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AN ASYMPTOTIC FORMULA FOR
THE DERIVATIVES OF ORTHOGONAL POLYNOMIALS
ON THE UNIT CIRCLE

CHRISTIAN HORUP

Let f be a non-negative function and assume that f and logf both
belong to L(—m,n). By k we denote the regular analytic function in
lz] <1, which satisfies the conditions

1) lim,_,, oRe{k(rei®)}=logf(6) a.e.,

2) k(0) real.

Let

D(f; z) = exp{}k(z)}.
The orthogonal polynomials @, associated with f are uniquely defined
by

a) (27m)71 [7|D,(f; )2 f(0)dO=1,

b) [%.D,.(f; ) =(e?) f(6)d0=0 for every polynomial = of degree at

most n—1,
c) x%,(f)>0, where x,(f) is the coefficient of 2* in @,(f; z).

In this notation G. Szegé [3, p. 296] deduced the asymptotic formula
(1) D,(f; €7) = €™ {D(f; €")}1 +0(1)

for certain functions f. Later G. Freud [1] proved the same formula
under simplified conditions on f.

The aim of this note is to derive similar formulas for the derivatives
of @, under Freud’s conditions. Our method is an extension of Freud’s.
In the sequel we use the notations

5a(f; a,2) = zo & @) Df32)

ol @) = 3199 (f; a2

y==(
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and

o3 0,2) = 3 BFr0) B3

2.

THEOREM. Let f of period 27 be of bounded variation, and suppose that
there are constants M and m so that 0<m <f(0) <M for all 6. Let p be a
non-negative integer.

If v is a number such that

(2) flogf(()) coti(y—0) do

exists as a principal Cauchy value, then, for z=e™, it follows that

3) PL(f; 2) = wp2r2{D(f; 2)} +o(nP) .

REMARK. That @P)(f; ¢®)=O0(n?) uniformly in 6 and n follows im-
mediately by Bernstein’s inequality and the fact [1, p.286] that
D,(f; %) =0(1) uniformly in 0 and =.

The proof of the theorem is given in sections 3-7.

3.

First we derive a suitable estimate of the difference between @P(f; 2)
and @%)g; z), when f and g satisfy the conditions of the theorem. In
order to do this we use the well-known formula [3, p. 288]

(4) wn(f) Pulf; 2) = 2n8p(f; 0,271) .
Differentiating both sides with respect to z we get

%,(f) B, (f; 2) = nzn-1s,(f; 0,271) —2"2r, 4(f; 0,271),
which implies the following inequality for |2|=1

%n(f) Pl f; 2) = a(g) Prlg; 2)|
é ”lrn,o(f; 0,2)—7'”’0(9; O’Z)l + Irn,l(f; O,Z)_rn,l(g; O’Z)l N

Differentiating (4) p times we get for |z|=1 that
(5) en(£) BT 2) = alg) PG 2)]
n
< 2 Cpolrn,olf3 0:2) —1,,(g5 0:2)]
=0

where
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c,, = {(f) (m=v)m—v—-1)...(n—p+1) if vSp-1,
1 if v=p.

Later on g~ will be replaced by suitably selected trigonometrical poly-
nomials.

4.

We now consider the following problem. Let A, u and a be complex
numbers, and let f be positive and integrable on the unit circle. Deter-
mine the supremum of

|20(0) +0@(a)|?, g integer 21,

when ¢ ranges over the set of all polynomials of degree n which satisfy
the condition

(27)7 [ £(0) le(e®)?do = 1.

We shall apply a method of G. Szego [3, p. 303]. Let
e(®) = % Po(f; 2)+u1 Py(f; 2) + . .. +u Dp(f 2) .

Then 37'_,|%,|2=1, and according to Cauchy’s inequality we get

y== 0

n

> w,{29,(f; 0)+uP2(f; a)}

2
110(0) + po@(a)|? =

yu
< Zolw.(f; 0)+uP(f; a)?

= |A128,(f; 0,0) +2Re {Aur, o(f; 0,0)} + |ul*t,, o(f; @) .

This expression is the desired maximum, since it is attained for

o) = o 3 0(s 0+ uoess ) zo AB,F;0)+ uBD(F; a)) B,(f; 2),

vy (0

where |¢|=1. If
0 <m = fi(6) = f(6) = fu0), [0]=,
then the preceding result shows that
|A128,(f1; 0,0) +2Re {Aury, o(f1; 0,@)} + |ul*ty, o(f1; @)

(6) 2 [22s,(f; 0,0) +2Re {Aur,, o(f; 0,a)} + |ul*t,, o(f; @)
g M]zsn(fz; 0’ 0)+2Re{z/"rn.q(f2; O’a)}'l" l)ulztn,q(f‘a; a’) .
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For A=0 and g =1 this reduces to

(7) tn,q(fl; a) é tn,q(f; a’) 2 tn,q(fz; a) .
From (6) we get the inequality

1212 [8a(f; 0,0) = 8,(f2; 0,0)]+2Re {Au(ry, o(f; 0,a) =1, o(f2; 0,0))} +
+11Pltn, o f5 @) =1y, o(fa;0)] 2 0.

From a consideration of the discriminant of the left-hand side and an
application of (7) it follows that

Irn,q(f; O:a)'_'rn,q(fz; O’a‘)l2
= {sn(f; O: 0)—'8n(f2; 0, O)} {t'n,q(fl; a) "tn,q(f2§ a)} .
Since s,,(f; 0,0)=(x,(f))? (cf. e.g. [3, p. 288]) we get

(8) |r'n,,q(f; O’a) '—rn,q(f2; 0,(1)]2
s {(#a())2- ("n(fz))z}{tn,q(fﬁ a)—t,, o(fas a)}.

5.

We next want an estimate of the right side in (8) where f; and f, are
replaced by reciprocals of suitable trigonometrical polynomials. If f
satisfies the conditions of the theorem, F(0)=f-1(0) is clearly of bounded
variation. Thus it follows from theorem 1 in [2] that there exists a
sequence of trigonometrical polynomials (W,) (where W, is of degree at
most n) such that

om-t 2 W,(0) 2 F(0) = f-4(6)
and

[1w.-F©)1a0 = o).

Condition (2) in our theorem implies that F is continuous at y. Hence
the remark on theorem 1 in [2, p. 281] shows that to every positive num-
ber ¢ there exist numbers §, and N, such that

(9) [Wa(0)—F(y)l < &

for all 6 and n satisfying |0 —y|<4d; and n>N,.
Similarly another sequence of trigonometrical polynomials (w,) exists
satisfying
F) 2 w,(0) 2 M1 >0
and

[1en©)-F0) a6 = 0.
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To every positive number ¢ there exist numbers d, and N, such that
(10) [wa(0) - F(y)| < &

for all § and n satisfying |0 —y|<d, and n> N, Furthermore we know
according to [1, p. 287] that

(11) en(F)]? = a0, ™) = O(n?) .
In order to get an estimate of
tn, q( W'n_l; eiy) —tn,q(wn_l; e‘iy) ’

which is the second factor of the right side of (8) with f, and f, replaced
by W, and w,~! respectively, we proceed as follows.

With the chosen ¢ and with § =min(d,,d,) and N=max(N,,N,), we
consider two trigonometrical polynomials y and y satisfying the condi-
tions (12) and (13):

(12a) F(y)+2e =z %(0), be(y—19, y+19),
(12b) F('}’)"'s = X(B)’ be (‘}/——6, 7"'6) ’
(12¢) 3mt 2 x(0) = 2mL, 0¢(y—09, y+9),
(13a) F(y)—2e = (0), Oe(y—19, y+19),
(13b) F(y)—e 2 y(0), be(y—9, y+9),
(13¢) M1 < p(0) = $MY,  O¢(y—6, y+9).

Because of (9) and (10)
2(0) 2 W,(0) 2 wy(6) 2 9(6), =n>N.
By (7) it then follows that
(14)  t, o(x7"5 €7) 2 1, ((Wyl5 €7) 2 1, ((wy, ™15 €7) 2 1, o(p7; €7) .

Since y is a positive trigonometrical polynomial, D(y~1; z) is a poly-
nomial of the same type [3, p.287]. We denote this polynomial by
h(y~1; 2) and by [3, p. 287] we have

(15) D, (pt;2) = 2 h(y~t; 27Y)

for all nxdegree of y. Differentiating both sides ¢ times with respect
to z=¢ we get

DD(p=1;2) = n92n—2 h(yp=1; 271) + O(ne?) .
Since p(0)=|h(y~1; €)%, we get (6=y)

[BD(y1; )2 = n¥y(y)+O0(n-1)
and hence
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by o745 ) = ply) S99+ 0(0%) = ply) (1241 (2q+ 1)+ O(n2)} .
0
Similarly we get
ty, (X7t €?) = x(y){n®+[(2g + 1)+ O(n%9)} .

Introducing the last two estimates in (14) we get by aid of (12a) and
(13a) that

(f-2p) +3e)n204[(2g +1) 2 b, (W, L5 )
2 t, (w1 e) = (fL(y) —3¢)n2et(2g + 1)

if » is sufficiently large. This yields
b, (W™ €7) =1, o(wy, 715 €7) = o(n?e41)
By (8) and (11) we find that
T, o(fs 0,€7) =1y o(w,1; 0,€7) = o(n2) .
In (5) we replace g-! by w,, and z by e¥. Since according to [1]
85(f; 0,€%) — s, (w,~1; 0,€%) = o(1),

we see that every term in the sum (5) is o(n?). It follows that

(16) #n(F) DPS; €7) = wp(wih) PP (wr?; €7) = o(n?) .
6.

Next we want to prove that
(17) DP(w;t; ) = nPein-—2Y (D(w,~1; ei7)}-1 + o(nP) .

The formula
&, (w,1; e®) = ¢ {D(w,; ei®)}-

follows in the same way as (15) from [3, p. 287]. Differentiation of this
equation with respect to 0 gives

ar S—
(18) CW d}n(wn—l; eie) — (in)p e‘i’no {D(wn—I; eie)}—l +

? p . d’
+ 3 () inp-retno 2 (D, o) w(0))
o1 \ 7 ae
since {D(w,~; €¥)}-1=D(w,™*; ) w,(0).

In the sequel we shall use the following lemma.

LemMMA. Let (T,) be a sequence of trigonometric polynomials of degree n.
If there are constant e, 6 and M such that
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17(6)
I7,,(6)

M forall 6,
e for 0|4,

E
| s

then
|T,'(0)] < 8ne for |6]<46 and n>N ,

where N depends on ¢, § and M.
Proor. For |0] £ 46 our assumptions imply

To(0+7)=To(0=P) _ {4|h|-1s for |h| <10,
T |8Mo6-1 for |B|>}6.

sinh
The expression
Up(R) = [T(6+8) = T(6—H)][sink]-*

is a trigonometrical polynomial in % of degree at most n. By Bernstein’s
inequality, |u,’| <n max|u,|, it follows that in an interval of length n-!
with center at a maximum point of |«,|, the absolute value |u,| is not
less than half the maximum. By aid of this observation we get that

T.,0+h)-T,0-h)

sinh

< max(16ne,8M§-1) for [0]=<30,

which for » sufficiently large is < 16n¢. This implies that
|T,'(0)] < 8:mn-¢ for |0/<46 and n>N,

where N only depends on ¢, 6 and M. The proof of the lemma is finished.
The definition of {w,} shows that {|w,(0)|} is bounded and furthermore
we know according to (9) that to every positive ¢ there exist numbers &
and N, such that
lwa(0) = F(y)] < &

when | —y| <6 and n>N,. Thus by our lemma
lw,'(0)] = 8ne

when |6 —y| = 16 and = is sufficiently large. We find by a g-fold iteration

that
(19) [wP(6)| < (8n)2e for |0—p|<2-95.

From the definition of D we obtain
d 1. 40 1. ,i0
(20) %D(wn_ ; el ) = - %D(wn- ;€ )'

{ w,’(6)

i (d
wy(0) * é;__[;d_t [logw,(t)] cot (0 —¢t) dt {.
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We know that there exists a constant ¢ >0 such that ¢! <w,(6) <c¢ for
all sufficiently large n. Thus, it follows from

|D(wn’ eiO) 2= wn(e)

that D(w,, ; %) satisfies a similar inequality.

To obtain an estimate of the integral in the last term in (20) for
[0—yp]<}0 and sufficiently large n we proceed as follows. Putting
n-legt=7 and combining the estimates of the proof of the lemma with
(19), we find for one part of the integral in (20) that

0+n

w,' (%) w,'(t)  w,'(0)
OL ) RO & ‘ f n(t) wﬂ(@))m%(e—t) d
0+n
w,'(8) —w,’(0) w,,"(0) w,(0) —wy(?)
s f ——m-- cot $(0 —t) ’ ,(0) wi(0) cot $(0—1) ‘ dt

ey
< 2M 161 8ne2nlet+4M28n 16ne? 2n1et = £0(n).

For the integral on the rest of the circle we have the estimate

2746—n d
7 [logw,(¢)] cot (0 —1¢) dt
649 g
2n40—1
= Hoguw,(t) cotO-B*"+4 [ logw,(nlsini(0—-0]-2dr
= et0(n). "
Thus
d%D(w -1, 69| < t0(n) for |6—y| £ §4.

If we differentiate (20) ¢ — 1 times and make repeated use of our lemma
as above, we find that

de — D(w,,"!; €%9)

7o < 09 for |0—y] 227916

and hence
da

(21) @;D(w,,—l; e) = o(n9) .

Then (17) follows by applying (19) and (21) to (18).
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7.
Finally using the following two results [1, p. 287, 289]:
(22) 0<psu(w,™) =4,
where 4 and A are constants not depending on », and
(23) lim D(w,%; ¢?) = D(f; ei),
n->o0
we obtain the desired result in the following way. Applying (11) and
(22) to (16), we get
PPf; €7) = BPwL; &) + o(n?)

and we find from (17) that this can be written in the form

PP(f; &) = nP PV (DT M)} + o(n?)

Now the statement (3) follows by applying (23). The theorem is proved.
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