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SOME RESULTS ON NARROW SPECTRAL ANALYSIS

YNGVE DOMAR

Introduction.

Let B be a commutative Banach algebra with an identity e. The dual
Banach space of bounded linear functionals on B is denoted B*. Without
changing the topology on B we can assume (see for instance Loomis
[5, p. 48]) that

(1) llel] = 1
and that
(2) gl < 1If1 gl

if f and g are arbitrary elements in B.

M denotes the space of all non-trivial complex-valued homomorphisms
of B. The image of an element fe B by a homomorphism x e M is
denoted f(x). As is well known from the elementary theory of Banaeh
algebras the homomorphisms in M are bounded linear functionals with
norm 1. Thus M is a subset of the unit sphere S={F | [ F|*=1} in B*.
[I I|* denotes the norm in B*.

For any F € B* and any fe B we define the functional Fof by the
relation

(Fof)(9) = F(fy) ,
for every g € B. Using (2), it is easy to see that Fof € B* and that

(3) [Fefl* < ILFI* [If] -

With this operation B* can be interpreted as a module over the algebra B.

To every F € B* we associate the linear subspace L of B* which
consists of all functionals of the form Fof, where fe B. Since F=Foe,
we have F' € L. We form the two subsets of M

and
Ap' = LgnSn M,

where the closure operations refer to weak* closure in B*. Obviously
Ap' < Ap. Using a terminology which goes back to the work of Beurling,
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originating in [1], we call A the spectrum of F and Ay’ the narrow spec-
trum of F.

Let us, for the moment, assume that F+0. It is then easy to see that
the annihilator of Ly is a proper ideal in B (in fact closed), hence it is
included in a maximal ideal. According to the general theory of Banach
algebras this maximal ideal is the kernel of a certain homomorphism
x,€ M. Since x, belongs to the annihilator of the annihilator of Lg,
%o € Lp. Thus F 40 implies that A is non-empty.

This well-known result is often referred to using the formulation that
spectral analysis holds for commutative Banach algebras with identity. Our
main objective is to show that in a large class of Banach algebras the
same is true for narrow spectral analysis, i.e. with Ay’ instead of A
(Theorems 2 and 3). As a by-product of the investigation, we show that
in certain algebras A,=Ay" (Theorem 1). The question whether these
results are true for every commutative Banach algebra with identity
remains open.

We now state our theorems:

THEOREM 1. Let B be semi-simple and assume that there exists, to
every x, € M and every neighborhood V of x,, an fe B such that |f(x)| =1
on M, f(x)=0 outside V, and f(x)=1 on a meighborhood of x,. Then
AF,=AF‘

TaEOREM 2. We assume that to every x, and x, € M there exists an fe B
such that f(x) is real for every x € M and such that f(x,), f(x,) and 0 are all
different. Then Ay’ is non-empty for every F = 0.

THEOREM 3. We assume that B has ome generator f, such that
{fol@) | x € M} is the disc {z||z|<1}. Then Ap' is non-empty for every
F 0.

Remark. Using standard terminology the assumption in Theorem 2
means that the subclass of all real-valued Gelfand transforms of elements
in B separates the points on M strongly. This condition is obviously
fulfilled if the class of all Gelfand transforms is closed under complex
conjugation.

The origin of our work can be found in chapter 4 of [2], which contains
generalizations of Beurling’s theorem in [1] on the narrow closure of
linear combinations of translates of uniformly continuous bounded func-
tions on R. For other methods to extend Beurling’s theorem see [3] and
Koosis [4]. In the case when B is the group algebra of a discrete abelian
group G, Theorem 2 is equivalent to Beurling’s theorem. The essential
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new feature in our investigation is that we do not need regularity and
semi-simplicity of B in order to show narrow spectral anaysis.

Theorem 3 is applicable to the case when B is the Banach algebra of
complex sequences {a,, }>° with the norm 3°|a,,| and the convolution opera-
tion. Nyman [7, p. 50], has obtained a result in the same direction for
this particular algebra. A close look at his investigation shows that his
method proves that spectral analysis holds for this algebra if the spectral
set is defined as Ap=HpynSnM, where Hy is the linear closure of
LynS. Obviously ApcAz<Ap.

Preliminaries

As topology on M we introduce, as usual, the relativization of the
weak* topology of B* to M. M is then a compact Hausdorff space.

Lemma 1. Let C be a compact subset of B. Then

lim sup = sup sup |f(x)| .
n—>o0 fyeC feC zeM
Proor. Put sup;.; sup,. Ml f z)| =d, and let ¢ be any positive number.

C can be covered by a finite number of open balls ||f—g,l<e, where
gr € C. Using the relation

lim |[p#[\» = sup |h(z)| ,
zeM

n—>oQ

which is true for any & € B by elementary Banach algebra theory, we
see that there exists a constant D such that

lgi*ll = D(d+e)
for every g, and every n. The inequality (2) gives then that

| S DN(d+ )7, n=12,...,

if the elements k, are chosen among the elements g,, and N denotes
the number of elements g,,.

We now let f, be arbitrary elements in C. To every f, there is an ele-
ment A, of the kind introduced above such that

If=hll < e.

( )DN(d+e)"‘ en=m = DN(d+2¢)n .

Then

n

1T

= |11+ -m)
s

<
m=0
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Since ¢ was arbitrary, this proves Lemma 1.
Before stating Lemmas 2 and 3 we need some definitions.

DeriniTion 1. Let F € B*. A compact subset £ of M is called an
F-determining subset if for every compact subset C' of B
im sup (‘

n
Foll/,
n—>o0 fyeC 1

By Lemma 1 and (3) the set M is an F-determining subset. It is of
interest to observe that the same is true for the Shilov boundary of M
(see Naimark [6]).

*\1/n
) < sup sup |f(x)] .
feC xzeM

DeriniTiON 2. Let F € B* and let E be an F-determining subset of M.
We say that a subset V of E has the property A(F) with respect to £
if there exists, for every >0, a compact set C =B and elements f, €C,
where {n,} are strictly increasing integers, such that

Ifn(®) =1 on E,

|fp@)] <S¢ on E-V,
and
(IFo(fo)™II¥)™ > 1, a8 m,—> oo .

DeriniTION 3. Let F' € B* and let K be an F-determining subset of M.
We say that a point z, € £ has the property A(F) with respect to E if
every neighborhood of z, with respect to £ has the property A(F) with
respect to X.

Lemma 2. We assume that B satisfies the assumption in Theorem 1.
Then every x, € Ag has the property A(F) with respect to M.

Proor. Let z,€ Ay and let g € B be any element such that g(z,)+ 0.
If Fog=0 we have
Fof(g) = Fog(f) = 0
for every f, that is, g is in the annihilator of L,. But then it also anni-
hilates x, which gives a contradiction. Hence Fog=0.
Now let V be an arbitrary neighborhood of z,. By the assumption
there exists an fe B such that

flx)=0, xz¢V
Ifx)] = 1, zeM

and such that f(z)=1 in a neighborhood of z,. It is enough to show
that
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(|IFofr||*)t/n -1, as n— oo,

for the condition in Definition 2 is then fulfilled with C'={f}.
Let g, € B have the property that g,(x) vanishes outside the set where
f(z)=1 and that g,(x,) 0. Since Fog, +0 there exists a g, € B such that

F(g19;) = Fogy(ga) + 0.
Ry the semisimplicity

["919s = 019,
for every n. Hence

[Fof™* llg1gall 2 [Fof™g192)l = [F(f*9:92)] = |F(g:195) »

and thus
lim (| Fof*yn 2 1.

That
Lim (||[Fofn|*/» < 1

7n—>00

follows directly from (3).

Lemma 3. Let F € B* and suppose that xy€ M has the property A(F)
with respect to some F-determining subset K of M. Then xye€ Ag'.

Proor. We have to show the follwing: Given &>0 and g,.9;,...,
gq € B, there exists an element @ € Lpn S such that

1G(gp) —gp(o)l <&  p=0,1,....q.
Obviously it is no restriction to assume that g,=e and that
gp(xo) = 0, p=1,...,q.
Then we have to show that G € Lyn S can be chosen in such a way that
(4) |Ge)-1] < &,
(8) IG(gp)l <& p=1,...,9.
We claim that this follows if we can find an element H € Ly such that
(6) |Hogy|* < e|lH|I* + 0, p=1,...,q.
To prove this, let us start from an arbitrary h € B and the immediate
relations
[H(R)| = |H(he)| = |Hoh(e)]
< |Hoh|[* [lell = [IHoh|* = |IH|* |IAll .
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By the definition of the norm in B*, we can for any 8> 0 find %, such
that

(7) (lH|[* [|2]] = 1+0
and
(8) H(h) = Hoh(e) = 1-6.

By the relations above, we can normalize % in such a way that
9) [Hohl* =1,
hence, also by these relations,
(10) Hoh(e)
Furthermore, by (7)
(Hoh)og,|* = [[(Hogy)ohl*
= [Hogy|l* IRl
_ I Hogy|*
IlH]*

[ og,|*
>

IA
(=

(IRl (11

< (1+49) =1,...,q.

If 6 is sufficiently small, the last relation and (6) show that
(11) [(Hoh)og,l* <&, p=1,...,q.

Now consider G=Hoh. By (9) it belongs to LznS; by (8) and (10),
assuming d <e, it safisfies (4), by (11) it satisfies (5). Hence our claim is
justified.

In order to find H € Ly which satisfies (6), put

D = sup sup |g,(2)| ,
p xeB

and let ¥ denote the open neighborhood of z,, with respect to E, where
lg,(x)] < 3¢ for every p .

By the assumption there exists a compact set C < B, and a sequence f,
of elements in C such that

f, ()]
|fa(®)]

1 onV,
/D on E-V,

IAHIA

and such that

(IFo(f, )" l*)™ > 1  as m, - oo



SOME RESULTS ON NARROW SPECTRAL ANALYSIS 11

The elements of the form g,f, are obviously contained in a compact
subset of B. They satisfy

19,(@)fn, (@) < i

on E. Hence, since E is F-determining (Def. 1), there exists an N,,
such that

19 e TE:

*

< ($&)™

if n,2 N,, and if p,, are arbitrary integers, 1 <p,, <p. We put

*
= 6k, ny

k
w1 1)

where the supremum is taken over all choices of p,, 1<p,<p. From
(12) and (13) we see that there exists an n, such that

60,7»,. g (%)m
and

Onymy < (36" .
Hence, it is possible to find a k, such that

6k0+1,n, < Eéko,n,. * 0.
We define

0 = (1105 I

as the element which gives the supremum in the definition of §; ,,-
Then H=Fog belongs to Ly and fulfills (6), and Lemma 3 is proved.

Proor or THEOREM 1. The theorem is a direct consequence of Lemma 2
and Lemma 3.

Proof of Theorem 2

Theorem 2 is proved, by Lemma 3, if we can always find a point
x, € M which has the property A(F) with respect to M. If no such point
exists, every point in M has an open neighbourhood which does not have
the property A(F). Thus M can be covered with a finite number of open
sets which do not have the property A(F). On the other hand, the set
M itself has the property A(F), which is seen by choosing f, =e. Hence
Theorem 2 is proved if we can prove the following lemma.

Lemma 4. Under the assumptions in Theorem 2 the following s true:
If O, and O, are open subsets of M and if 0,00, has the property A(F)
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with respect to M, then either Oy or O, has the property A(F) with respect
to M.

Proor. We put O,u0,=0. Let ¢>0 be arbitrary and choose the
compact set C =B and {f, } in C in such a way that

Ifa@®) £1 onM,
|fa,(@)] £ 3¢ outside O,
and such that
(14) a},L”" = (”Fo(fnv)ﬂv”*)llm -1,

as ¥ — oo. This can obviously be done by Definition 2. By C, we denote
the class of all fe C such that |f(z)| < }e outside 0. Obviously, C, is
compact in B, hence the corresponding class of functions f(x) € C(M) is
compact. Using this compactness, which has the consequence that the
functions f(x) in the class considered are uniformly equi-continuous, it
follows that the set K of all x such that f(x) = ¢ for at least some f e O,
is a compact subset of O.

The sets K nCO, and KnCO, are compact and disjoint. Since M is a
compact Hausdorff space, we can apply Urysohn’s lemma which shows
that there exists a continuous real-valued function on M which is 0 on
KnCO, and }x on KnCO,.

We consider the real sub-algebra of B which consists of those fe B
for which f(x) is real on M. By the assumption, the corresponding func-
tions f(x) form a point-separating real algebra of real-valued continuous
functions on M. By the Stone-Weierstrass theorem, this algebra is
dense in the algebra of real continuous functions on M with the uniform
norm. Hence there exists an element g € B such that g(z) is real and such
that

T

E 7

—Eég(x)ém on K nCO,
and

%1

=< < — K .

12_9(91':)_12 on K nCO,

We introduce the elements cosg and sing, defined by means of power
series in g. Obviously,

(cosg)(x) = cosg(x)
and
(sing)(x) = sing(x)

for every x € M. It is easy to see that for every real « the function
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cosx cosg(x) + sina sing(z) = cos(g(z) —«)

has the modulus = 1}1/5 on at least one of the sets KnCO, and KnCO,.
We choose an integer N > 0 so large that (3)¥ <e. Then, for every real ,
the element.

h, = (cosx cosg+sinx sing)2V

satisfies 0<h (x)<1 on M and satisfies A (x) <¢ on at least one of the
sets KnCO, and KnCO,.
Let v be arbitrary and temporarily fixed. We form, for every real «,
the element A”. It can be expanded in a strongly convergent series
o0
h:' = 2 Dk((x)gk E)
k=0
where g°=e¢. For every real ¢ we have
1 2n 1 2n
(15) — f (coso cost+sine sint)2V™ doy = — f (cosx)?N™ dy = E,
2n ’ 27 :

y ’

which thus is independent of . Hence

2n

1
(16) — f Dy(s) dx = E,
2n ; 4
whereas
2n
1
(17) —ka(a) do = 0, if k=1.
2n 5

By the definition of the norm in B* there exists an element f,e B
with ||foll £ 1, such that

(Fo(fa,)™)(fo) = 1an,,
where a,, is defined in (14). We form, for every real «, the element
G, = Fo(f, )™(h,)"
in B*. Using (16) and (17) we obtain

1 2n . 2n
oz | Gl de = 3 [ Do) Ao @ 321) = B, F(f32f) = dan B,
0 0

Hence there exists a value «, such that

IGa,(fOH g %a‘n,En,’
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i.e., such that
G, I1* 2 day, By, .
By (15)
(B,)"™—>1 as»->oo,
for every N. Together with (14) we thus obtain
(18) (G ¥)"™ = (IF o (fo, oy, )¥I[*)™ > 1 a8 v > co.

Since |k, (¥)| <& on at least one of the sets KnCO, and KnCO,, there
exists an index 4, =1 or 2, and a subsequence {»'} of {v}, such that

(19) s @) Bo()] < &
on KnCO;, for every »'. By the definition of K, and since
(20) by ()] = 1
on M, (19) is true outside O;. (20) implies that

|fry (®) B ()| = 1,

on M. Furthermore, it is easy to see that the subset of B consisting of
all functions of the form fh, , where fe C and « is real, is compact.
All these properties, together with (18) show that O, satisfies the condi-
tions in Definition 2 for the number ¢> 0 which was chosen. At least
one of O; and O, must then satisfy the conditions for a sequence of
arbitrarily small ¢, hence fulfil the definition for every ¢> 0.

Proof of Theorem 3

Since f, is a generator, the mapping f, is one-to-one between M and
the closed unit disc. It is continuous in one direction, hence a homeo-
morphism. Hence we can assume that M is the unit disc {z | [2|=1}
and that fy(z)=z for every z.

Lemma 5. Let F € B* and put
m (|[Fofy"*)/" = a.

n—>oo

Then a <1 and the set {z | |z|=a} is an F-determining subset of M.
Proor. That a<1 is a direct consequence of the relations

a = Iim ([|Fofy"[*)V» < lim (|F|* | fn[)V™ < sup Ifo(2) = 1.
n—-00 n—>oo 2€

As remarked before, M is itself an F-determining subset. For every

polynomial P(f,) in f, the function |P(fy(2))|=|P(2)] on M attains its
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maximum on {z | |z|=1}, and the same must then be true for all f(z),
f € B, since the polynomials P(f,) are dense in B and since the mapping
B — C(M) is norm-decreasing. Hence {z | |z|=1} is F-determining, and
there remains only to consider the case when 0<a<1.

Let b be any number such that a<b<1. We can find a constant D
such that

(21) |[Fofs?|* < Db» for every n .

We form the Banach algebra B’ of all power series

with the norm

If @I = g |a,| 0" < oo,
and with multiplication (convolution of the sequences of coefficients) as
operation. The maximal ideal space of this algebra can be identified with
{z | |2| £ b}, as is well known ([5, p. 72]).
Every polynomial P(f,) can be associated with the element P(z) in B,
and by (21) we have, if P(f))=3Ya,f",

" < DIP@) .

N
(22) IFoP(fy)[* = ﬂz @y Fofyt

Let ¢> 0 be arbitrary and C an arbitrary compact subset of B. Since
the polynomials P(f,) are dense in B, we can find a finite number of
open balls

{FHIf=Pulfolli<e} s

where P, are polynomials, and such that the union of these balls covers
C. Tt is no restriction to assume that, for every £k,
sup |Py(2)] = d+e,

lel<b
where

d = sup sup |f(2)] .
feC |z|sb

By Lemma 1, there exists a constant E such that

’

< E@+2)", n=L2,...,

I:iR,(z)

if the polynomials R, are chosen among the polynomials P,. Hence,
by (22)
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n *
“FoHR,(fo) < DE@d+2e, n=12,...,

1
with the same possibilities in the choice of R,. We now use the same
way of arguing as in the last part of the proof of Lemma 1. Let f, be
arbitrary elements in C. To every f, there is an element R,(f,) of the
kind introduced above, such that

If,— B(folll < &.

Then

P el = Fo TT (R0 + - mt) [

<3 (”) DE(d+26)m enm = DE(d+3e)" .

m=0 \"

Since ¢ was arbitrary, this implies that {z | [2| £b} is an F-determining
set. Since this is true for every b>a, and since obviously

SUPsco SUP|, <p |f(2)]

is a continuous function of b in the interval 0<b <1, the set {z | |2| < a} is
also F-determining. As in the case a=1 we can conclude that
{z | |z| =a} is F-determining, too.

Proor or THEOREM 3. If a=0, then by Lemma 5, the conditions in
Definition 2 are fulfilled for any &> 0 and with C= {e}. Hence, by Lemma
3, the theorem is true in this case.

Let a >0, and let n be temporarily fixed. For every real « we form
the element Ix

0

1
h, = —exp(ix) + %fo + E‘,‘exp(—i(x).

[

o

We obtain
h,(z) = z (?—exp(ia)+ L + f-exp(—-iac))
* a\4z 2 da '
With z=ae', we have
h,(act®?) = e'*(} + § cos(x—9)),

hence, if |z| =a, we have
2%
1 2"
(23) = of W) de = = A,
where A, is a constant such that lim, ,  A,nt exists and is different

from 0. The left hand member of (23) is a polynomial in z. Hence (23)
is true for every z with |2| 1.
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From this we can see, in exactly the same way as in the corresponding
discussion in the proof of Theorem 2, that

Z Dk(“)fo
k=0
where
i on
— f D (x)dx = A
2n :
whereas

2n

1
~ka(a)da =0, if ktn.
2n0

Proceeding in the same way as in the proof of Theorem 2 we find that
there exists a real number «,,, such that

1Fo(h,,)"I* 2 $a, 407",
@y = [[Fof"|* .

Hence there exists a subsequence {n,}, such that «, converges to a
number x, and such that

(24) im (|Fo(k,, )™|*)"™ = 1,

y—>00

where

as » - oo. Obviously we may assume that {n,} is a sub-sequence of {n!}.
We now claim that z=ae?* has the property 4(F) with respect to the
F-determining set E={z | [z|=a}.
To prove this, let V be any neighbourhood of ae** with respect to &,
and let ¢>0 be arbitrary. We can choose NV such that, for sufficiently

large » ho @) < e
on the set £—V. On V we have
by @)V < 1.
By (24), and with » /[N =m,, which is an integer if » is large,
(IFo (kX )™y 1 as » > o
For every fixed N, the set of elements of the form %% obviously form a
compact sub-set of B. Hence the conditions in Definition 2 are fulfilled
for the set ¥ with respect to £. Thus V has the property A(F) with re-
spect to B, and since V was arbitrary, the same is true for the point
z=ae,
Theorem 3 is then a direct consequence of Lemma 3.

Math. Scand. 20 — 2
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