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THE SINGULAR SPECTRUM OF
ELLIPTIC DIFFERENTIAL OPERATORS IN L?(R,)

ERIK BALSLEV

Introduction.

The essential spectrum of a self-adjoint operator A in a Hilbert space
can be defined as the spectrum with the exception of isolated eigenvalues
of A of finite multiplicity. The essential spectrum of A is stable under
perturbations, which are in some sense compact relative to A. The subject
has been treated by Gokhberg and Krein [7], Kato [9], Wolf [12], Bir-
man [4], Rejto [10], and others. In an earlier paper [3] the author ap-
plied results from [7] and [9] to elliptic differential operators in LP(R,),
1 <p < oo. In the present paper, we improve the results of [3], building on
a theorem of Birman [4] in the case of p=2 (see Theorem 1.1). He con-
sidered operators A and B bounded from below, making use of the theory
of Friedrichs (see [6]) on quadratic forms, and obtained conditions on
the difference between the corresponding forms 4 and B, under which
A-1—B-!is compact, and consequently A and B have the same essential
spectrum.

Birman applied this theory to a perturbed A*-operator in L%(R,).
The main problem in this connection is to find conditions on a function
b, in order that the embedding of W (R,) (see Definition 2.1) into
L3R, ; b) with b as weight function be compact. In Birman [4] such
conditions are given and combined with the abstract results to determine
the essential spectrum of the perturbed A*-operator.

We derive a stronger result on compactness, which is valid in the more
general case 1 < p < co and improves a condition given in [3, Lemma 2.5].
The proof is based on a known condition for boundedness of embedding
operators, quoted as Lemma 2.4.

We apply these results for p=2 and the theorem of Birman to treat a
perturbed elliptic constant coefficient operator in L*R,). We determine
a rather large class of operators V, whose resolvent V-1 differs from the
resolvent L-1 of a constant coefficient operator L by a compact operator.
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Since the essential spectrum of the constant coefficient operator is easy to
compute, using Fourier transform, we obtain an expression for the essen-
tial spectrum of the perturbed operator V. In our case, this coincides
with the continuous spectrum ¢,(V), being the set of numbers A such
that R(V—A2) is not closed. The main result is given in Theorem 5.3.
In Theorem 5.4, Theorem 5.3 is illustrated in the case of the Schro-
dinger operator, and we show in 5.5 that our theorem contains earlier
results of Agudo and Wolf [1], Birman [4], and the author [3]. The
recent work of Rejto treats exclusively this operator, and he obtains a
stronger result, quoted in Remark 5.5, under the assumption that ¢(x)
is bounded from below ([10, Theorem 3.1]).

Theorem 6.1 is the simpler version of Theorem 5.3 for ordinary dif-
ferential operators, and in Theorem 6.2 we give an application to the
Euler operator in L%(0,00). Section 6 is an improvement in the case p=2
of results obtained in [2] for 1<p< .

Finally, in Section 7 we consider a uniformly elliptic differential opera-
tor in LP(R,) and apply the compactness result to obtain an expression
for the singular spectrum (Definition 7.1) of a perturbed constant co-
efficient operator. This is also based on results of [3] and gives an im-
provement of the main result of [3].

The author wishes to express his thanks to professors E. Thue Poulsen
and K. Jorgens for very valuable suggestions in connection with the

present work.

1. Quadratic forms.

Let 5% be a Hilbert space with the inner product of % € 3 and v € #
denoted by (%,v), and the norm of € 5 denoted by |u|.

We consider symmetric, bilinear forms A’[w,v], B'[«,v] etc. with
domains D[A'], D[B’] etc. dense in 5#. To simplify the notation we set
A'[u,u]=A'[u] ete.

All forms A’ are assumed bounded below, i.e. there exists K > 0, such

that
(1) A'[u]+ Kju2 > 0 for ueD[4'], u+0.

The domain D[A'] is a pre-Hilbert space with the inner product
(2) (,0) 4, = A'[u, 0]+ K(u,v) .

A form A’ is said to be closed, if D[A4’] is complete with respect to the
norm corresponding to (2) for some (and hence all except possibly the

smallest) K for which (1) holds.
In what follows we denote closed forms by 4, B etc. If A4 is a closed
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form, all the 4,K-norms are equivalent except possibly for the smallest
K. It is understood that D[A4] is provided with one of these norms.

According to the theory of Friedrichs (see [6]), there is a 1-1 correspon-
dence between closed, symmetric, bilinear forms 4, bounded from below,
and self-adjoint operators A, bounded from below. The connection be-
tween 4 and A is given by

Afu,v] = (Au,v) for we D(A), ve D[A4].

Let Ay be a symmetric densely defined linear operator, bounded below.
The Friedrichs extension A of A, is the self-adjoint operator corre-
sponding to the closure 4 of the form (Ayu,v).

The bilinear form A[u,v] is completely determined by the quadratic
form Af{u]. In what follows we consider for simplicity only the quadratic
form.

The essential spectrum o,(A) of a self-adjoint operator A is the set of
real numbers A, such that either the range of A—2 is not closed or the
null space of A—4 is infinite-dimensional. The continuous spectrum
a,(A) is the set of real numbers A, such that the range of A—21 is not
closed. The resolvent set of A is denoted by g(A). '

1.1 THEOREM. (Birman). Let the closed positive definite quadratic forms
Alu] and C[u] satisfy the following conditions:

a) D[A]=D[C].

b) There exists a positive quadratic form F{u] on D[A] such that
i) |A[u]—-Clu]| < Flu] < K A[u],
ii) the operator A1 is compact from H# into D[F].

Then the operator A—1—C-1 is compact from H# into D[A]. Consequently,

Ge(A) = 0,(C), .‘
and hence g(A)=g(C), except for an at most countable set of isolated eigen-
values of either A or C of finite multiplicity.

Proor. We refer to Birman [4] for the first statement. The second
statement follows from the corresponding statement for A-! and C-1,
which in turn is a well known consequence of the compactness of
A-1—C-1 (cf. Wolf [12]).

2. Embedding operators.

2.1. DeFINITION. R, is the n-dimensional real and C, the n-dimen-
sional complex space. All functions considered in what follows are com-
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plex valued and defined on R,, and we omit for simplicity explicit
reference to R, in our notation, writing L? for L?(R,) etc. Here 1 <p < oo.
We set
S:c.R = {yERon_yléR}; S, = Sx,l;
S ={xeR,||z|=1}.

The elementary differential operators D; (in the sense of distributions)
are defined by

0
D, = —i—, 1=5jsn.
i o J=
If & =(x;,%,...,x,) is any n-tuple of non-negative integers, then we set

n

D =TIDf% & =TI&% E=Cubp ) eCn,

J Jj=1

Wi = {f| Dfelr for 0<|a|<k}, where x| = 3 a;.
j=1

Since we shall deal mainly with the case p=2, we introduce the notation
Wk = sz = {f | D“fe L2 for Oé I(XI ék}

for simplicity.
Let b(x) be a measurable function on R,. Then the operator B is
defined by
D(B?) = {fE Ly |D°‘f€ Llloc’ bD“feLp}
and

B,»f = bD*f for fe D(B).

We denote by Bf . the operator thus defined corresponding to the func-
tion byg, ,, Where y, denotes the characteristic function of the set .

The operator B,? is said to be W,P-e-bounded if D(B,?)2 WP and for
every ¢> 0 there exists K(¢) >0 such that for ue W,P

1BPu| = elulp,p + K(e)lul .

The operator B,? is W-compact if D(B,?) 2 W, and its restriction B, | W,?
is a compact operator from W,? into L?.

2.2. DeFiNITION. We introduce the following subspaces of L :

Er = lfl SUDzeg, flf(?/)lpdy < °°]§

Sz
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Fo ~ {f | [17w)irdy >0 as lo] oo];
Sz

I = [f | 3a> 0 such that SUD,e R, flf(y)l" |z —y|Pr-"-edy < oo} ;
Sy
N,»=I1°,nFr.

If ph>n, then I,?=E? and N,?»=F>.

2.3. LEMMA. Suppose that there exists a function B(r) such that |b(x)|? <

B(|z|) for all x € R, and suppose that B satisfies the following conditions
for some h>p-1:

1
(i) fﬂ(f)r”h‘l‘“ dr < oo for some a>0,
0
R+

(i) UPrgnw | B0 dr<e,
R

then b € IP. If, moreover,

R+1

(iii) f Br)dr -0 as R - oo,
R

then be N,P.

We omit the proof of Lemma 2.3 which is due to E. Thue Poulsen.
The restriction &> p-! makes no difficulties for our purposes, since we
need the spaces I,? and N,? only for positive integers A.

2.4. LEMMA. (a) If be I} ), |x| <k, then for every e>0 there exists a
K(¢), such that for ue W,? and RZRy,>0

‘BguILP(SO,R) = sl,u"WkP(So,R) + K(s)lutLP(So,R) .

(b) Suppose that b e I}_,, and denote by |[BE||, the norm of BL as an
operator from WP into L. Then for R=1 and a >0

B2 —BE gllk? < K(a) supyzr f b(y)|? | — y|pE-leb-n-a gy
Sz

Proor. We refer to [5, (5.2) on p. 86] for the proof of (a) and to
[3, Lemma 2.8 (a)] for the proof of (b).

2.5. Lemma. If be Np_,, l«| <k, then B,? 1s W;P-compact.
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Proor. By Lemma 2.4 (a), B.? is W%-¢-bounded. We shall prove that
B,? is W}-compact by proving

1) ||B,? — Bap,R”k -0 as R - oo,

2) B,? r is W§-compact for every R >0,
separately.

1) Fix ay> 0 such that

f b(y)|? o —y[pEledmody < K for xeR,.
Sz

By a simple application of Holder’s inequality there exist a,>0 and
p%¢°>1 with 1/p°+1/¢°=1, such that

8) [ @) —girtebm gy
Sz

1/p0 1/g0
= { f lb)I® dy} [ f by)|P [z —y [P0 gyt
Sz Sz

as proved in [3, Lemma 2.6 (b)]. It follows from (1) and the assump-
tions on b(x) that

@) [ B@)lz—yrtrady 0 as ol > oo
Sz

By Lemma 2.4 (b) and (2) it follows that 1) holds.

2) It is clear that it suffices to consider |x| =0. Let {u,} be a bounded
sequence in W,?. Then it is well known, that for |x| <k the sequence
{D*u,} is compact in L?(S, ), so we can assume, by passing to a sub-
sequence,

(1) [y, — U Loisg ) > O 88 Mmym —> oo

By Lemma 2.4 (a) we have
(2) l Bg,R(un_um)le(So,R) = 8|un'_umIWkP(S0,R) + K(E)lun_um|LP(So,R) .

It follows from (1) and (2), that the sequence {B}pu,} is convergent
in L7, and the operator Bf . is W;?-compact.

3. Formal differential operators.
For simplicity we introduce the notations

4= X X Z= 2 X + X X+

’
|&|=m |B|=m loj=m [B|Sm—1  |a|sm—1 |B|l=m |a]Sm—1 |Blsm—1

=1t = 2

laj=m |B|=m
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Let P be a polynomial of order 2m in n complex variables,
P(§) = 352 Ea“apsﬂ ’

where the a,; are constants satisfying

(1) @p=8p ,

(i) 3,088 2K |2 for &eC,, K>O.
We set

A(P) = {P() | £ R},
(2(P) = {4eCy| A& R(P)}
The formal differential operator I is obtained by substitution of D;

for &; in P, that is,
l = 3,D%,,D".

In the rest of this section we consider operators with variable coefficients.
The formal differential operators r, ¢ and v are defined by
r = lea(aaﬂ-l-baﬂ(x))Dp + zz.D“a“ﬁ.Dp,
q= ZzDabap(x)Dﬁ,
v=r+q.
Here b,,4(x) are functions in L, satisfying the following conditions:
L by (x) =b4(x) .
IL 3y (@up+b,5x)E E2 K|E2m  for &é€C,, K>0,
that is, v is uniformly elliptic.
IIL. 1) b€ L™, b,z € F* for |a|=|f|=m,
2) bgell, 5, b€ F! for |a|=m, |B]<m,
3) b,=b.4b,s where
b2 € Nyujapp bag € Npygys for |, Bl < .

(Note that I%_,=E? and N2_,=F? for k<m—1in.)

4. Differential quadratic forms in L2

4.1. DEFINITION. We consider the following quadratic forms with
domain Cy™ corresponding to the formal differential operators defined in
Section 3:

L'[u] = f 5120, DPuDi dz
Rp
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R'u] = L'u] + f S1bug(%) DPu Do das .
Ry

Q] = [Sabe) DPuDsade,
Ry,
V'[u] = R'[ul+Q'[u].

4.2. LEMMA. There exist constants K,, K,, K,> 0, such that

(i) Kilull,, < L'[u]+Kylul* < Ksful3y,,

(i) Kylully, < B'[u]l+ Kslul? < Kylully,.

Proor. The left inequalities follow easily from (ii) and IT of Section 3.
The right inequalities are trivial, since, by III 1) of Section 3, b,, € L*.

4.3. LEMMA. We can assume that L' and R' are positive definite and that
4.2 (i) and (ii) hold with K,=0 by adding, if necessary, a term Ku to 1
and r. The forms L' and R’ are closable. Denote by L the closure of L'
and by R the closure of R’'. Then

D[L] = DIR] = W,,,
and for wue W,,

(i) K;lul%,, < L{u] < Kylul¥,,
(i) K;lully, < Blu]< Kylully,,

L and R are given explicitly by the same expression as L' and R’ for all
ue W,.

Proor. This follows immediately from Lemma 4.2.
4.4. LeMMA. 1) For every e > 0 there exists K(¢) > 0, such that for w € C;™
Q'] < elully,,+K(e)ul®.
2) There exist constants K,,K,, K,> 0, such that for uw e Cy™
K\|ul¥y,, < V'[ul+Kylul?2 £ Kylully, .

Proor. We have the following estimate of the terms in @'[w] for
uweCym:
)

f bs(z) DPuDoii da| < =
Ry

1
< — ‘ 2 | D%ul2 - '’ 2 | DPul2 d.
= 2Rf [Vege)|® D[22 + o Rf [Boal@)|? | DPu? do

= T“p’ c[u] .
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It follows from the conditions III 2) and 3) of section 3 by Lemma 2.4
that for every ¢> 0 there exists K(¢)> 0 such that
(2) Top, 2] < elully,, + K(e) [ul? .

When |x|=m (|f|=m), we set b,,=1 and b;=b,, (b,,=b,, and bl;=1)
and apply Lemma 2.4 after suitable choice of c. By addition of the
inequalities (2) we obtain 1).

2) Since V'[u]=R'[u]+ Q’[u], the assertion follows from Lemma 4.2 (ii)
and 4.4, 1).

4.5. LemMa. We can assume, by adding a term Ku to l, if necessary,
that V' is positive definite and that 4.4 2) holds with K,=0. The form V'
18 closable. Denote by V the closure of V'. Then

Divy=w,,,
and for uw € D[V],
K, lully, < Viul £ Kslully, -

Proor. This follows immediately from Lemma 4.4,

4.6. DEFINITION. We use the notations 7, [u] introduced in the proof
of Lemma 4.4, 1), setting 7',;=1T,,,. Then the form G’ is defined for
u € Cy™ by

G'lu] = Z4oT plu] -

4.7. LEMMA. For ue Cy™,
V' [w]-L'u]] < G[u] < Kluly,,.
Proor. The left inequality is obtained by addition of the inequalities

(1) for ¢=1 of the proof of Lemma 4.4, 1).
From the condition ITI 1) of Section 3 it follows for u € Cy™ that

T u] < Klulfy, for |a| = |8l =m.
By addition of this and the inequalities
T,4u] < Kluly, for (lal,|Bl) + (m,m),

established in (2) of the proof of Lemma 4.4, 1), we arrive at the right
inequality of the lemma.

4.8. LEMMA. The form @ is densely defined and bounded om D[L].
Let @ be the closure of G’ with respect to the L-metric. Then for u € D[L],

(1) \Vul-Liu]| < 6lu] < KL{u].



202 ERIK BALSLEV

Proor. By Lemma 4.2 (i) the W,- and L-metrics are equivalent, and
it follows by Lemma 4.7 that @ is densely defined and bounded on D[L].
Then the form G can be defined as the closure of G' with respect to the
L-metric, and the result follows from Lemma 4.7.

4.9. REMARK. @ is a positive quadratic form. It is not necessarily
positive definite, so that the pseudo-metric defined by @ need not be a
metrie, but that is unessential for what follows.

5. Differential operators in L?.

Operators with constant coefficients.

The self-adjoint, positive definite operator L corresponding to the form
L is the unique self-adjoint operator associated with I. Furthermore, L
is the closure of the operator with domain Cy?™ defined by I. The domain
of L coincides with W,,,, and the L-norm and the W,,-norm are equiv-
alent, so that L-! is a bounded operator from L? onto W,,.

5.1. LEMMA. The essential spectrum and the resolvent set of L are
o L) = A(P), o) =[2(P),
respectively, where Z(P) and [ Z(P) are as defined in Section 3.

Proor. L is unitarily equivalent via the Fourier-Plancherel transform
to the maximal operator P in L? corresponding to multiplication by P.
It is clear that o,(P)=2%(P), and o(P)=[%(P), and the lemma is proved.

Operators with variable coefficients.

The self-adjoint, positive definite operator V corresponding to the
form V can be defined by

D(V) = {ueD[V] | Fve L2, V[u,w]=(v,w) for we D[V]}
and
Vu =v for wueD(V).

Without further assumptions on the functions b,4(x) a simpler definition
of V is not available; in particular, it is not known whether V is the only
self-adjoint operator associated with v.

I£b,5 € Wi, 100 then v(u) € L? for u € Cy®", and V is the Friedrichs exten-
sion of the operator V, with domain Cy2™ defined by v. Even if the func-
tions b,, have stronger isolated singularities, the set

Dy = {ue Cy*™ | v(u) e L%}
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can still be dense in W,,; in that case V is the Friedrichs extension of
the operator with domain D, defined by ». By Lemma 2.4 (a) it is easy
to prove, that the quadratic form V cannot be extended to a larger domain
lying in W3 .. Hence the operator V is the only self-adjoint operator
defined by v, and such that the domain of the corresponding quadratic
form is contained in W3 .

" 5.2. LEMMA. L-1 is a compact operator from L2 into D[G].
Proor. If either |x|=m or |§|=m, we set b,,=b,,b,,; where
b;p = sgnb,g |b,4lt, b:ﬁ = |bylt.
It is clear, that conditions IIT of Section 3 imply
bus € Noiap bug € Nopmyyy  for 0= ||, [BlSm .

From this it follows by Lemma 2.5, that the operators B, and B; as
defined in 2.1 corresponding to the functions b, and b,;, respectively,
are W,,-compact. Hence the embedding of W,,, in D[G] is compact, and
since L-! is bounded from L? onto W,,,, Lemma 5.2 is proved.

5.3. THEOREM. Let L and V be the operators defined above. Then
V-1_-L-1 43 a compact operator, and hence

O'c(v) = '%(P) s

while o(V) =[ R (P) except for an at most countable set of isolated eigenvalues
of V of finite multiplicity.

Proor. We apply Theorem 1.1 with #' =L% A=L, C=V, F=G,
A=L, C=V.

L and V are closed, positive definite quadratic forms with D[L]=
D[V] by Lemmas 4.3 and 4.5.

The condition 1.1 b) (i) is satisfied by Lemma 4.8, and condition 1.1 b)
(ii) is satisfied by Lemma 5.2.

Then it follows from Lemma 5.1 and Theorem 1.1 that, V-1—-L-1is a
compact operator, and a,(V)=Z%(P). Since o,(V) is a closed subset of the
half-line a,(V), and V has at most countably many eigenvalues, it fol-
lows, that

o (V) = o (V) = Z(P) ,

and the theorem is proved.

For the sake of illustration we apply the preceding result to the im-
portant special case v= —A4+q(x).
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5.4. THEOREM. Set
v = —A+4q(x),

where q(x) 1s a real-valued function in N,
Let V be the operator defined above corresponding to v. Then

Uc(v) = [0,00),

while (V) =[[0,00), except for an at most countable set of isolated eigen-
values of V of finite multiplicity.
If Dy={ueC2|que L?} is dense in W,, in particular, if qe L%,

then V is the Friedrichs extension of the operator with domain D, defined by v.

Moreover, V is the only self-adjoint operator in L? defined by v, such
that the domain of the corresponding form is contained in W3 .. If g(z)
is continuous except for x € 8, where § is a manifold of dimension <n—1
(set of measure 0) satisfying certain weak conditions, as it is generally
the case for physically interesting potentials, then it follows from Lemma
2.4 (a), that the domain of the quadratic form is contained in W% loes
and V is the closure of v on D,.

5.5. REMARK. The statement of Theorem 5.4 concerning the essential
spectrum of V has previously been shown to follow from various condi-
tions on ¢(x) as follows:

1) [1], ¢ is a bounded function in L2, n=3.
2) (4, Theorem 3.4],

i sup [ la@)l le—yPndy >0 as a0,
zeRy Sta

(i) [law)dy >0 as |a]>oo.
Sz

3) [3, Theorem 3.9 and Lemma 2.6 (b)],

Q) f |q(@)[i* B dz < K(R), «(B)>0, 0<R<oco,
So,R

(ii) there exists a >0, such that

[la@)lz—yi-rsay<K for zckr,
Sz

(i) [lg@)Pdy >0 a5 fa > oo
Sz

4) [10, Theorem 2.2],
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(i) there exists @ >0, such that

@i z—yisredy < K for zeR,,
Sz

(ii) there exists u >0, such that

f|q(y)|“ dy—>0 as |1 >oo.
Sz

5) [10, Theorem 3.1],
() q(x)20,
(b) 9(2)=¢x(x) g5(=),

where ¢,(x) satisfies

(i) there exists a >0, such that

[1a@ p-gitredy < K for zcR,,
Sz

@) [ln@rdy~0 as o>,
Sz

while g,(x) satisfies

(i) [la@)? lo—ylt-ndy < K for zeR,.
Sz

It is clear that 1) is contained in 3), and 3) is contained in 4). It follows
by an application of Holder’s inequality that the conditions of 4) imply
that ge Ni. Obviously, the conditions of 2) imply that ge N}.

If ge N}, then ¢(z) satisfies 5) (b) with ¢,(x)=|g(z)|* and g,(x) = |g(z)|}
sgng(z). Thus, for ¢(x) > C, the result of Theorem 5.4 is contained in
[10, Theorem 3.1].

We conclude that all results up to now are contained in Theorem 5.4
and [10, Theorem 3.1], Rejto’s result being the strongest when q(x) is
bounded from below and ours being the strongest when g(x) is not
bounded from below.

6. Ordinary differential operators.
6.1. THEOREM. Let v be the formal differential operator defined by

v = 3 D¥(a;+by(@))D* + 3 D¥ep+di(2))D*-* + D*=Y(c+dy(2))D*
k=0 k=1
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where D= —id[dx, a; and c, are real constants, and b,(x) and d,(x) are
real functions satisfying

(i) b,(x) e L™, and a,,+b,(x)2K>0 for xe R,,

(ii) the functions by(x) are locally integrable and satisfy for 0 <k <m the

condition
x+1

f[bk(t)ldt—»O as  |a| - oo,
x

(iii) the functions d,(x) are locally integrable and satisfy for 0<k=<m
the condition

x+1

f|dk(t)(dt_>o as  |a| - oo,

x+1

(iv) SUP,cr, f \d,(t)|2d¢ < oo

Let V be any self-adjoint operator associated with v, and let P be the
polynomial in one variable

PE) = 3 a8 + 5 o801
k=0 k=1
Then

Uc(v) = @(P) ’

while [ (P) is resolvent set of V, except for an at most countable set of isolated
eigenvalues of V of finite multiplicity.

Proor. It suffices to consider the operator V defined in Section 5,
since V and V are extensions of their restrictions to D(V)nD(V) by the
same finite dimension and therefore have the same essential spectrum
and index. Since the conditions 3, I-ITI take the simple form (i)—(iv) in
the case n=1, Theorem 6.1 for V=V is a special case of Theorem 5.3.

6.2. THEOREM. Let z be the formal differential operator defined by

m m
z = Y D¥ay+by(t))12 D¥ + 3 D¥(cp+ dy(t))t2e-1 D*-1 4
k=0 k=1
+ D*Yc, +d, (1)) 121 D*

where a;, and ¢, are real constants, and b,(t) and d,(t) are real functions
on (0,00) satisfying

(i) b,(t) e L, and a,,+b,,(t) 2 K >0 for 0<t< oo,

(ii) the functions by(t) are locally integrable and satisfy for some K > 1,
0=k<m, the condition
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Ks
0
[ eenera—o as s—>=°°,

(iii) the functions d,(t) are locally integrable and satisfy for some K > 1,
0<k<m, the condition

Ks

f;dk(t)u—ldt_w as 3»{0,
o0

8

(iv) there exists K >1, such that
Ks
Supo<8<wf ]dm(mzt'ldt < oo,
8

Let Z be any self-adjoint operator associated with z. Let P be the polynomial
in one variable

m k-1 m k-1 k-2
PE) = 3 a TI & (+4)i + 3 2, Re{n(e—(%+j)i)n(s+<%+j)i) .
k=0 j=0 k=1 j=0 j=0

Then
o(Z) = A(P),

while [ R (P) is resolvent set of Z, except for an at most countable set of solated
eigenvalues of Z of finite multiplicity.

Proor. Let T be the unitary operator from L?(0,00) onto L% — oo, c0)
defined for fe L?0,) by
Tf(x) = €l f(e%), —co<T< 00,

Let the formal differential operators I, I, and v be defined by
k-1
be = TL(D+(E+4)).
J =
k-1

b =TI (D—(3+5%),

j=0
v = kE Ec(ak'*' bk(e’”))lk +k2 l—k(ck +dy(€%)) 2 +lk—_—;(ck+dk(ex))lk .
=0 =1
Let V be the operator associated with v as defined in Section 5. Then it
is easy to check that the operator

Z =TVt
corresponds to z (cf. [2]).
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It is clear that the self-adjoint differential expression v can be written
in the form

v =k§: Dk(“k + ﬁk(x))Dk + k% Dk()’k + ‘5k(x))Dk"1 + Dk_l(yk + 6k(x))Dk )
=0 =]

where the «; and y, are real constants with «,,=a,,, and the §,(x) and
8,(x) are linear combinations of the functions b, (e*) and d,(e*) with
Bm(@)=b,(e%) and 8,,(x)=d,(e*). Obviously, 6.2 (i) implies 6.1 (i). Also,
it easily follows from 6.2 (ii) that the functions b,(e®), and hence the
functions §,(x) satisfy 6.1 (ii). Similarly, it follows from 6.2 (iii) and (iv)
that the functions d,(e®) and hence the functions d,(x) satisfy 6.1 (iii)
and (iv). Hence Theorem 6.1 applies to V, and since Z is unitarily equiv-
alent to V, and P is the polynomial associated with the constant coeffi-
cient part of v, Theorem 6.2 is proved for Z=Z and consequently for
any Z (cf. 6.1).

7. Operators in LP.

7.1. DEFINITION. Let P(£) be a polynomial with complex coefficients
of degree k=1 defined for £ € R,, n=1, and let Z(P) and [%(P) denote
the range of P(£) and its complement, respectively. We assume, that
P(£) is uniformly elliptic, i.e. that its principal part Q(&) satisfies the
inequality

Q) =z K|§F, K>0,(eR,.

The complex valued functions b,(x) are supposed to belong to N}_,, for
|| <k, cf. Definition 2.2.

The differential expression m is defined by

m = P(D,,...,D,) + > b,(x)D*.
o<k

The operator in L? with domain Cj defined by m is denoted by M'.

The singular spectrum o,(A) of a closed, densely defined operator A
in a Banach space & is defined as the set of complex numbers 4, such
that either the range of A—1 is not closed or

dim A (A—2) = dim A ((A—A)*) = co.

7.2. THEOREM. The operator M’ has a closure M, which is the only closed
extension of M’ with domain contained in W3 ., The singular spectrum
a4(M) is given by

04(M) = Z(P),
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and the resolvent set of M equals [R(P) except for at most a sequence of
isolated points A;, such that

0 < dim A (M—1) = dim A ((M—2A)*) < co.

Proor. It is well known that the operator L’ defined by P(D,,...,D,)
with domain C7 has a closure L with domain W,?, and L is the only
closed, densely defined operator in L? associated with P(D,,...,D,).
Also the L-norm is equivalent to the W,P-norm. It was proved in
[8, Theorem 3.5] that

ofl) = #(P) and (L) = [H(P).

By Lemma 2.4 (a) the M'-norm and the L’-norm are equivalent on Cj.
It follows, that M’ has a closure M with domain D(M)=D(L)= W ,>?.
A further application of Lemma 2.4 (a) shows, that

{fueLrn W} 100 | mue P} € WP,

so that M is unique as a closed extension of M’ with domain contained
in W, o0

Since the L-norm is equivalent to the W;P-norm, it follows by Lemma
2.4 (b), since b(z) € N}_y,|, that L—M is L-compact. Then the rest of the
theorem follows by application of a perturbation result of Gokhberg
and Krein (cf. [7] and [3, Theorem 1.4]).

ADDED IN PROOF: Schechter [11] has obtained results which essentially
generalize the results of [10] and the present paper for p=2.
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