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ON A PROBLEM OF J. H. C. WHITEHEAD AND
A PROBLEM OF ALONZO CHURCH

WILLIAM W. BOONE and HARTLEY ROGERS, Jr.

This paper was motivated by two questions, one raised by the late
J. H. C. Whitehead and the other by Alonzo Church. Whitehead’s ques-
tion is this: Does there exist a recucsive enumeration of all finite presen-
tations of groups having a solvable word problem? Church’s question
is the following : Does there exist some one partial algorithm which solves
the word problem for all finite presentations of groups having a solvable
word problem? We shall state two general theorems which will furnish
answers, in the negative, to both of these questions. (Whitehead raised
his question informally with one of the authors in October, 1957 ; Church
his, in August, 1958. Whitehead’s question is noted in Boone [3] and the
general setting is there explained.)

The naturalness of Whitehead’s question arises from the result of
Adjan [1] and Rabin [16] asserting that the meta- word problem for
finitely presented groups is recursively unsolvable, i.e., that it is recur-
sively unsolvable to determine of an arbitrary finite presentation of a
group whether or not it has a solvable word problem. Knowing that the
set of (Godel numbers of) finitely presented groups with solvable word
problem is not a recursive set, it is then natural, by analogy with the
situation obtaining for other decision problems of group theory and
number theory, to inquire if this set be recursively enumerable; or to
ask more specifically exactly where this set is located in the Kleene—
Mostowski Hierarchy. Since our answer to Whitehead’s question is in
the negative, the argument given is a new proof that the meta- word
problem is unsolvable—a proof very different from that of Adjan or
Rabin. This is the case simply because any recursive set is recursively
enumerable2.
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2 In settling Whitehead’s question we automatically settle a variation whose natural-
ness springs trom the fact that having a solvable word problem is an algebraic property,
i.e., two finite presentations which are isomorphic either both do or both do not have a
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Church’s question is similarly a natural one to raise in view of the very
diversity of methods used by mathematicians to solve word problems on
the one hand, and the wide class of groups embraced by the methods of
Dehn, Tartakovskii, Britton, Schiek, Greenlinger, Lipschutz, and Lyn-
don on the other. These methods are all concerned with cancellation
between relators and have much in common?3.

We obtain analogous results for Thue systems on two generators,
propositional calculi, Post normal systems, and finitely axiomatizable
elementary theories—all as special cases, along with that of groups, of
our Theorems 1 and 2. The mere fact that the meta- decision problem
is unsolvable for Thue systems on two generators, Post normal systems,
and finitely axiomatizable elementary theories would seem to be new.

As will be seen, Theorems 1 and 2 follow in a very immediate way
from known results. But because the main purpose of this paper is to
relate two different areas of mathematics, we shall attempt to make the
presentation of the proofs of Theorems 1 and 2, taken together with
Rogers [17], as self-contained as possible.

The only concepts of recursive function theory which we need to recall
and which are not explained in Rogers [17] are those concerned with
many-one reducibility. But the notions needed, =,,, =,,, and “many-
one degrees’ are defined exactly as <,, =,, and “1-degrees’ are defined
on p. 128 of Rogers [17] except that the f is no longer required to be one-
one. Usually the standard notions and notations used in Rogers [17] will
be assumed in this paper without mentions, e.g. 2, I7,. In using the
more technical results and definitions of Rogers [17], our references
as to where these are given in Rogers [17] will be quite specific.

Lemma 1. If A £, B, then according as B is in X, or II, of the Kleene—
Mostowsks Hierarchy, so also is A.

Suppose B e Z,. Then for a certain binary recursive relation R,
zeB < (Ay)R(x,y) .

solvable word problem. One could ask: does there exist a recursive enumeration ¢’, made
up of certain finite presentations of groups such that each abstract group which is finitely
presentable and has a solvable word problem is presented by at least one presentation of ¢”?
This differs from Whitehead’s question, as we interpret it, in that in the recursive enumer-
ation ¢, of Whitehead, each presentation with solvable word problem is required to appear
at least once. But suppose ¢’ were to exist. Then, since all finite presentations of a group
isomorphic to a given presentation are recursively enumerable (say by Tietze transforms),
the existence of ¢ would follow by Cantor’s argument for enumerating the rationals. Thus
we shall have shown that neither ¢ nor ¢’ exists.

3 See Lyndon [14] for references to these works. Lyndon [14] contains various vesults
which are indicative of an inherent unity in these methods.
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But for a certain recursive numerical function f,

ued < f(u)eB.
Thus

ued < (Iy)R(f(u)y);

so that, since R(f(u),y) is a recursive relation in » and y, 4 € X;,. All
the other cases are shown in essentially the same way.

Lemma 1 in effect asserts that the 2, and I7,, of the hierarchy are well-
defined with respect to many-one degrees, and are closed downward under
many-one reducibility.

Where M € X, M is called maximal in X, if

(VB)[BeZX, = B<, M].

And similarly for 17, instead of X,. The term “maximal in X, or “in
I7,” is also applied to the many-one degree of M and any set of that
degree. Clearly by (2) and (3) of p. 127 of Rogers [17] and Lemma 1 of
the present paper, if M is maximal in X, n>0, then M & II,, M ¢ X,
M &I, for wu<n. And similarly with X and IT interchanged. Thus if
a set § is determined to be maximal in 2, (or in I7,) for a particular n,
8§ has been located in the Kleene-Mostowski Hierarchy quite precisely
indeed?.

We assume as understood the notion of a logical system (or “‘canonical
system’’ to use the term of Post) given in an effective way by primitive
symbols, by a definition of well-formed formula, by axioms, and by rules of
inference, as well as the notion of the decision problem (as to theoremhood)
for such a system. Note that a Thue system, a finite presentation of a
group, or a recursive presentation of a group is a logical system—the
generators and equality sign being the primitive symbols, equations being
well-formed formulas, the defining equations being the axioms, and the
familiar rules of multiplication of an equation on the left (or right),
reflexivity, symmetry, and transitivity being the rules of inference®. Of

“maximal in ...” and assuming as understood the analogous ‘“maximal in ... with re-
spect to <,” we remark that by a construction parallel to that used in Myhill [15], a set
is maximal in X, (or IT,) with respect to <, if and only if it is maximal in X5 (or II,)
with respect to =<,.

5 In the case of group presentations, read ‘‘generators with exponent +1 or —1 at-
tached” for “‘generators’. As described in Boone [2], pp. 213-214, one can also regard
Thue systems and group presentations as Gentzen-type logical systems—so that well-
formed formulas are words, etc.—rather than as Hilbert-type logical systems, our present
point of view. For our purposes, the choice of point of view is quite inessential.

4 Using the term ‘“‘maximal in ... with respect to <p’° for what we have just called
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course partial propositional calculi, finitely axiomatizable elementary
theories, and Turing Machines are frequently studied as logical systems.

We now use K as a variable for classes of logical systems; and Cond, (K)
is to mean the following: there exists a recursive construction such that
for each (index for a) recursively enumerable set of natural numbers S,
to which this construction is applied, the result is (a Gédel number for)
a logical system of K, say kg, such that the decision problem for kg is
reducible to S and such that § is uniformly many-one reducible to the
set of (Godel numbers for) theorems of kg. Here ‘‘uniformly many-one
reducible’” means that there is a binary, recursive function f, such that
for any recursively enumerable set S with index x, and for any natural
number u, v €8 if and only if f(x,%) is (a Gédel number for) a theorem
of kg, the corresponding logical system$. (Of course this implies that the
decision problem for kg is solvable if and only if S is recursive.)

The situation in which one naturally demonstrates Cond,(K) is in
showing for some particular class K that for each recursively enumerable
degree of unsolvability D, there exists a member of K whose decision
problem is of degree D. This is exactly why we have already available
in the literature, arguments that Cond, (X) holds for this or that class K.

TraeorEM 1. Suppose Cond, (K). Then K', the class of all (Godel num-
bers of) systems of K possessing a solvable decision problem, is at least
maximal tn Xy in the Kleene—Mostowski Hierarchy. Consequently K' i3 not
recursively enumerable; a fortiori, the meta- decision problem for K 18 re-
cursively unsolvable. In case K is a recursive class of systems, K' is exactly
mazximal in X537

As in the first paragraph of § 2, p. 127 of Rogers [17], let W, be the
recursively enumerable set with index z; and, as on p. 130 of Rogers [17],
let A, be the set of x such that W, is recursive.

Now Theorem 2 of Rogers [17] in effect asserts that 4, is maximal
in Z;. Thus to show our Theorem 1 it suffices to show that 4,=, K'.

6 Any of the standard ways of specifying, i.e., indexing, recursively enumerable sets
will suffice. But for our application to Church’s question it is best to regard a recursively
enumerable set of natural numbers S as given by a Turing Machine ks that ‘‘semi-com-
putes” S, i.e., if a given number is in S then this fact can be ascertained from Mg. See
Boone [4], the machine 3} described in (1.1), (1.2), and (1.3) following the statement.of
Equivalence Theorem 1. The gain is both in the simplicity of the form of group presenta-
tions being used to answer Church’s question and the unity of the over-all argument.

? To.say that K is recursive is to say that the set of all Godel numbers for members
of K is recursive. This is the case for all classes of finitely presented structures in the:
applications given below. See the remark before Theorem 2. e
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But since Cond,(K), 4,<,,K'. In case K is a recursive class, by the
very definitions of 4, and K’, K'<,,4,. Hence we have Theorem 1.

REMARK. In applications of our theorems in which all sets of axioms
for systems of K are finite, each system will have, essentially, only one
Godel number. In applications in which the systems of K may be
infinite, recursive sets of axioms, each system will, in general, have
infinitely many Godel numbers,—in an essential way. These Godel
numbers may be taken to be Godel numbers of (Turing Machines® or
sets of recursion equations presenting) the recursive characteristic func-
tion of the set of axioms—‘“fully effective” Godel numbers—or they
may be taken to be indices for (Turing Machines, etc.) recursively enume-
rating the set of axioms—*‘semi-effective’’ Goédel numbers. Under either
choice, our theorems apply.

THEOREM 2. Suppose Cond, (K). Let K’ be the class of all (Gddel num-
bers of ) systems of K possessing a solvable decision problem. Then one can
explicitly specify a recursive subclass of K', say K", such that there does not
exist some one algorithm, A, which solves the decision problem for all systems
of K". Thus, a fortiori, there does not exist some one algorithm which solves
the decision problem for all systems of K'.

In precise terms, what we mean by the % of Theorem 2 is a binary,
partial recursive function f, depending on K'/, such that if y is the
index of system k of K'’ and if p is the Godel number of well-formed
formula W of k, then f is defined for the argument y,p, and f(y,p)=0
or 1 according as W is a theorem of k or not.

We now assume some standard recursive enumeration of all Turing
Machines: M,, M, M,,. .. . We assume, too, that in some uniform way
certain complete configurations of these machines are singled out as
representing (natural) numbers so that each number has a unique rep-
resentation. If IR, is started in the initial complete configuration repre-
senting n, we say that “I, has input n”. Finally, for each I, we
single out a certain internal configuration, uniformly called ¢; and where
M,, with input n eventually enters internal configuration ¢ with blank
tape and stops we shall say “I,, g-terminates for »”. As is consistent
with our earlier use of this notation, W,, is to be the set of » such that
M, g-terminates for n. It is well-known that (*) the problem to determine
for arbitrary m and n whether or not n € W,, 18 recursively unsolvable.

Lemma 2. For each pair of numbers, m and n, there 18 a Turing Machine
Oy, such that:
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(2.1) O, , does not g-terminate for i, i +1;

(2.2) Op,pn q-terminates for 1 if and only if ne W,,;

(2.3) Suppose notationally, that O, ,, 18 W, »); then 1 is a total recursive
Sfunction; i.e., there is a recursive construction which, when applied
to arbitrary MM, and n, the result is O, ,;

(2.4) J, the range of n is a recursive set; i.e., one can recursively determine
for arbitrary I; whether or not it is O, , for some m and n, and if
8o, for which m and n.

In the first stage ©O,, , checks to determine whether or not it has
input 1. If so, ,, , enters the second stage by which it passes into the
complete configuration representing n. Finally, O,, , enters the third
stage in which it behaves exactly like 9, with input n. From this
animistic description it should be easy for the reader to spell out the
recursive construction of Lemma 2.3 in such fashion that Lemma 2.4 is
verified.

We now show Theorem 2. Clearly

W {1}, it neWwW,,
2mn) = g otherwise .

Thus each W;, i €J, is a recursive set. But in view of * and the fact
that 1€ W, » if and only if ne W,,, (**) there does not exist some one
algorithm which solves the decision problem for all W,, ¢ € J. In the nota-
tion of the definition of Cond,, let the K'’ of Theorem 2 be kWi, 1ed.
Clearly, each of these systems does have a solvable decision problem
by the first part of the definition of Cond,. This shows Theorem 2, for
the existence of an U as described in Theorem 2 would contradict ** in
view of the uniform many-one reducibility part of the definition of Cond,.

We now list the applications of Theorems 1 and 2 which are known
to us. These are given by the following table.®

K Source(s) verifying Cond, (K)

Thue systems Céjtin [6]; Shepherdson [18];
Boone [4], Result A.

Thue systems on two  Boone [4], Result B.

generators

Recursively presented Clapham [7]; Boone [5],
groups Result J. ‘

Finitely presented Fridman [9]; Clapham [7];

groups Boone [5], Result G.
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K Source(s) verifying Cond, (K)
Certain partial propo- Gladstone [10]; Ihrig [12];
sitional calculi Singletary [19].

Post normal systems  Thrig [13].
and related systems

Turing Machines Shepherdson [18].
Recursively axioma- Feferman [8].
tizable elementary

theories

Finitely axiomatizable  Hanf [11].
elementary theories

Each value of K noted may be qualified with “of a certain form”.
Read in this way, no one line of the table implies another. The corre-
sponding value of K’ in Theorem 2 has an extremely simple form when
constructed from the works of Ihrig, Singletary, and Boone listed.
Indeed, with a notation for the IR, of the proof of Theorem 2 assumed,
a ‘“‘generic member” of the class of finite presentations of groups, partial
propositional calculi, etc., can, in a practical sense, actually be written
down if these sources are used. It was for the sake of this simplicity that
we used the g-terminating problem in the proof of Theorem 2 rather than
say the halting problem.

We shall not go into the question here as to whether or not Theorems
1 and 2 are applicable to decision problems like the isomorphism problem
and the homeomorphy problem, i.e., decision problems about properties
of, or relations amorg, logical systems as a whole.

Finally, we note that there is no recursive enumeration of all finite
presentations of groups having unsolvable word problem, since the
collection of all such presentations is maximal in I7;. Indeed, the ana-
logous general theorem holds for any class of logical systems K, such
that Cond, (K).

8 In listing the announcements Céjtin [6] and Fridman [9], we are simply assuming,
on the basis of the kind of result announced, that in the proof intended by these mathe-
maticians Cond, is verified for the indicated value of K. While we cannot assert unequi-
vocally that Clapham [7] shows Cond, for finitely presented groups, we are rather con-
vinced that this is so—with perhaps some trivial modification required. We have no
reservations about the other entries. Thus in particular the case of finitely presented
groups, which motivated the present paper, is settled by Boone [5].
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