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A NOTE ON
POSITIVELY EXPANSIVE ENDOMORPHISMS

MURRAY EISENBERG

It is known that a compact connected Lie group G is toral if there
exists an expansive transformation group of automorphisms of G (see
[2]). In particular, such a group is toral if it has an expansive automor-
phism. Wu [4] has generalized the latter result by showing that a com-
pact connected finite-dimensional group is abelian if it has an expansive
automorphism. (All automorphisms and endomorphisms we consider
are assumed to be continuous.)

An endomorphism ¢ of a topological group G is called positively ex-
pansive if there exists some neighborhood U of the identity element e
of @ such that, given x € U with z e, then ¢i(x) ¢ U for some positive
integer 7. (If ¢ is an automorphism, and if the word “positive” is re-
placed by ‘“nonzero’’ in the preceding sentence, then one obtains the
condition for ¢ to be expansive.) We shall prove the following conse-
quence, announced in [1], of Wu’s result.

THEOREM. Let G be a compact connected finite-dimensional group, and
let there exist a positively expansive surjective endomorphism ¢ of G. Then
G is abelian.

Here we may use either covering dimension or inductive dimension,
since these two notions coincide in general for locally compact groups
and in particular in our case according to:

LemMmA 1. [2, Theorem 1.] A compact group is metrizable if it has either
a positively expansive endomorphism or an expansive automorphism.

We shall use the following result, reference to which was kindly pro-
vided by Professor Jack Segal.

Lemma 2. [3, Theorem 2a.] If X is the projective limit of an inverse
sequence of compact metric spaces each of dimension at most n, where n i3
a positive integer, then X 1s of dimension at most n.
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Proor or THEOREM. Consider the inverse sequence
L G@<-G<Ga...

in which each of the connecting maps is ¢, and let H be the projective
limit of this sequence. Then H is a compact connected group of which
@ is a homomorphic image, and it is enough to show that H is abelian.
By the two lemmas, H is finite-dimensional. In view of Wu’s result
mentioned above, it remains only to exhibit an expansive automorphism
of H. Such an automorphism o is constructed as in [2, section 4]. Denote
by Z the set of all integers. If 2= (x, |ne Z)e H, let

o(x) = (p(x,) |neZ) = (x,, |neZ).

It is not known whether the hypothesis that G be finite-dimensional
is really needed. However, the theorem fails if either the compactness
or the connectedness of G is dropped. In [2] we construct a positively
expansive automorphism of the noncompact connected simply-connected
nonabelian nilpotent three-dimensional Lie group. As a counterexample
for disconnected @, let C be the circle group, let o(x)=22 x € C, and let
D be the discrete nonabelian group of order 6; then the endomorphism
(%,y) - (o(x),y) of G=C x D is positively expansive since o is positively
expansive on C.
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