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RINGS WITH PRIMARY IDEALS AS MAXIMAL IDEALS

M. SATYANARAYANA

1. Introduction.

If every primary ideal is a maximal ideal in a commutative ring R
with identity, then we say that R is a P-ring. Evidently in P-rings
primary, prime and maximal ideals coincide. Commutative von Neumann
regular rings and in particular a direct sum of finite number of fields
are P-rings. In general it can be shown that a P-ring is a subdirect
sum of fields (trivial regular rings) and furthermore if a P-ring is Noether-
ian, it is a finite direct sum of fields. This characterization enables us
to prove that rings mentioned in section 3 are P-rings and hence direct
sums of a finite number of fields.

2, P-rings.

THEOREM. If R is a P-ring then R is a subdirect sum of fields. In addi-
tton, if R is Noetherian, then R is a finite direct sum of fields.

Proor. Since, in P-rings, prime and maximal ideals coincide, the inter-
section of all primary ideals is (0) by virtue of a result due to Krull
mentioned in [4, p. 492]. Hence the intersection of all maximal ideals,
i.e. the Jacobson radical of R, is (0). This implies that R is a subdirect
sum of fields.

If R is a Noetherian P-ring, then R satisfies the descending chain con-
dition since prime ideals are maximal. But R has zero Jacobson radical.
Hence R is a finite direct sum of fields.

If the defining property of a P-ring is replaced by the property that
every proper-primary ideal is maximal, then the above theorem need
not be true, as the example “R =the integers modulo 4, shows.

There exist P-rings which are not Noetherian. For example, the com-
plete direct product of infinitely many copies of a (commutative) field
is a non-Noetherian P-ring.
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3. Applications.

We shall first establish the main consequence of the theorem in sec-
tion 2, in order to deduce theorem 3.2 of this section.

THEOREM (3.1). Let R be a commutative ring with tdentity in which
every mazimal ideal is generated by an idempotent. Then R ts a direct sum
of a finite number of fields.

Proor. We begin by proving that R is a P-ring. Let 4 be any primary
ideal in R which is not maximal. Then A4 is included in a proper maximal
ideal, say eR, where e is an idempotent different from 0 and 1. Evidently
e¢ A. But ¢(1—e)=0. This implies (1—e)*» € A for some positive in-
teger n, since 4 is a primary ideal. Hence (1—e¢)ceR. Thus 1€eR, a
contradiction.

Since R is a P-ring, prime ideals are maximal. Therefore every prime
ideal is finitely generated (principal) by virtue of the hypothesis. This
implies that R is Noetherian by the application of Cohen’s result [2,
Theorem 2]. Hence it follows from 2.1 that R is a direct sum of a finite
number of fields.

THEOREM (3.2). Let R be a commutative ring with identity. Then the
Jollowing are equivalent:

(1) R is a finite direct sum of fields.

(2) Every maximal ideal is generated by an idempotent.

(3) Every maximal ideal is a direct summand of R.

(4) Every maxzimal ideal is R-projective as a right R-module and is
principally generated by a zero-divisor.

(5) Every proper maximal tdeal 18 R-injective as a right R-module.

(6) R has nmo nilpotents and every proper maximal tdeal has a non-zero
annhilator.

Proor. Since (1) implies everyone of the other stated conditions, we
have by 3.1, (1) <= (2) <= (3). Hence it suffices to show that each one
of the conditions (4), (5) and (6) separately imply (2) or (3).

(4) = (2): Let M be an arbitrary maximal ideal and let M =zR, x be-
ing a zero-divisor. Then «7, the annihilator of « is non-zero. Consider the
exact sequence of R-modules,

00— x’—i-» R—!»xR——»O,

LIPS 2}

where ‘“4” is an inclusion mapping and j: @ - za, a € R. Since xR is
projective, the above exact sequence splits. Then z” is a direct summand
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of R. This implies 2"=¢R, e being an idempotent +0 and 1, since R
has an identity. Now O0=wxe. Therefore

x=z(l—e) and zR < (1—e)R.

This in turn implies that R = (1 —e)R since R is a maximal ideal. Thus
every maximal ideal is generated by an idempotent.

(8) = (2): Let M be a proper maximal ideal. Since M is R-injective
by hypothesis, M is a direct summand of R [1, prop. 3.4] and hence
(2) follows.

(6) = (3): If M is a proper maximal ideal and if M* is its non-zero
annihilator, then M nM*=0. For, take any x € MnM*. Then 22=0,
hence z=0. This implies R=M®@M* and hence (3).

REMARK (3.3). Comparing the condition (4) of theorem 3.2, with an
important theorem of Kaplansky [3, theorem 2.3] we observe that the
projective nature of all maximal ideals does all that an ascending chain
condition can, and thus make the ring a principal ideal ring. In addition
we obtained a nice structure of the ring.

Finally, I thank the referee for his suggestions.
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