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BOOLEAN OPERATIONS ON GRAPHS

FRANK HARARY and GORDON W. WILCOX

There are several operations on two graphs G; and G, which result in
a graph G whose set of points is the cartesian product ¥V, x V,, where V,,
is the point set of G). These include the cartesian product (Sabidussi
[11]), the composition (Harary [5], Sabidussi [10]), and the tensor prod-
uct (Weichsel [14], McAndrew [8], Harary and Trauth [7], and Bru-
aldi [2]). Some of the operations have been independently rediscovered
several times. This has led to considerable ambiguity because of the use
of different terminology and notation. It is hoped that our systematic
nomenclature based on the usual boolean operations becomes standard.

These operations are important for constructing new classes of graphs
which in turn may be useful for the recognition and decomposition of
graphs and for the determination of structural properties of graphs in
terms of their constituent subgraphs.

The boolean viewpoint introduced here has served to coordinate the
definitions of all known operations and to suggest new ones. The alge-
braic representation of the adjacency matrix of a graph is most con-
venient in expressing each boolean operation in terms of its constituent
graphs G, and G,.

The purposes of this review article are (i) to develop new boolean
operations on two graphs, (ii) to relate these to the various existing opera-
tions, (iii) to investigate some invariant properties of boolean operations,
(iv) to demonstrate the way in which boolean operations are related to
one another (v) to provide the conditions for the connectedness of
graphs obtained by boolean operations, and (vi) to pose some unsolved
problems relating to the automorphism group of such a composite graph.

Preliminaries.

A graph @ consists of a finite set V of points and a set X of lines which
is a subset of all unordered pairs of points. Our terminology and nota-
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tion will follow [6]. We name the points of G by the distinet labels
{v,,5,...,9,} and call the result a labeled graph. Only labeled graphs
are considered. Two distinct points v,, v; are said to be adjacent, written
v, adj vy, if line {v;,v;} € X. For brevity we denote the line {v,,v;} by v,v;.

The adjacency maitriz A= A(G)=[a,] of a graph G is the p x p matrix
with entries

S 1 if v;adjoy,
7 10 otherwise.

Notice that each a;=0 and 4 is symmetric. Let J=J, be the pxp
matrix with every entry 1. Asusual, let I =1,=[6;;] be the p x p identity
matrix. Addition, denoted @, is taken modulo 2. For example, A(K,)=
J,®I, denotes the adjacency matrix of K,, the complete graph with
p points.

A graph @ is the complement of @ if it also has V as its set of points
and for i+j, v;adjv; in @ whenever v; and v; are not adjacent in G.
Thus, the adjacency matrix of G is 4=A4(Q)=A®J@DI. Consequently,
denoting 4 =[a;], we have @;=a,D1DJ;.

Let A =[ay], p; x p;, and B=[b,,], p, x p,, be binary matrices. Their
tensor product A B is defined as the partitioned matrix [a;B]:

ayB apB ...a,, B
A+B = anB aypB ...a,, B

...................

1B a,,B...a,, B

P12 MR SV 5

The tensor product, also known as the Kronecker product, is associative,
distributive over @, but not commutative.

1. Boolean operations.

We say that a boolean operation on an ordered pair of disjoint labeled
graphs G, and G, results in a labeled graph G'=@, o @, which has the
cartesian product V=7V, x V, as its set of points. Of course the set X
of lines of G is expressed in terms of the lines in X, and X,, differently
for each boolean operation.

Perhaps the simplest boolean operation on graphs is the “conjunction”
G1AG, introduced by Weichsel [14] who called it the ‘“‘Kronecker prod-
uct”. The operation was extended to directed graphs by McAndrew [8],
Harary and Trauth [7], and Brualdi [2]. The conjunction G=G;AQ, is
defined by specifying its set of lines. For any two points = (u;,u,) and
v=(v,vy) in V=V;xV,, the line uv is in X if [u,v, is in X,] and
[u,v, is in X,]. For example, if
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1 us vy w3

6, =K,=0—3 and G=K,,=0 3

then G'=@,AG, is the labeled graph of Figure 1.
Y (21,,) (g, w,)

Gy A Gy:

(v1, %) (v1,0,) (v1,w5)

Fig. 1. The Conjunction

As Weichsel observed, the adjacency matrix of the conjunction G'=
G1AG, is the tensor product

(1) A(GAGy) = A% A,

of the adjacency matrices 4, and 4,. We may illustrate (1) with the
above graphs G, =K, and G,=K, , by combining

0
4, = [0 1] and 4, = |1
10 0

to give

A(GIAG2)=A1*A2=[O A2J= .................................. _

4, 0 010:000
101:000
010:000

The adjacency matrices of other boolean operations may also be char-
acterized by the notation already introduced. The cartesian product (see
Sabidussi [11]) is that boolean operation G'=G,x @, in which for any
two points w=(u,,u,) and v=(vy,v,), the line wv is in X whenever
[uy=v;, and uyv,€ X,] or [uy=v, and u,v, € X;]. For example, with
G1=K, and G,=K, ,, the cartesian product G =G, x G, is illustrated in
Figure 2. We may also express 4(@, x G,), the adjacency matrix of the
cartesian product, in terms of 4, and 4,:

(2) A(Gx Gy) = (Al*Ip,) @ (Ipl*Az) .
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(101, %,) (24, v5) (g, wy)

S S —

(vl, 1‘2) (1)1, vz) (vl’ wz)

Fig. 2. The Cartesian Product

We note that Berge [1, p. 23] refers to the conjunction and the cartesian
product as the “product’”’ and “sum”, respectively. Ore [9, p. 35-36]
refers to them as the ‘““cartesian product graph” and the ‘“‘cartesian sum
graph’, respectively.

The composition G=G4[G,] is a boolean operation which was intro-
duced by Harary [4] and investigated by Sabidussi [10], [12], who called
it the ‘“‘lexicographic product’. With » = (u;,%,) and v=(v,,v,) as before,
uv € X whenever [u,v,€X,] or [u;=v;, and wu,v, € X,]. Thus, with
@1=K, and G,= K, , we may illustrate both G,[G,] and G,[G,] in Figure
3. Again the adjacency matrix A(G,[G,]) of this boolean operation may

(14, 20) (24, 95) (2, w,)

(v1, %) (v1,%5) (vy, )

(g, 2,) (ug, v,)
G&):  (vuy) (02, )

(w2> ul) (wzr 01)

Fig. 3. The Composition

be expressed in terms of the adjacency matrices 4; and A4, of the labeled
graphs G; and G,,

(3a) A(G[G]) = (41%T,) ® (Ip, *43) s
and we define [G,]G, by its adjacency matrix
(3b) A([G1]Gy) = (1% 1) @ (Jp, *4y) -

The matrix of (3b) is a convenient representation of G,[G,]; it is permuta-
tionally equivalent to A(G,[G4]).

2. New boolean operations.

It is natural to consider the graphs obtained by applying other con-
ventional boolean operations from set theory.



BOOLEAN OPERATIONS ON GRAPHS 45

The symmetric difference G =G, @ G, is defined as expected to be that
boolean operation on @, and @, such that with u=(u,,u,) and v= (v,v,),
wv € X whenever

either [u,v;€ X;] or [uyv,e X,] (but not both).
In this case the adjacency matrix is given by
(4) A(G1DGy) = (A1xd}) @ (I, *4y) .
With G;,=K, and Gy,=K, , ,the graph G PG, is illustrated in Figure 4.

(21, %5) (21, 5) (g, wy)

O

G,®G,:

(v1: %) (v1,09) (vp,wy)

Fig. 4. The symmetric difference

The disjunction G=G,vG@, has wve X whenever [u,v,eX,] or
[ugvy € X,] (or both, of course), so that
(5) A(G v Gy) = (4,%J,,) D (Jpl*A2) @ (4,%4,) .

The disjunction G'=K,vK, , is illustrated in Figure 5.

(224,5) (14,05) (1, 0,)

O

G, v Gy

%,

(01, %) (v1,%9) (vy, w5)

Fig. 5. The disjunction

It is a mere coincidence that K,vK,; ,=K,[K, ,]; for example, K; ,vK,
and K, ,[K,] are not isomorphic.

The rejection G=G,|G, is that boolean operation defined by uve X
whenever [u,v, ¢ X;] and [uyv, ¢ X,], so that

(6) A(G1]Gy) = A% 4,
where as before 4, =A4,®1, D7,
The complement G =@, oG, of any boolean operation G=G,0@G, has a

line uv only if uv ¢ X, the set of lines of G. Thus, the adjacency matrix
of @ satisfies the equality

(7) A(-G—I?GYZ) = A(Gl ° Gz) @ (Ipl*Ip,) @ (Jpl*']pg) .
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3. Some invariants of boolean operations.

In this section we determine the degree of each point of G=@, o @, and
the number of lines in @ in terms of G; and G,. The degree d; of a point
u; € V is the number of lines incident with it. The degrees of the points
of @ are given in terms of its adjacency matrix 4 =[a;;] by d;=37_,a;.
Further, it is well known (by Euler) that the number ¢ of lines of @

satisfies the equation

(8) 9—%2‘% %Z Z“ﬁ

] gl

The tensor product notation for boolean operations on graphs en-
ables us to count easily the number of lines in each boolean operation
G=G,0G,. Let

dx = !Xkl’ k=12,

and so p=p;p,. We illustrate the entries in Table 1 for the cartesian
product G=G,x(@,. For convenience, we write 4,=[a;], 4,=[b,,],
d;,=degree of v; in G;, and e,=degree of u, in G,. Using (2) we have

Pr = |Vils

122|220

fm]l rel Ljml ge=1

P1 Pa P1 P2
q=
J

u’ ars®aij brs)]

P1 Ps P1 P3

%z z z Z a"i;ltsrs'I'(s’tjbr.s"'2“1!;1(s 6 bre)'

=] rm] juml g1

But a;;6,,0;b,,=0 for all ¢, j, r, s, hence

P P2
qg=2 2 (d+e,) = ¢10a+2p1»

fam] Tl

(9)
by applying (8).

Table I

The degrees of points and the number of lines
tn boolean operations on graphs.

Name of Boolean N?ta- The number g of The .degree di,r of
Operation tion lines of @ 8 point w = (v, u)
G,0G, of G
Conjunction G, A G, 20195 dier
Cartesian product G, %@, @1Ps+ 01 di+er
Composition G, [G,) 0P+ 0Py dip,+er
Symmetric difference | G,(PG, @102 + 4302 — 49,9, dipy+ erpy — 2dser
Disjunction GLv G| Gip+ Pt —2014, dips+erpy—dier
Rejection G| Gy (5’) —P 6P +2019; | (P1—di—1)(py—er—1)
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If we let d;, be the degree of a point w=(v;%,), v;€ ¥V, and w, € V,,
in @, then for G=G, x G, we have from (9)
(10) di,r = d‘i + er .

Table 1 gives the number of lines and the degrees of points for the
boolean operations defined in Sections 1 and 2.

4. Relations between boolean operations.

The first observation we make on relations between boolean opera-
tions follows immediately from (7): the symmetric difference of any two
boolean operations on the same two graphs is the symmetric difference
of their complements, i.e., for any two boolean operations o and o’ and
any two graphs ¢4 and G,,

(11) A(G10Gy) @ A(G10' Gy) = A(G10G,) @ (G1o"Gy) .

Equation (11) may be’illustrated by taking G;=K,, G,=K, ,, and the
operations of symmetric difference and conjunction, so_that

This illustration suggest that
(12) A(Gyv Gy) = A(G,DG,) @ A(G1AGy)

which is, in fact, easily verified.

The boolean operation G,vG, was introduced by Berge [1, p. 38], and
independently introduced by Teh and Yap [13], the latter calling it the

“y-product”. Expanding 4(G@,v@,) using (7) and (5), and comparing the
result with (1) and (2), we find

(13) AG v Gy) = A(G,xGy) @ A(G1AGy) .

We list several other relations between boolean operations, which are
obtained similarly:

(14) A(G[GF,]) @ A([G1]G,) = A(G1x Gy) D A(G, D Go) .
(15) A(G1x Gy) = A(G1xGp) @ A(Gyx Gy) ® A(G,xGy) .
(16) AG A G) = A(G1xGy) @ AK, xKp) .

Of course other identities could be listed, but equations (11)—(16) are
adequate to reveal the ease with which one can manipulate boolean
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operations. In the next statement, the labeling of the graphs must be
kept in mind.

THEOREM 1. A(G,[G,])=A([G,]G,) if and only if both G, and G, are
complete or both totally disconnected.

Proor. We first demonstrate the necessity. By hypothesis,
A(Gl[Gz]) = A([Gl]Gz) .
Therefore by equations (3a) and (3b), we must have
(‘Al * Jpg) @ (Jpl * A2) = ('A'l * ng) @ (Ip]_ * AZ) .
With
Al = [aij], Ipl = [6,”], i,j = 1,2,. . .,pl )

and
4y = [b,), Ip, = [0y r.e =1,2,...,p,,

the equation which must be satisfied by the entries is

a’i;i@brs = a’ijars @ 6ijbrs s
or equivalently
aij(1®6rs) = brs(l@aij) .

Thus, a;;=b,, for all i=+j, r+s since d;;=9,,=0. This proves the neces-
sity. It is very easy to verify that the equation

aij(:l@ars) = brs(1®6ij)
is satisfied when @, and G, are both complete or totally disconnected,

thus proving the sufficiency and completing the proof of the theorem.

ComMENT. The conditions of Theorem 1 should not be construed as
an answer to the more general question of isomorphism. For example,
if G,=G,, then G,[G,] and G,[G,] are isomorphic, but

A(G4[G,]) + A([G,]Gy)

because of the labeling. For any two graphs G, and @,, it is only known
that G,[G,]~G,[G,] when G, and G, are both complete, both totally
disconnected, or isomorphic.

CoROLLARY la. The cartesian product and symmetric difference of two
graphs are equal if and only if both are complete or both totally disconnected.

This follows immediately by applying Theorem 1 to equation (14).
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5. Connectedness of boolean operations.

We introduce some additional definitions. A path in G is a sequence of
distinct points in which each consecutive pair of points is a line of @.
A cycle is obtained when the end points of a path, with at least three
points, are joined by a line. The length of a path or cycle is the number
of lines in it. An odd path or cycle has odd length.

The points u and v are connected in G if there is some path, denoted
u—v, joining w and ». A graph is connected if there is a path joining
every pair of points. If G is not connected then clearly G' may be parti-
tioned into maximal connected subgraphs. These disjoint subgraphs are
the components of G. A component is trivial if it consists of a single
isolated point.

TrEOREM 2. (Weichsel [14].) The conjunction G'=G,AG, is connected
if and only if G, or G, has an odd cycle.

Clearly this theorem may be readily rephrased to handle the connected-
ness of the rejection operation; see equation (6).

TrEOREM 3 (Harary and Trauth [7]). The cartesian product @=@G, x G,
18 connected if and only if G, and G, are both connected.

The next three lemmas will help provide a connectedness criterion
(Theorem 4; we thank D. L. Richards for helpful discussions on this
theorem and its lemmas) for the symmetric difference G;®G,.

LemmaA 4a. The symmetric difference G =G, @G, is connected if G, or G,
s connected.

Proor. Consider ¢; connected and let r=(ry,r,) and w=(wy,w,) be
any two points of G. Let r,8,,t,,%y,...,0;,w; be a r,—w; path in G,.
If ryw, € X,, then

(7'1:7'2)» (’rl’wz): (81:w2)> (81,?‘2),. . -’(wl’lrz): (wlawz)
is a sequence of points which forms a r—w path in G since consecutive
pairs of points are adjacent. On the other hand, if r,w, ¢ X,, then for
r,—w,; odd,

(ry7e)s (81,72)s (B, wa), (g, Wa), . . ., (v1,Wp), (wy,wp)
is a r—w path, and for r,—w; even,

(7'1’7'2), (81: wz), (tl:rz), (ul’wz)’ s ey ('01:7'2): (wpwz)
is a r—w path in G, and the proof is complete.

Math, Scand. 20 — 4
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LeMMA 4b. If G, and G, each contain at least one line, then the symmetric
difference G =G, DG, has exactly one nontrivial component.

OUTLINE OF PROOF. Assuming the contrary, suppose that G has two
nontrivial components G’ and G’’. Then there exist a pair of adjacent
points ' = (u,",u,") and v'=(v,",v,’) in @', and also a pair of adjacent
points u' = (u;"",u,"") and v"' = (v;",v,”") in G"'. By definition of symmetric
difference, there are several possible ways for adjacencies in G, and @,
to imply that «’ adj ¢’ in G’ and »’’ adj v" in G"’. In fact, one can verify
that there are exactly 16 such possibilities. By exhaustion, it can be
shown that each of these cases implies the existence in G of a path join-
ing u’ or v’ with '’ or v"/, contrary to the assumption that G’ and G
are distinct components of G.

Lrmma 4c. The isolates of G =G, @ G, consist of ordered pairs of isolates
of G, and G,.

Proor. Let u=(u,,u,) be an isolate of G. If either u, or %, is not an
isolate then there exist points v; and v, such that either w,v, € X; or
Uy, € X, But then either (u,,u,)(vy,v5) or (uy,us)(uy,v,) is a line of G,
and % can not be an isolate.

THEOREM 4. Let G, and @, be nontrivial graphs. If neither G, nor G, is
totally disconnected, then their symmetric difference is connected if and only
if G, and Gy do not both contain isolates. If one of G, or G, is totally dis-
connected, then G, @ G, is connected if and only if the other is connected.

Proor. For the first part of the theorem, if G =G, @G, is connected
then by Lemma 4c, G; and G, do not both have isolates. On the other
hand if ¢; and G, do not both have isolates then by Lemma 4c, G has
no isolates and by Lemma 4b, @ is connected. The second part of the
theorem is a restatement of Lemma 4a.

THEOREM 5. The disjunction of two graphs is connected if and only if
their symmetric difference is connected.

Proor. Since G,v@, must have at least all the lines in G, @EG,, the
theorem is proved if the isolates of @;v@, are precisely the isolates of
G,@DG,. This must be true since if = (u;,u,) is an isolate of @,v@,
then certainly it is an isolate of G; @ G,. On the other hand if v = (u,,u,)
is an isolate of G; @@, then by Lemma 4c there exist no points v,,v,
such that u,v, € X, or u,v, € X,. Thus u is an isolate of G;v(@, also.

THEOREM 6. The composition G4[G,] ts connected if and only if G, is
connected.
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The theorem follows at once from the definition of composition.
It is clear that the theorems of this section easily provide criteria
for the connectedness of compound boolean operations.

6. The group of a boolean operation.

The group of a graph G is the collection of all automorphisms of @,
so that it is a permutation group acting on V. Sabidussi [11] gave a
necessary and sufficient condition for the group of the cartesian product
of two graphs to be the ‘“‘cartesian product” (see Harary [4]) of their
groups. Sabidussi [10] also settled the question of when the group of the
composition of two graphs is the ‘“‘composition” of their groups (see
Harary [5] or Hall [3, p. 81]; this is also known as the ‘“wreath product”
of two permutation groups).

It would be interesting to develop appropriate operations on permu-
tation groups and provide criteria to tell when the group of a boolean
operation on two graphs (including conjunction, disjunction, symmetric
difference, and rejection) is given by the respective composite permuta-
tion group.
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