AN ASYMPTOTIC FORMULA FOR THE DERIVATIVES OF ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

CHRISTIAN HÖRUP

1.

Let f be a non-negative function and assume that f and $\log f$ both belong to $L(-\pi,\pi)$. By k we denote the regular analytic function in |z| < 1, which satisfies the conditions

- 1) $\lim_{r\to 1^{-0}} \operatorname{Re} \{k(re^{i\theta})\} = \log f(\theta)$ a.e.,
- 2) k(0) real.

Let

$$D(f;z) = \exp\left\{\frac{1}{2}k(z)\right\}.$$

The orthogonal polynomials Φ_n associated with f are uniquely defined by

- a) $(2\pi)^{-1} \int_{-\pi}^{\pi} |\Phi_n(f; e^{i\theta})|^2 f(\theta) d\theta = 1$,
- b) $\int_{-\pi}^{\pi} \Phi_n(f; e^{i\theta}) \overline{\pi(e^{i\theta})} f(\theta) d\theta = 0$ for every polynomial π of degree at most n-1,
- c) $\kappa_n(f) > 0$, where $\kappa_n(f)$ is the coefficient of z^n in $\Phi_n(f; z)$.

In this notation G. Szegö [3, p. 296] deduced the asymptotic formula

(1)
$$\Phi_n(f; e^{i\gamma}) = e^{in\gamma} \{D(f; e^{i\gamma})\}^{-1} + o(1)$$

for certain functions f. Later G. Freud [1] proved the same formula under simplified conditions on f.

The aim of this note is to derive similar formulas for the derivatives of Φ_n under Freud's conditions. Our method is an extension of Freud's. In the sequel we use the notations

$$\begin{split} s_n(f;a,z) &= \sum_{r=0}^n \overline{\varPhi_r(f;a)} \, \varPhi_r(f;z) \;, \\ t_{n,\,q}(f;a) &= \sum_{r=0}^n |\varPhi_r^{(q)} \, (f;a)|^2 \end{split}$$

and

$$r_{n,q}(f; a,z) = \sum_{r=0}^{n} \overline{\Phi_{r}(f; a)} \, \Phi_{r}^{(q)}(f; z) .$$

2.

THEOREM. Let f of period 2π be of bounded variation, and suppose that there are constants M and m so that $0 < m \le f(\theta) \le M$ for all θ . Let p be a non-negative integer.

If γ is a number such that

(2)
$$\int_{-\pi}^{\pi} \log f(\theta) \cot \frac{1}{2} (\gamma - \theta) \ d\theta$$

exists as a principal Cauchy value, then, for $z = e^{i\gamma}$, it follows that

(3)
$$\Phi_n^{(p)}(f;z) = n^p z^{n-p} \{ \overline{D(f;z)} \}^{-1} + o(n^p) .$$

REMARK. That $\Phi_n^{(p)}(f; e^{i\theta}) = O(n^p)$ uniformly in θ and n follows immediately by Bernstein's inequality and the fact [1, p. 286] that $\Phi_n(f; e^{i\theta}) = O(1)$ uniformly in θ and n.

The proof of the theorem is given in sections 3-7.

3.

First we derive a suitable estimate of the difference between $\Phi_n^{(p)}(f;z)$ and $\Phi_n^{(p)}(g;z)$, when f and g satisfy the conditions of the theorem. In order to do this we use the well-known formula [3, p. 288]

(4)
$$\kappa_n(f) \, \overline{\Phi}_n(f; z) = z^n s_n(f; 0, z^{-1}) .$$

Differentiating both sides with respect to z we get

$$\varkappa_n(f) \; \overline{\varPhi}_n{}'(f;z) \; = \; n \, z^{n-1} s_n(f; \; 0, z^{-1}) - z^{n-2} r_{n,\,1}(f; \; 0, z^{-1}) \; , \label{eq:sum_n}$$

which implies the following inequality for |z| = 1

$$\begin{split} |\varkappa_n(f) \; \varPhi_n'(f;\, z) - \varkappa_n(g) \; \varPhi_n'(g;\, z)| \\ & \leq \; n \, |r_{n,\, 0}(f;\, 0,z) - r_{n,\, 0}(g;\, 0,z)| + |r_{n,\, 1}(f;\, 0,z) - r_{n,\, 1}(g;\, 0,z)| \; . \end{split}$$

Differentiating (4) p times we get for |z|=1 that

(5)
$$|\varkappa_{n}(f) \, \Phi_{n}^{(p)}(f; z) - \varkappa_{n}(g) \, \Phi_{n}^{(p)}(g; z) |$$

$$\leq \sum_{r=0}^{n} C_{p,r} |r_{n,r}(f; 0, z) - r_{n,r}(g; 0, z)| ,$$

where

$$C_{p,r} = \begin{cases} \binom{p}{r} (n-r)(n-r-1) \dots (n-p+1) & \text{if } r \leq p-1, \\ 1 & \text{if } r = p. \end{cases}$$

Later on g^{-1} will be replaced by suitably selected trigonometrical polynomials.

4.

We now consider the following problem. Let λ , μ and a be complex numbers, and let f be positive and integrable on the unit circle. Determine the supremum of

$$|\lambda \varrho(0) + \mu \varrho^{(q)}(a)|^2$$
, $q \text{ integer } \geq 1$,

when ϱ ranges over the set of all polynomials of degree n which satisfy the condition

$$(2\pi)^{-1}\int_{-\pi}^{\pi}f(\theta) |\varrho(e^{i\theta})|^2 d\theta = 1.$$

We shall apply a method of G. Szegö [3, p. 303]. Let

$$\varrho(z) = u_0 \Phi_0(f; z) + u_1 \Phi_1(f; z) + \ldots + u_n \Phi_n(f; z) .$$

Then $\sum_{r=0}^{n} |u_{r}|^{2} = 1$, and according to Cauchy's inequality we get

$$\begin{split} |\lambda \varrho(0) + \mu \varrho^{(q)}(a)|^2 &= \left| \sum_{r=0}^n u_r \{ \lambda \Phi_r(f; \, 0) + \mu \Phi_r^{(q)}(f; \, a) \} \, \right|^2 \\ &\leq \sum_{r=0}^n |\lambda \Phi_r(f; \, 0) + \mu \Phi_r^{(q)}(f; \, a)|^2 \\ &= |\lambda|^2 s_n(f; \, 0, 0) + 2 \operatorname{Re} \left\{ \bar{\lambda} \mu r_{n,q}(f; \, 0, a) \right\} + |\mu|^2 t_{n,q}(f; \, a) \; . \end{split}$$

This expression is the desired maximum, since it is attained for

$$\varrho(z) \, = \, \varepsilon \left(\, \sum_{\mathbf{r}=0}^{n} |\lambda \varPhi_{\mathbf{r}}(f;\, 0) + \mu \varPhi_{\mathbf{r}}^{(\mathbf{q})}(f;\, a)|^{2} \, \right)^{-\frac{1}{2}} \sum_{\mathbf{r}=0}^{n} \, \overline{\{\lambda \varPhi_{\mathbf{r}}(f;\, 0) + \mu \varPhi_{\mathbf{r}}^{(\mathbf{q})}(f;\, a)\}} \, \varPhi_{\mathbf{r}}(f;z) \, ,$$

where $|\varepsilon| = 1$. If

$$0 < m \le f_1(\theta) \le f(\theta) \le f_2(\theta), \qquad |\theta| \le \pi$$
,

then the preceding result shows that

$$|\lambda|^{2} s_{n}(f_{1}; 0, 0) + 2 \operatorname{Re} \left\{ \bar{\lambda} \mu r_{n, q}(f_{1}; 0, a) \right\} + |\mu|^{2} t_{n, q}(f_{1}; a)$$

$$\geq |\lambda|^{2} s_{n}(f; 0, 0) + 2 \operatorname{Re} \left\{ \bar{\lambda} \mu r_{n, q}(f; 0, a) \right\} + |\mu|^{2} t_{n, q}(f; a)$$

$$\geq |\lambda|^{2} s_{n}(f_{2}; 0, 0) + 2 \operatorname{Re} \left\{ \bar{\lambda} \mu r_{n, q}(f_{2}; 0, a) \right\} + |\mu|^{2} t_{n, q}(f_{2}; a) .$$

For $\lambda = 0$ and $\mu = 1$ this reduces to

(7)
$$t_{n,o}(f_1; a) \ge t_{n,o}(f; a) \ge t_{n,o}(f_2; a).$$

From (6) we get the inequality

$$\begin{aligned} |\lambda|^2 [s_n(f; 0, 0) - s_n(f_2; 0, 0)] + 2 \operatorname{Re} \{ \bar{\lambda} \mu (r_{n,q}(f; 0, a) - r_{n,q}(f_2; 0, a)) \} + \\ + |\mu|^2 [t_{n,q}(f; a) - t_{n,q}(f_2; a)] \ge 0 . \end{aligned}$$

From a consideration of the discriminant of the left-hand side and an application of (7) it follows that

$$\begin{split} |r_{n,\,q}(f;\,0,a) - r_{n,\,q}(f_2;\,0,a)|^2 \\ & \leq \left\{ s_n(f;\,0,0) - s_n(f_2;\,0,0) \right\} \left\{ t_{n,\,q}(f_1;\,a) - t_{n,\,q}(f_2;\,a) \right\}. \end{split}$$

Since $s_n(f; 0, 0) = (\kappa_n(f))^2$ (cf. e.g. [3, p. 288]) we get

(8)
$$|r_{n,q}(f; 0,a) - r_{n,q}(f_2; 0,a)|^2 \le \{(\kappa_n(f))^2 - (\kappa_n(f_2))^2\}\{t_{n,q}(f_1; a) - t_{n,q}(f_2; a)\}.$$

5.

We next want an estimate of the right side in (8) where f_1 and f_2 are replaced by reciprocals of suitable trigonometrical polynomials. If f satisfies the conditions of the theorem, $F(\theta) = f^{-1}(\theta)$ is clearly of bounded variation. Thus it follows from theorem 1 in [2] that there exists a sequence of trigonometrical polynomials (W_n) (where W_n is of degree at most n) such that

$$2m^{-1}\,\geq\,W_n(\theta)\,\geq\,F(\theta)\,=f^{-1}(\theta)$$

and

$$\int_{-\pi}^{\pi} |W_n(\theta) - F(\theta)| \ d\theta = O(n^{-1}) \ .$$

Condition (2) in our theorem implies that F is continuous at γ . Hence the remark on theorem 1 in [2, p. 281] shows that to every positive number ε there exist numbers δ_1 and N_1 such that

$$|W_n(\theta) - F(\gamma)| < \varepsilon$$

for all θ and n satisfying $|\theta - \gamma| < \delta_1$ and $n > N_1$.

Similarly another sequence of trigonometrical polynomials (w_n) exists satisfying

$$F(\theta) \ge w_n(\theta) \ge \frac{1}{2}M^{-1} > 0$$

and

$$\int_{-\infty}^{\pi} |w_n(\theta) - F(\theta)| \ d\theta = O(n^{-1}) \ .$$

To every positive number ε there exist numbers δ_2 and N_2 such that

$$|w_n(\theta) - F(\gamma)| < \varepsilon$$

for all θ and n satisfying $|\theta - \gamma| < \delta_2$ and $n > N_2$. Furthermore we know according to [1, p. 287] that

(11)
$$[\kappa_n(f)]^2 - [\kappa_n(w_n^{-1})]^2 = O(n^{-1}).$$

In order to get an estimate of

$$t_{n,q}(W_n^{-1};e^{i\gamma})-t_{n,q}(w_n^{-1};e^{i\gamma})$$
,

which is the second factor of the right side of (8) with f_1 and f_2 replaced by W_n^{-1} and w_n^{-1} respectively, we proceed as follows.

With the chosen ε and with $\delta = \min(\delta_1, \delta_2)$ and $N = \max(N_1, N_2)$, we consider two trigonometrical polynomials χ and ψ satisfying the conditions (12) and (13):

(12a)
$$F(\gamma) + 2\varepsilon \ge \chi(\theta), \qquad \theta \in (\gamma - \frac{1}{2}\delta, \ \gamma + \frac{1}{2}\delta),$$

(12b)
$$F(\gamma) + \varepsilon \leq \chi(\theta), \qquad \theta \in (\gamma - \delta, \gamma + \delta),$$

$$\begin{array}{lll} \text{(12b)} & F(\gamma) + \varepsilon \leq \chi(\theta), & \theta \in (\gamma - \delta, \ \gamma + \delta) \ , \\ \text{(12c)} & 3m^{-1} \geq \chi(\theta) \geq 2m^{-1}, & \theta \notin (\gamma - \delta, \ \gamma + \delta) \ , \\ \text{(13a)} & F(\gamma) - 2\varepsilon \leq \psi(\theta), & \theta \in (\gamma - \frac{1}{2}\delta, \ \gamma + \frac{1}{2}\delta) \end{array}$$

(13a)
$$F(\gamma) - 2\varepsilon \leq \psi(\theta), \qquad \theta \in (\gamma - \frac{1}{2}\delta, \ \gamma + \frac{1}{2}\delta),$$

(13b)
$$F(\gamma) - \varepsilon \ge \psi(\theta), \qquad \theta \in (\gamma - \delta, \ \gamma + \delta),$$
(13c)
$$\frac{1}{8}M^{-1} \le \psi(\theta) \le \frac{1}{2}M^{-1}, \qquad \theta \notin (\gamma - \delta, \ \gamma + \delta).$$

(13c)
$$\frac{1}{3}M^{-1} \leq \psi(\theta) \leq \frac{1}{2}M^{-1}, \quad \theta \in (\gamma - \delta, \gamma + \delta)$$

Because of (9) and (10)

$$\chi(\theta) \ge W_n(\theta) \ge w_n(\theta) \ge \psi(\theta), \qquad n > N$$
.

By (7) it then follows that

$$(14) \quad t_{n,q}(\chi^{-1}; e^{i\gamma}) \ge t_{n,q}(W_n^{-1}; e^{i\gamma}) \ge t_{n,q}(w_n^{-1}; e^{i\gamma}) \ge t_{n,q}(\psi^{-1}; e^{i\gamma}).$$

Since ψ is a positive trigonometrical polynomial, $D(\psi^{-1}; z)$ is a polynomial of the same type [3, p.287]. We denote this polynomial by $h(\psi^{-1}; z)$ and by [3, p. 287] we have

(15)
$$\Phi_n(\psi^{-1}; z) = z^n \, \overline{h}(\psi^{-1}; z^{-1})$$

for all $n \ge$ degree of ψ . Differentiating both sides q times with respect to $z = e^{i\theta}$ we get

$$\Phi_n^{(q)}(\psi^{-1};z) \; = \; n^q z^{n-q} \; \overline{h}(\psi^{-1};z^{-1}) + O(n^{q-1}) \; .$$

Since $\psi(\theta) = |h(\psi^{-1}; e^{i\theta})|^2$, we get $(\theta = \gamma)$

$$|\Phi_n^{(q)}(\psi^{-1}; e^{i\gamma})|^2 = n^{2q}\psi(\gamma) + O(n^{2q-1})$$

and hence

$$t_{n,\,q}(\psi^{-1}\,;\,e^{i\gamma})\,=\,\psi(\gamma)\,\sum_0^{\pmb{n}}\,v^{2q}+O(n^{2q})\,=\,\psi(\gamma)\big\{n^{2q+1}\big/(2q+1)+O(n^{2q})\big\}\;.$$

Similarly we get

$$t_{n,\,q}(\chi^{-1}\,;\,e^{i\gamma})\,=\,\chi(\gamma)\{n^{2q+1}/(2q+1)+O(n^{2q})\}\;.$$

Introducing the last two estimates in (14) we get by aid of (12a) and (13a) that

$$\begin{array}{l} \left(f^{-1}(\gamma) + 3\varepsilon\right) n^{2q+1}/(2q+1) \; \geqq \; t_{n,\,q}(\boldsymbol{W}_n^{-1};\,e^{i\gamma}) \\ \; \geqq \; t_{n,\,q}(\boldsymbol{w}_n^{-1};\,e^{i\gamma}) \; \geqq \; \left(f^{-1}(\gamma) - 3\varepsilon\right) n^{2q+1}/(2q+1) \end{array}$$

if n is sufficiently large. This yields

$$t_{n,q}(W_n^{-1}; e^{i\gamma}) - t_{n,q}(w_n^{-1}; e^{i\gamma}) = o(n^{2q+1}).$$

By (8) and (11) we find that

$$r_{n,q}(f; 0, e^{i\gamma}) - r_{n,q}(w_n^{-1}; 0, e^{i\gamma}) = o(n^q)$$
.

In (5) we replace g^{-1} by w_n and z by $e^{i\gamma}$. Since according to [1]

$$s_n(f; 0, e^{i\gamma}) - s_n(w_n^{-1}; 0, e^{i\gamma}) = o(1)$$

we see that every term in the sum (5) is $o(n^p)$. It follows that

(16)
$$\kappa_n(f) \Phi_n^{(p)}(f; e^{i\gamma}) - \kappa_n(w_n^{-1}) \Phi_n^{(p)}(w_n^{-1}; e^{i\gamma}) = o(n^p) .$$

6.

Next we want to prove that

(17)
$$\Phi_n^{(p)}(w_n^{-1}; e^{i\gamma}) = n^p e^{i(n-p)\gamma} \{ \overline{D(w_n^{-1}; e^{i\gamma})} \}^{-1} + o(n^p) .$$

The formula

$$\varPhi_n(w_n^{-1};\,e^{i\theta}) \,=\, e^{in\theta}\; \{\overline{D(w_n^{-1};\,e^{i\theta})}\}^{-1}$$

follows in the same way as (15) from [3, p. 287]. Differentiation of this equation with respect to θ gives

(18)
$$\frac{d^{p}}{d\theta^{p}} \Phi_{n}(w_{n}^{-1}; e^{i\theta}) = (in)^{p} e^{in\theta} \overline{\{D(w_{n}^{-1}; e^{i\theta})\}^{-1}} + \sum_{r=1}^{p} {p \choose r} (in)^{p-r} e^{in\theta} \frac{d^{r}}{d\theta^{r}} \{D(w_{n}^{-1}; e^{i\theta}) w_{n}(\theta)\},$$

since $\{\overline{D(w_n^{-1}; e^{i\theta})}\}^{-1} = D(w_n^{-1}; e^{i\theta})w_n(\theta)$.

In the sequel we shall use the following lemma.

Lemma. Let (T_n) be a sequence of trigonometric polynomials of degree n. If there are constant ε , δ and M such that

$$\begin{split} |T_n(\theta)| & \leq M \quad \textit{for all } \theta \;, \\ |T_n(\theta)| & \leq \varepsilon \quad \textit{for } |\theta| \leq \delta \;, \end{split}$$

then

$$|T_n'(\theta)| \leq 8n\varepsilon$$
 for $|\theta| \leq \frac{1}{2}\delta$ and $n > N$,

where N depends on ε , δ and M.

Proof. For $|\theta| \leq \frac{1}{2}\delta$ our assumptions imply

$$\frac{T_n(\theta+h)-T_n(\theta-h)}{\sin h} \leq \begin{cases} 4\,|h|^{-1}\varepsilon & \text{for } |h| \leq \frac{1}{2}\delta \text{ ,} \\ 8\,M\,\delta^{-1} & \text{for } |h| > \frac{1}{2}\delta \text{ .} \end{cases}$$

The expression

$$u_n(h) = [T_n(\theta + h) - T_n(\theta - h)][\sin h]^{-1}$$

is a trigonometrical polynomial in h of degree at most n. By Bernstein's inequality, $|u_n'| \le n \max |u_n|$, it follows that in an interval of length n^{-1} with center at a maximum point of $|u_n|$, the absolute value $|u_n|$ is not less than half the maximum. By aid of this observation we get that

$$\left|\frac{T_n(\theta+h)-T_n(\theta-h)}{\sin h}\right| \leq \max\left(16n\varepsilon, 8M\delta^{-1}\right) \quad \text{for } |\theta| \leq \frac{1}{2}\delta,$$

which for n sufficiently large is $\leq 16n\varepsilon$. This implies that

$$|T_n{}'(\theta)| \, \leqq \, 8 \cdot n \cdot \varepsilon \quad \text{ for } |\theta| \, \leqq \, \tfrac{1}{2} \delta \ \text{ and } \ n > N \text{ ,}$$

where N only depends on ε , δ and M. The proof of the lemma is finished.

The definition of $\{w_n\}$ shows that $\{|w_n(\theta)|\}$ is bounded and furthermore we know according to (9) that to every positive ε there exist numbers δ and N_0 such that

$$|w_n(\theta) - F(\gamma)| < \varepsilon$$

when $|\theta - \gamma| \le \delta$ and $n > N_0$. Thus by our lemma

$$|w_n'(\theta)| \leq 8n\varepsilon$$

when $|\theta - \gamma| \le \frac{1}{2}\delta$ and n is sufficiently large. We find by a q-fold iteration that

(19)
$$|w_n^{(q)}(\theta)| < (8n)^q \varepsilon \quad \text{for } |\theta - \gamma| \le 2^{-q} \delta.$$

From the definition of D we obtain

(20)
$$\frac{d}{d\theta} D(w_n^{-1}; e^{i\theta}) = -\frac{1}{2} D(w_n^{-1}; e^{i\theta}) \cdot \left\{ \frac{w_n'(\theta)}{w_n(\theta)} + \frac{i}{2\pi} \int_{-\pi}^{\pi} \frac{d}{dt} \left[\log w_n(t) \right] \cot \frac{1}{2} (\theta - t) dt \right\}.$$

We know that there exists a constant c > 0 such that $c^{-1} < w_n(\theta) < c$ for all sufficiently large n. Thus, it follows from

$$|D(w_n; e^{i\theta})|^2 = w_n(\theta)$$

that $D(w_n; e^{i\theta})$ satisfies a similar inequality.

To obtain an estimate of the integral in the last term in (20) for $|\theta - \gamma| \le \frac{1}{4}\delta$ and sufficiently large n we proceed as follows. Putting $n^{-1}\varepsilon^{\frac{1}{2}} = \eta$ and combining the estimates of the proof of the lemma with (19), we find for one part of the integral in (20) that

$$\begin{split} & \left| \int\limits_{\theta - \eta}^{\theta + \eta} \frac{w_{n}{'}(t)}{w_{n}(t)} \cot \frac{1}{2}(\theta - t) \; dt \; \right| = \left| \int\limits_{\theta - \eta}^{\theta + \eta} \left(\frac{w_{n}{'}(t)}{w_{n}(t)} - \frac{w_{n}{'}(\theta)}{w_{n}(\theta)} \right) \cot \frac{1}{2}(\theta - t) \; dt \right| \\ & \leq \int\limits_{\theta - \eta}^{\theta + \eta} \left| \frac{w_{n}{'}(t) - w_{n}{'}(\theta)}{w_{n}(t)} \cot \frac{1}{2}(\theta - t) \; \right| \; dt + \int\limits_{\theta - \eta}^{\theta + \eta} \left| \frac{w_{n}{'}(\theta)}{w_{n}(\theta)} \frac{w_{n}(\theta) - w_{n}(t)}{w_{n}(t)} \cot \frac{1}{2}(\theta - t) \; \right| \; dt \\ & \leq 2 \, M \, \, 16 \, n \, \, 8 \, n \, \varepsilon \, \, 2 \, n^{-1} \varepsilon^{-\frac{1}{2}} + 4 \, M^{2} \, \, 8 \, n \, \, 16 \, n \, \varepsilon^{2} \, \, 2 \, n^{-1} \varepsilon^{-\frac{1}{2}} = \varepsilon^{\frac{1}{2}} O(n) \; . \end{split}$$

For the integral on the rest of the circle we have the estimate

$$\begin{split} \int\limits_{\theta+\eta}^{2\pi+\theta-\eta} \frac{d}{dt} \left[\log w_n(t)\right] \cot \frac{1}{2}(\theta-t) \; dt \\ &= \left[\log w_n(t) \cot \frac{1}{2}(\theta-t)\right]_{\theta+\eta}^{2\pi+\theta-\eta} + \frac{1}{2} \int\limits_{\theta+\eta}^{2\pi+\theta-\eta} \log w_n(t) [\sin \frac{1}{2}(\theta-t)]^{-2} \; dt \\ &= \varepsilon^{\frac{1}{2}} O(n) \; . \end{split}$$

Thus

$$\left|\frac{d}{d\theta}D(w_n^{-1};e^{i\theta})\right| \leq \varepsilon^{\frac{1}{2}}O(n) \quad \text{for } |\theta-\gamma| \leq \frac{1}{4}\delta.$$

If we differentiate (20) q-1 times and make repeated use of our lemma as above, we find that

$$\left| \frac{d^q}{d\theta^q} D(w_n^{-1}; \, e^{i\theta}) \right| \leq \varepsilon^{\frac{1}{2}} O(n^q) \quad \text{ for } |\theta - \gamma| \leq 2^{-q-1} \delta$$

and hence

(21)
$$\frac{d^q}{d\theta^q} D(w_n^{-1}; e^{i\gamma}) = o(n^q).$$

Then (17) follows by applying (19) and (21) to (18).

7.

Finally using the following two results [1, p. 287, 289]:

$$(22) 0 < \mu \le \varkappa_n(w_n^{-1}) \le \lambda,$$

where μ and λ are constants not depending on n, and

(23)
$$\lim_{n \to \infty} D(w_n^{-1}; e^{i\gamma}) = D(f; e^{i\gamma}),$$

we obtain the desired result in the following way. Applying (11) and (22) to (16), we get

$$\Phi_n^{(p)}(f; e^{i\gamma}) = \Phi_n^{(p)}(w_n^{-1}; e^{i\gamma}) + o(n^p),$$

and we find from (17) that this can be written in the form

$$\Phi_n^{(p)}(f; e^{i\gamma}) = n^p e^{i(n-p)\gamma} \{ \overline{D(w_n^{-1}; e^{i\gamma})} \}^{-1} + o(n^p) .$$

Now the statement (3) follows by applying (23). The theorem is proved.

REFERENCES

- G. Freud, Eine Bemerkung zur asymptotischen Darstellung von Orthogonalpolynomen, Math. Scand. 5 (1957), 285-290.
- G. Freud and T. Ganelius, Some remarks on one-sided approximation, Math. Scand. 5 (1957), 276-284.
- 3. G. Szegö, Orthogonal polynomials (Amer. Math. Soc. Coll. Publ. 23), New York, 1959.

UNIVERSITY OF GÖTEBORG, SWEDEN