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EXCISION IN SINGULAR THEORY

EGIL HEISTAD

The purpose of this note is to give a proof of the excision theorem in
singular homology based on the acyclic model theorem. This theorem is
the formalization of a simple inductive argument in homological algebra,
and thus our proof should be considered elementary. The proof does
away with most of the calculations connected with the barycentric sub-
divisions, and seems to be more conceptual than the traditional proofs.
It also works for homology with local coefficients. The theorem we want
to prove is the following.

ExcisioNn THEOREM. Let X be a topological space, I' a local system on X
and % a collection of subsets whose interiors form a covering of X. Then
the inclusion

A#U;T) < AX; 1)

18 a chain equivalence.

Here A(%; I') means the subcomplex of A4(X; I') consisting of chains
with simplexes small of order %. This is consistent with the notation of
Spanier [1]. All our notations will be taken from this book. Also a local
system means a local system of R-modules, where R is some fixed com-
mutative ring with unit.

For every natural number m = 0 and for every topological space X a
natural augmentation-preserving chain map

sdm: A(X) - A(X)

is defined ([1, Ch. 4.4]). By the acyclic model theorem, since the singular
chain functor 4 is free and acyclic on the standard models {49}, ,, sd™ is
chain homotopic to 1,x, by some natural chain deformation D™. We
now have the following result.

LEmMMA 1. Let X be some standard model and let U be a collection of
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subsets whose interiors form a covering of X. For any singular simplex
o € A(X) there is an m =0 such that sd™o € A(U).

The proof of this is easy (see [1, 4.4.13]). Note that since X is compact
it suffices to consider finite coverings #. Using this lemma we prove

Lemma 2. Let X be some standard model and let U be a collection of
subsets whose interiors form a covering of X. Then the inclusion

A%) = A(X)
is a chain equivalence, that is, A(U) s acyclic.

Proor. It is sufficient to show that every singular ¢-chain of A(%)
which is a boundary of 4(X), also is a boundary of A(%). Let c,e A(%)
be a singular g-chain such that cqsac; +1 for a g+ 1-chain c'q+1 e A(X).
The chain c; +1 18 a finite linear combination of singular g+ 1-simplexes,
and by lemma 1 there is a natural number m = 0 such that sdmc; w1 €EAU).

Because the chain deformation D™: sd™~ 1 Ax) 18 natural,

DMA()) < A%) and Dreye A%).
Put

— me’ . Dm
Cqs1 = 8d™cy — D™c, .

Then ¢y, € 4(%) and oc,,, =c,, and the lemma is proved.

2.

Consider all pairs (X,%) where X is a topological space and % is a
family of subsets of X such that int# = {int U}y 4, is an open covering
of X. Amapf: (X, %)~ (Y,?") of such pairs is by definition a continu-
ous map f: X - Y such that =f-1(¥"). Clearly there is a category
whose objects are pairs (X, %) and whose morphisms are maps f: (X,%) —
(Y,¥"). On this category define the two functors

(X, %)~ AX)
(X, %)~ A),

and denote these by A4’ and A’ respectively. Then A’ and A4” take
values in the category of augmented chain complexes. Let .# be the
collection of all pairs (49,%7) for ¢ = 0 and ¥~ varies over all coverings of
A2 such that int¥” is a covering. If we can show that A4’ and 4" are
both free and acyclic with respect to the models .#, it follows from the
theorem of acyclic models that there are natural chain maps from one
functor to the other, unique up to natural homotopy, and that any such
is a chain equivalence. In particular the inclusion mapd(%)<4(X)
defines a natural chain map 4"’ - 4’, and so is a chain equivalence.

and
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Lemma 3. 4’ and A" are both free and acyclic on the models A .

Proor. For (X,%) an object in our category and oe 4,/(X,%) an
arbitrary singular ¢g-simplex there is one and only one covering, namely
¥ =0"Y%), of A? such that ¢ defines a morphism

o: (44,7) > (X, %) .
By this remark we see that the family
{§,€4,(4%7)},

where &, is the identity map A?2< 4% and ¥~ varies over all coverings of
A7 such that int¥” also is a covering, is a basis for 4,”. Hence 4’ is free
with models .#. By the same remark we also see that the family

{4, (4%77)},

where £, is the identity map 4?2< A% and ¥~ varies over all coverings of
A2 such that {42} € ¥, is a basis for 4", and so 4" is free with models .#.

It is trivial that 4’ is acyclic on the models .#, and by lemma 2 it
follows that also 4’ is acyclic. This completes the proof of the excision
theorem for constant coefficients.

3.

For the general case we have to modify our construction of section 2.

There is a category whose objects are triples (X,%,I"), where X is a
space, % a family of sets whose interiors cover X and I a local system
on X, and whose morphisms

fi X2\ 1"y~ (Y,%1rI)
are continuous maps f: X - Y for which

‘=, fIT=1I".
Define functors A’, 4" by

(X, %,T)— AX,T),
(X,%,T)~ A@,T).

We show that any natural chain map
0 A" A4" (' A" > A4')
can be lifted to a natural chain map

T 4> 4" (F: 4" 4).
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In fact, if 7(§,) =3 n,0 with g: 49> A9, let
I): I'(vy) - I"(o(v))
be the isomorphism obtained by applying I on 42 to the unique path
class in 42 from v, to g(v,). Then, for & € I"'(v,) define
T(xéy) = 2 m, I (x)e -
Now extend this definition by naturality to arbitrary simplexes
oo € A(X,%,I") and then by linearity to arbitrary chains, that is, define
Hao) = A"(0)(F(x&p)) -

This is meaningfull since ¢ give rise to a unique morphism to (X,%,I"),

namely
o: (49,067 %, I") > (X,%,TI') .

In the same way any natural chain map 7': 4" - 4’ and chain deforma-
tions
D: vorx1,, D': 1rov ~ 1,

extend to a natural chain map #': 4" - A’ and deformations

. =’ - - . - =’ -
D: Totx1;, D: 707 x1;.
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