RINGS WITH PRIMARY IDEALS AS MAXIMAL IDEALS

M. SATYANARAYANA

1. Introduction.

If every primary ideal is a maximal ideal in a commutative ring R with identity, then we say that R is a P-ring. Evidently in P-rings primary, prime and maximal ideals coincide. Commutative von Neumann regular rings and in particular a direct sum of finite number of fields are P-rings. In general it can be shown that a P-ring is a subdirect sum of fields (trivial regular rings) and furthermore if a P-ring is Noetherian, it is a finite direct sum of fields. This characterization enables us to prove that rings mentioned in section 3 are P-rings and hence direct sums of a finite number of fields.

2. P-rings.

THEOREM. If R is a P-ring then R is a subdirect sum of fields. In addition, if R is Noetherian, then R is a finite direct sum of fields.

PROOF. Since, in P-rings, prime and maximal ideals coincide, the intersection of all primary ideals is (0) by virtue of a result due to Krull mentioned in [4, p. 492]. Hence the intersection of all maximal ideals, i.e. the Jacobson radical of R, is (0). This implies that R is a subdirect sum of fields.

If R is a Noetherian P-ring, then R satisfies the descending chain condition since prime ideals are maximal. But R has zero Jacobson radical. Hence R is a finite direct sum of fields.

If the defining property of a P-ring is replaced by the property that every proper-primary ideal is maximal, then the above theorem need not be true, as the example "R = the integers modulo 4", shows.

There exist P-rings which are not Noetherian. For example, the complete direct product of infinitely many copies of a (commutative) field is a non-Noetherian P-ring.

Received June 1, 1966. Revision received November 11, 1966.

3. Applications.

We shall first establish the main consequence of the theorem in section 2, in order to deduce theorem 3.2 of this section.

Theorem (3.1). Let R be a commutative ring with identity in which every maximal ideal is generated by an idempotent. Then R is a direct sum of a finite number of fields.

PROOF. We begin by proving that R is a P-ring. Let A be any primary ideal in R which is not maximal. Then A is included in a proper maximal ideal, say eR, where e is an idempotent different from 0 and 1. Evidently $e \notin A$. But e(1-e)=0. This implies $(1-e)^n \in A$ for some positive integer n, since A is a primary ideal. Hence $(1-e) \in eR$. Thus $1 \in eR$, a contradiction.

Since R is a P-ring, prime ideals are maximal. Therefore every prime ideal is finitely generated (principal) by virtue of the hypothesis. This implies that R is Noetherian by the application of Cohen's result [2, Theorem 2]. Hence it follows from 2.1 that R is a direct sum of a finite number of fields.

THEOREM (3.2). Let R be a commutative ring with identity. Then the following are equivalent:

- (1) R is a finite direct sum of fields.
- (2) Every maximal ideal is generated by an idempotent.
- (3) Every maximal ideal is a direct summand of R.
- (4) Every maximal ideal is R-projective as a right R-module and is principally generated by a zero-divisor.
- (5) Every proper maximal ideal is R-injective as a right R-module.
- (6) R has no nilpotents and every proper maximal ideal has a non-zero annhilator.

PROOF. Since (1) implies everyone of the other stated conditions, we have by 3.1, $(1) \Leftrightarrow (2) \Leftrightarrow (3)$. Hence it suffices to show that each one of the conditions (4), (5) and (6) separately imply (2) or (3).

(4) \Rightarrow (2): Let M be an arbitrary maximal ideal and let M = xR, x being a zero-divisor. Then x^r , the annihilator of x is non-zero. Consider the exact sequence of R-modules,

$$0 \longrightarrow x^r \stackrel{i}{\longrightarrow} R \stackrel{j}{\longrightarrow} xR \longrightarrow 0,$$

where "i" is an inclusion mapping and $j: a \to xa$, $a \in R$. Since xR is projective, the above exact sequence splits. Then x^r is a direct summand

of R. This implies $x^r = eR$, e being an idempotent $\neq 0$ and 1, since R has an identity. Now 0 = xe. Therefore

$$x = x(1-e)$$
 and $xR \subseteq (1-e)R$.

This in turn implies that xR = (1 - e)R since xR is a maximal ideal. Thus every maximal ideal is generated by an idempotent.

- $(5) \Rightarrow (2)$: Let M be a proper maximal ideal. Since M is R-injective by hypothesis, M is a direct summand of R [1, prop. 3.4] and hence (2) follows.
- (6) \Rightarrow (3): If M is a proper maximal ideal and if M^* is its non-zero annihilator, then $M \cap M^* = 0$. For, take any $x \in M \cap M^*$. Then $x^2 = 0$, hence x = 0. This implies $R = M \oplus M^*$ and hence (3).

REMARK (3.3). Comparing the condition (4) of theorem 3.2, with an important theorem of Kaplansky [3, theorem 2.3] we observe that the projective nature of all maximal ideals does all that an ascending chain condition can, and thus make the ring a principal ideal ring. In addition we obtained a nice structure of the ring.

Finally, I thank the referee for his suggestions.

REFERENCES

- 1. H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
- 2. I. S. Cohen, Rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
- I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.
- 4. N. H. McCoy, Subrings of infinite direct sums, Duke Math. J. 4 (1938), 486-494.

S. V. UNIVERSITY, TIRUPATI, INDIA

BOWLING GREEN STATE UNIVERSITY, OHIO, U.S.A.