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INTERPOLATION IN NON-QUASI-ANALYTIC CLASSES
OF INFINITELY DIFFERENTIABLE FUNCTIONS

GOSTA WAHDE

1. Introduction.
Let B={B,}3° be a sequence of positive numbers satisfying
(a’) BO =1 H
(b) logB, is a convex function of » ,
(C) Z(I’OBV—I/BV < .

(1.1)

Let €5 be the class of infinitely differentiable functions f(x), defined on
(— o0,0), for which there exists a constant C=C(f) such that

sup,|f®(z)] = C**'B,, v=0,1,2,....
The condition (1.1) (c) is equivalent to

(1.2) Oft—z log (z t2"/B,,2) dt < oo

0

(see Mandelbrojt [7]), and this implies, by Denjoy—Carleman’s theorem,
that €5 is non-quasi-analytic (see [7], [9]).

Furthermore let 4 ={4,}3° be a sequence of positive numbers, 4,=1,
and denote by ¢, the class of sequences y = {y,}5° for which there exists a
constant c=c¢(y) such that

(1.3) ly,] < ¢4, v=0,1,2,....
We shall consider the following

INTERPOLATION PROBLEM. What conditions, imposed on A and B, are
necessary and sufficient for the existence of a function f(x) € €z with

fO0) =9, »=012,...,
for every yec,?
Bang [1, pp. 87-91] obtained the following sufficient condition by real
variable methods.
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THEOREM 1 (Bang). Let

o0
r.= > B, /B, n=123,...,

r=n4l
and
v r—1
B, =TI, v=1,2,3,..
n=1
Then, if
A, £ kB, r=1,2,3,...,

Jfor some constant k, the interpolation problem is soluble.

For example, if B,=(v!)*, « > 1, Theorem 1 shows that it is possible to
interpolate if
A, £ k)1, v=1,2,3,....

The following more general sufficient condition has been proved inde-
pendently by Carleson [4], Ehrenpreis [6] and Mityagin [8]:

THEOREM 2 (Carleson; Ehrenpreis; Mityagin). Let

h(t) = (143t sup,-,[t]"/B,, —oco<t<oo,
and

1 o0
log H(r) = ~ j F:_—ﬁlogh(t)dt, r20,

—00

(the integral converges by (1.2)). Define B, by

B, = sup,.,7*¥H(r), »=1,2,3,....
Then, if
A, = kB, v=1,23,..., somek,

the interpolation problem s soluble.

It follows from Theorem 2 that if B,=(»!)*, x> 1, it is possible to
solve the interpolation problem with 4 =B (see [4]). In this case an
explicit construction has been given by DZanagija [5].

By complex variable methods, Carleson (unpublished) has shown, with
the additional hypothesis that log A, be a convex function of », that if
the interpolation problem is soluble there exists an integer u so that

4, £ kB,,,
If log B,=0(»?), it follows that B, s B, for some 1, and consequently

the condition in Theorem 2 is necessary and sufficient in this case.

y=1,2,3,..., somek.
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We shall treat here the interpolation problem using a method which is
elementary and entirely different from those of the above-mentioned
authors. We prove the following theorem.

TrEOREM 3. Let B={B,}’ be a sequence of positive numbers satisfying
the conditions (1.1) and suppose that

(1.4) (¥*B, /B, is decreasing for some 6> 0 .

Define -

(1.5) kyt) = St?[B2, —oco<t<oo,
y=0

(1.6) logK(r) = — [ =" logkyt)dt, rz0,

27 J r24-t2
and e
(1.7) B, = sup,zor'”/K(r), v=0,1,2,....

Then the condition
(1.8) A, < k1B, v=0,1,2,..., somek,

18 necessary for the interpolation problem to be soluble and sufficient for the
interpolation from an arbitrary y € c 4 to be possible by a function f(x) € € g,
where B'={(B,B,,,)!}5’.

ReMARK 1. In the proof of Theorem 3 we first show (Lemma 1) that
the class €5 can be defined by a sequence B* = {B,*}3° of positive numbers
satisfying the conditions (1.1) and such that the corresponding function
kg.(t) (see (1.5)) has the representation

(1.9) kpo(t) = TT (1+22r,72), 7r,>0, k=1,2,3,....

k=1
Using (1.4) this is easy to prove, and that is the reason why the assump-
tion (1.4) has been added. We observe that it follows, from (1.1) (b) and
(c), that {B,_;/B,}y, is decreasing and » B,_,/B, - 0 as » - c. Hence con-
dition (1.4) is not very restrictive; it is fulfilled for all “regular’’ sequences
satisfying (1.1), e.g.

(1.10) {2, «>1;  {(»(logv)y}, p>1.

REMARK 2. If log B,=0(»?), the sequences B and B’ define the same
class €5 ([1, p. 22]). Consequently Theorem 3 gives a necessary and
sufficient condition for the interpolation to be possible in this case.
This clearly applies, for instance, to the sequences (1.10).
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-. T wish to express my deep gratitude to Professor Lennart Carleson for
introducing me to this problem and for all his valuable guidance during
the preparation of this paper.

2. An extremal problem.
We start by considering the following

EXTREMAL PROBLEM. Let {m,}y be a given sequence of positive numbers
with my=1. Let p be a fixed integer satisfying 0<p=<n—1 and consider
the functional

oo
n

F(f) = 3 m= [ (o) da

v=0 o

for the class C® of all those n times differentiable functions defined on
[0,00) for which

1 forv=1p
*) = ’ <p<qp—
J0) {0 Jor v + p, Osvs 1,

and fOx) e L0,00), »=0,1,...,m.

The- problem is to find
u® = inf; o F(f) .

(For the case p=0, compare [9].)

~ As in [9] we can show that u® = F(¢,), where ¢,(x) is the unique
solution in C® of the differential equation

(2.1) f(— 1ym,~2 D¥y = 0.

»=0

Partial integrations give, for »> 1,

v

: f [, @) dx = 3 (= 1) @,¢=(0) @,e+-D(0) + (—1) f Pp(2) 9, () dz .
0 0

J=1
Hence
n 14
o = I m2 3 (=1 g N(0)p, I 0(0) +
= J=
X n
+ [(Z(-1rm 29,206 gyfo) da
»=0
n 0 n
= 3 (=1pPm2p,Er00) = 3 (=1yPm 2p,&r-00).

v=p+1 v=[}n+p)+1
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In the calculation of u® it is sufficient (compare [9]) to consider the case

where the characteristic equation

(2.2) (—1)ym, 22> =0

M=

k4

of the differential equation (2.1) has only simple roots; let them be ir,‘;

Rer;,>0, k=1,2,...,n. Then
n

pp(2) = 2 0677,

where k=1
(2.3) é:lckm' = f)—l)v igi ::g: 0sv=n-—1.
Hence .
(2.4) u® =3 ¢, Py,
where =
Po= 3 (-lptmn@, k=12,

v=[}(n+p)}+1

Now let P(z) be the polynomial of degree <u—1 which takes the values

P, at the points z=r,, k=1,2,...,n, that is
n—1

Piz) = Y 4,7,
j=0

where el
Pr) =S A;ri =P, k=12,...,n.
j=0

From (2.4) and (2.3) we obtain

n—1 n
(2.5) u» =3 A;3 ¢t = (—1)P4,.
J=0 k=1

Clearly the equation

n
Z (=1ym, 22222 = 0
v=0

has the roots +g¢;, k=1,2,...,n, where g, =r,71. Let «;, j=0,1,..
be the elementary symmetric functions of the variables g;, £=1,2,...

og = 1, D‘j=20k1@k2"'9ki’ i=L2,...,m,
where the summation extends over all indices with
1k <ky<...<k;=n.

From n n n

E (__ l)vm'—2z2n—2r = z (_ 1)11 *; an—1i z lszn—j
v=0 =0 j=0

N,

RH
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we obtain the following relations between the m,, v=0,1,..,n, and the
&y, j=0,1,. R
(2.6) (=1ym,~2 = 3 (—1) a0, v=0,1,...,n.
=2
To construct the polynomial P(z) we now put

n n n
Q@) =3 (~1az 3 a@p»t+ T (=lptm, tgesl,

=0 J=p+1 ve[ §(n4p)1+1
If i+j—p—1=2v—p=n we have 12p+1, and then the coefficient of
22-P in Q(z) is

z ('—l)ia,ta)'=0.
) =2r+1

By (2.6), the coefficient of z2*-P-1 also vanishes if 2v—p—1=n. Hence
the degree of Q(z) is <n—1, and since

n n
(2.7) 2 (-1 o2t = TT (1—es2)
i=0 k=1
we have
Q(ry) = P, k=1,2,...,n.

Then @Q(z)= P(z), and we obtain
A, = 3 (~1)iw

4] =2p+1
Jep+l
and so, from (2.5),
min (p, n—p-1)
(2.8) ) = kE (= 1)k Kp—kFp+1+k -
=0

3. Lemmas.
For the proof of Theorem 3 we need some simple lemmas.

LeMMA 1. Let B be a sequence with the properties (1.1) and (1.4). Then
there exists a sequence B* satisfying (1.1) such that € gr.=% 5 and

[ o] (e <]
(3.1) kpi(t) = 3 t#[B}* = TI (L+82r,7%)
r=0 k=1
where 1, >0, k=1,2,3,... .
Proor. Put
rk = Bk/Bk‘I’ k=l,2,3,-.. >

and then define the numbers B,*>0, »=0,1,2,..., by (3.1). Then by
Cauchy’s estimates
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1 _ kge(r) _ (B, \¥ B,
3.2 < < kpe .
©2) g = 2 s (2 e (5)

v

By (1.1) (b) the sequence {B,._,/B,}{ is decreasing. Hence

d B2 B2 v 2 B2 ]
(33) l__[ (1+ k-1 12) é 2.( Bk—le) = v .
k=1 Bk2 'Bv—l k—lBka—l 'BP-—?]’. Bv2
It follows from (3.2), (3.3), and (1.4) that
(BB s 2oxp (s (BHB2) 5 (BulBul)

=y+1

A

2 exp (v“ § k““‘”’)

Kmy+1

2exp(3677),

< (2t B*,  y=123,....

A

and therefore
B

v

But B,*<B,,v=1,2,3,..., and 80 €5.=%5 ([1, p.12]).
Since kgz.(it!) has only real zeros we have (see Boas [3, p. 24])

B} < (v/(»+1)}}BX, B ;
hence B* fulfils (1.1) (b). Obviously B* also satisfies (1.1) (c).

Lemma 1 permits us to assume that

ks(t) = TT (14%r) ,
k=1

where r,>0, k=1,2,3,.... For n=1,2,3,..., we put
kp,n(t) = ﬁ (1+8r,72) = %tz'/By,zn-

Then k-1 . =0

(3.4) Bo,n =B, =1, n=1,2,3,...,

and for n=>»,v=1,2,3,...,

(3.5) B,,>B,,,>...>B,,>... >B,,

(3.6) lim B, , = B,.

Further, setting e

(3.7) B, , = sup,o K, (r), n>v,

where

1 ¢ r
K,(r) = exp (Zt. —‘i mlongm(t) dt) ,
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we have obviously (compare (1.7)) for n>», v=0,1,2,...,

(3.8) B,,.28B,,2...28,,2 .28,
(3.9) ‘ lim B, , = B,.
f n—>00

Now let us fix » and use the simplified notation (compare Section 2)

m, = B, ,, v=0,1,...,n,

3.10 T = 2
(3.10) #,=B,,, v=01,..,n-1.

We also use the rest of the notation from our discussion of the extremal
problem in Section 2.

LEMMA 2.
1'V+}
m = S p 'V=0,l, ,n'—'l
T 2o 230‘17&’ :
Proor. If
. L n N
pn(z) = 60]__];[(2’/-—0,) )
where \
Ime, > 0, v=0,1,...,n,

then, for Imz> 0 ([10, p. 135]),

. TImz flogp,t)
log p,(®) = —— [ = Zoa &

For real ¢,
n

m,t IT (¢ +ar,)

r=1

2

kB.'n(t) =

Putting z=17, >0, and ¢y=m, !, ¢,=1t7,, 1 Sv=<n, we find
o0

1
log K (r) = - f

—o0

P
m lOg kB, ‘n(t) di

’ n
= log = log [T (1+o,7) .
‘ v=1

n
my, 1 (r+7,)
v=1 '

Lemma 2 now follows from (3.7), (3.10) and (2.7).

Lemma 3.
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n
()

Oék=(7l:.)pk, k=0,1,...,'n.

ProoF. Let

Il (@+e,) =
v=1 k

iM=

that is,

Then the lemma follows immediately from Newton’s inequality (see e.g.

2,p. 11
2, p. 11) Pr-1Pr1 = P k=1,2,...,n—1.

LeMMA 4.

~
Kby S M2 < 2-4 x4, y=0,1,...,n—1.

Proor. The left hand inequality follows from

er+1 " 7‘”’1 1

m2~sp———< up - . sup . < .
rzo (20047)% T pz0 200677 4zo 20047 T X4

Next, take r=}«,/x,,; in Lemma 2 to obtain

n 2 n 1 2
A . : 'L
iy = inf (3 o) 5 2Anyafo) (32 ,::) :
=0 1

r>0 . =0 &,

By Lemma 3,

_ (0.9
(3.11) Pt %k

b
Xk K41

and repeated use of this inequality yields

1=0,1,...,n

Hence

1 2 n 2
+1 i
—— = 0(,2( > 2”—’) < 24,4,
$

as required.

LeEMMA 5.

2

p—_l_—éocpocp“ < u® < XpOpirs P = 0,1,...,n—1.

Proor. The right hand inequality follows immediately from (2.8)
and (3.11). For 1sp=n-2,

:u‘(p) Z OpOlp1— Op_1%p42
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and, from Lemma 3, we have

Op-18p+g < p'__l_—z"xp‘xp-ﬂ ’
which yields the left hand inequality. The cases p=0 and p=n—1 are
trivial.

LemMA 6. Let f be a function with a continuous derivative on [0,00) for
which

f|f(x)|2dx =M2>0 and J'|f'(x)|2dx — N,
) .

0

Then Sup, 2o |f(@)] < 2(MN)} .

Proor. Suppose a >0 is arbitrary. For 0 <z <a? we have

2
=< a*NZ.

If (2)—f(0)]* =

ff'(t) dt
[1]

Hence
If(0)] £ aN + ming_, p|f(*)| < aN + Ma .

Choosing a to make the right hand sidé a minimum, we obtain
If(O)] < (MN)?.

By means of the translation z — x+x,, x,>0, it follows immediately
that |f(x,)| satisfies the same inequality, and this proves the lemma.—
Lemma 6 also follows as a special case of a theorem of Nagy; see Becken-
bach-Bellman [2, p. 167].

4. Proof of Theorem 3; the sufficiency.

We now proceed to the proof of the sufficiency of the condition (1.8)
in Theorem 3. Fix =, and let

n—1
¢n(x) = E)@"pp(x) s
p=0

where @, () is the extremal function of the extremal problem in Section 2.
It follows from

n—1
¢n(’)(x) = zoyp¢p(')(x)
p-

that
@,7(0) = y,, y=0,1,...,n—1,
and
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n—1
1D, 9)] = 3 P+ A, g, )| .
p=0
Since F(p,)=pu®, we have

o0
0

and hence, by Lemma 6,

Sungol(Pp(')(w)l <2 (/“(p)mvmv+1)}: V= 0: 1) vy — 1 .
Then ot
Supxgo Idin(")(x)[ < 2 (mvmv+1)} zocp+1Ap (/"(p))is V= O’ 1’ cee, N — 1 .
p-

Obviously we may assume
A4, £ ()28, p=012,...,
instead of (1.8). But Bp gﬁi,, and, by Lemmas 4 and 5,

~ M(p)
m,2 P < <1
P = =
O Ol t1
This gives the estimate
n—1
SUD, 20| Pn?(2)| < 2(m,m, )t D (3)P+1, O=<v=n-1,
and so p=0
(4'1) supa:golqsn(”)(x)l < Z(Bv,nBv+1, n)}’ Oévén—' 1.

By (3.5) this means that for fixed »>0 the sequence {@,"(x)} is uni-
formly bounded and equicontinuous. Then there exists a subsequence
{®,,(x)} converging to an infinitely differentiable function @(x) and such
that &3)(x) ~ &V(x), v=0,1,2,..., uniformly on every compact sub-
interval [0,a] (see e.g. Mandelbrojt [7]; compare also [9]). Passing to
the limit in (4.1) we obtain

SuPzao IQ(’)(x)l é 2 (Bva+1)i! v= 07 1) 27 LRI

Let @,(x) be the solution we obtain in the same way interpolating from
the sequence {(—1)"y,}5°. Define

D(x) = P(—x), z20.
Then @(z) will be infinitely differentiable on (— oo, %), and the derivatives
satisfy

DN(0) = y,,
0= »=0,1,2,....
sup, |99(z)| = 2(B,B,.)},

This proves the sufficiency part of Theorem 3.
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5. Proof of Theorem 3; the necessity. ‘
For the proof of the necessity of condition (1.8) in Theorem 3 we fix
a non-negative integer p and consider the sequence y in ¢, for which

|0 ifvkp,

=14, if v=p.

By assumption, €5 contains a function f,(z) satisfying
L,90) =9, »=01,2,....

Since %' is non-quasi-analytic we may assume that f,(x) =0 for x> a > 0.
Using the notation from Section 2 we have, for n > p,

F(f,) 2 A2u® .
Elementary considerations show that in the inequalities
sup, |f,*(x)] = C*+'B,, »=0,1,2,...,

we can choose C independent of p. Furthermore, we may obviously as-
sume that C <1. Then, since B,<m, for 0<v=n,

a

n C?
F(f,) = 3om [ 100 da < -
v= 0

1-C2°

IIA

Lemmas 5 and 4 yield

-1_<__1iﬁ_<(p+2)410+11;;2<42p+2,,ﬁ2
® = 2x « L= P
u PP+l

Hence for some constant k, independent of n and p,
A4, < k9B, ., a>p.
Letting n — oo, we obtain
A4, < kB,  p=012,....
This completes the proof of Theorem 3.
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