here.

For a fixed point x € w let ({,...,,) be an analytic coordinate sys-
tem in a neighborhood U of x such that the coordinates of x are 0 and
£ is defined in U by an inequality Im, > ¢(£'), where &' =(Re{;, Im ¢,
..., Re(,) and ¢ satisfies the same hypotheses as in the proof of Lemma
4.2. Let y € C3°(U) be equal to 1 near z, and set with a positive integer k
to be chosen later

fiz) = 2()(Lal2) +it)™* — g(z),  £>0.

The first term is defined as 0 outside U, and g, shall be chosen so that f,
is analytic in 2, that is,

(4.7) 39, = (Ca(2)+it) 0y =k, in Q,

where the last equality is a definition. Since Im, has a positive lower
bound in 2nsupp dy, we can find a strictly pseudo-convex open set
0> 0 such that h, is uniformly bounded in £ when ¢> 0. Then it follows
that the equation (4.7) has a solution g, with uniformly bounded norm
in L*(2) when t - 0. (See e.g. [5], section 2.2.) Since dg,=0 in a fixed
neighborhood of the origin, it follows that g, is uniformly bounded in a
neighborhood of the origin. Furthermore, the analytic function f; is also
uniformly bounded in the complement in £ of any neighborhood of the
origin. We now apply (4.6) to f.. This gives for small ¢

eyw [ dpsoflpdo
en(@)| <t

IA

IIA

0, + C, f (IRel,| +t+1&1%)~* dw
Une

<0+ O3f(152n—1|+t+|5"|2)_kp 0
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where &'=(&,...,85,5). If kp>1 we can integrate with respect to
&9y first and rewrite the right hand side in the form

Co+ Oy [ @+1g" P4 dg” = 0, + Cynraho [ (L fg oyt dg”

If 2(kp—1)>2(n—1), that is, if kp>n, the integral converges and we
obtain

du = Cgt.
[tn (@<t

Since |, (2)| < Ct for some C when z € 4, ), this completes the proof of
(4.4) for a fixed x. However, it is clear that the estimates are uniform
in z so we have in fact proved (4.4) completely.

We shall finally give an example which shows that the condition (4.4)
is strictly weaker than the condition (3.2). To do so we choose for
Jj=1,2,... a point z;€ 2 so that the boundary distance d(z;)=2-7 for
large j. Let u be the measure with mass 2-%9 at z; and no mass elsewhere,
@ being a fixed positive number. Then (4.4) is fulfilled if and only if
a=n. Indeed, we have d(z) < Ct for all z€ A, ,, which implies that

f du £ Y 279 < ('t
2-1<Ct
Az,

on the other hand, if #=2-7 and « is the point on ® closest to z;, we have

du z 279 = to,
Az

Similarly it follows that (3.2) is fulfilled if and only if a > 2n—1. Except
when n=1, the case studied by Carleson, the two conditions are there-
fore not equivalent.
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