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INFINITE-VALUED ASYMPTOTIC POINTS
AND KOEBE ARCS

OLAV NJASTAD

In the following, C shall denote the unit circle {z : |z]=1} and D the
unit disc {z : |2|<1}. '
Bagemihl and Seidel [2, Th. 3] have shown that if the set of Fatou
points for a normal holomorphic function f in D has measure zero on some
subarc I' of C, then I' contains a Fatou point for the value co. In this
connection attention was called to the following problem: Does the as-
sertion above remain true if it is only assumed that the measure of the
set of Fatou points in every subarc y of I"is smaller than the length of o ?
Here we give some partial results in this direction. Thus e.g. the ques-
tion is answered affirmatively if (in addition to the conditions above) the
set of critical points (for definition, see section 5) is of the first category.
Most of our considerations concern asymptotic points for arbitrary
holomorphic functions in D, the results on Fatou points for normal func-
tions being consequences of fundamental properties of these functions.
Some preliminary results related to those in this paper are found in.[7].

1.

In what follows, S, S— and 0S denote the interior, closure, and bound-
ary of the set §. The linear measure of a set § is denoted by m(8). By
an arc 4 of C we mean an open arc whenever nothing is said to the con-
trary.

A simple, continuous curve y in D, described by z(t), ¢ € [0,1), is called
a boundary path if |2(t)] - 1 as ¢t — 1 (cf. e.g. [1, p. 263]). The set Cnoy
shall be called the end of y. It consists either of a single point or of a clo-
sed arc (cf. e.g. [3, p. 93-94]).

The boundary path y is said to be an asymptotic path for the function
@ (for the value «) if lim,_, ; p(2(¢)) exists (and equals «) (cf. e.g. [8, p. 48]).
If ¥ has only one end point { — that is if yu{(} is a Jordan arc — then y
is said to be an asymptotic arc. In this case { is an asymptotic point for ¢
(for the value «). The set of asymptotic points will be denoted by A4(¢),
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while the sets of asymptotic points for the value oo and for finite values
with moduls greater than or equal to « are denoted by A®(p) and A%(p),
respectively. A point { may be an asymptotic point for several values;
in particular A*(p)NA®(p) needs not be empty (though it is always
countable; cf. [8, p. 39]). The concepts above may also be defined for a
general domain @, and in this case we use the notation A(p,@), etc.
Clearly A(p,G) consists of accessible boundary points for @ (see e.g.
4, p. 29]).

" If the ray from the origin to the point ¢ =¢% is an asymptotic arc for
the value «, i.e. if lim,_,, p(re®®) =, then ¢ has the radial limit « at .
We shall simply denote this limit by ¢({) whenever it exists. It is well
known that ¢({) exists almost everywhere on C if ¢ is holomorphic and
bounded in D. In this case lim, ,,¢(z) even exists uniformly in every
Stolz domain at . (Fatou’s theorem, see e.g. [9, p. 136]. A domain of
the form
T {fzeD: |arg(l—ze®)|<in—8}, 6>0,

is called a Stolz domain.) Generally a point where ¢ satisfies this last
condition is called a Fatou point for ¢, and we shall denote the set of
such points by F(p). If almost all points of a subarc I" of C are Fatou
points (that is, if m(I'nF(¢))=m(I")), then I shall be called a Fatou arc
for ¢.

Obviously every Fatou point is an asymptotic point. A sufficient
condition for every asymptotic point to be a Fatou point is that ¢ is
holomorphic and normal. Normality of ¢ means that the family

{fo8 : Sis a conformal mapping of D onto itself}

is normal (see [5, p. 53]). In particular every bounded holomorphic func-
tion, and more generally: every holomorphic function which omits at
least two finite values, is normal.

2.

Henceforth f shall denote a function which is holomorphic in D. For
every positive number «, we define

U,={zeD: |f(z)>a}, V,=1{eD: |f(z) <a}.

U, and V, clearly consist of a countable number of components. On every
-component of ¥, the function f is bounded; on a component of U, it may
be bounded or unbounded. The boundary of each component of U,
and of ¥V, is composed of a countable number of Jordan curves and bound-
ary paths on which |f(z)|=«, and a subset of C. For a component U
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of U, this subset of C always is non-empty, because otherwise |f(z)| <«
for all ze U, according to the maximum principle. :
Now let @ be a subdomain of D. We define G* in the following way:
z € @* if and only if either z € @, or z € y for some Jordan curve y = DnoG,
or z is contained in the Jordan domain bounded by such a curve y.

Clearl
Y DnaG*<DndG and CndG* > Cnda.

Lemma 1. Let G be a subdomain of D such that |f()|=« for every
teDnoG. Then |f(2)| 2« for every ze G*—G.

Proor. If ze G*—(@, then there is a Jordan curve y <DnoG such
that z is contained in y or in the Jordan domain bounded by y. Now for

every (€y, |f({)]=«, and so |f(2)]S« according to the maximum
principle.

We see that if V is a component of V,, then V*=V. If fis bounded
on a component U of U, then it is also bounded on U*, |f| having the
same supremum on U as on U*.

We shall now prove a result which is a strengthening of Prop. 3 of [7].
([7, Prop. 3] is essentially contained in [2, p. 16], though not explicitely
stated).

ProrositioN 1. If f is bounded on some component U of U,, then for
some B>u, AP(f,U)NC contains a set of positive measure.

Proor. It follows from the remarks succeeding Lemma 1 that f is
bounded in the simply connected domain U*. Let ¢ be a conformal
mapping of the unit disc D, in a {-plane onto U*. We write

g =fop, and Ff={weF(p)nF(g) : |g(w)>p}.

F*¢ is a Borel set, since ¢ and g (on C,) are Baire functions. From Fatou’s
theorem follows that

m(C.—(F(¢) n F(g))) = 0,

since both ¢ and ¢ are bounded. Thus if m(F*)=0, then |g(w)| £ x almost
everywhere on C,. This implies that |g({)| £« for every { € D,, which is
a contradiction, since

l9(0)l = 1f(@@)) > &« for p£)eU.

Thus m(F*)> 0. Clearly F*=U,,, F?, from which follows that m(F#)>0
for g small enough.

Since F# is a Borel set, p(F¥) is measurable (see [10, p. 322]). A gener-
alization of Loewner’s lemma implies that if m(F#)> 0, then m(p(F¥))>0
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(see e.g. [8, p. 34]. Cf. also [10, p. 322]). Clearly every point w € ¢(F?)
belongs to A%(f, U*)nC. If y is an asgymptotic arc for f with respect to

U* but not with respect to U, then evidently the corresponding asymp-
totic value is «. Hence

CnAMf,U) = Cn A8(f,U*) for P>o.

Since m(p(F?)) >0 and @(FF)<=CnA?(f,U), we conclude that CnA4(f,U)
contains a set of positive measure, for § small enough.

3.

Later on we shall classify the points of C in terms of the behaviour
near C of the sets U, and V,. Now we proceed to relate the existence of
asymptotic paths for « to the behaviour of the sets U,.

We shall say that the sequence {W,}, is an (asymptotic) tract (for the
value o) if W, is a component of U,, and W,,, =W, for every n. (For
this concept see [6, p. 142] and [7], where slightly different, though
essentially equivalent definitions are given.) Clearly N, W,=0. The set
E=N,E, is called the end of the tract. If E consists of a single
point, then the tract is called a point tract, otherwise it is an arc tract.

We say that a boundary path y belongs to the tract {W,} if for every =,
2(t) e W, for t greater than some ¢,. Clearly such a path is an asymp-
totic path for oo, and its end is contained in the end of the tract. Thus
a boundary path belonging to a point tract is an asymptotic arc for oo.
Naturally this may also be the case if the tract is an arc tract.

We formally state as a proposition an almost obvious result on asymp-
totic paths and tracts.

ProPOSITION 2. To every tract for oo there belongs an asymptotic path
for .

Proor. Let {W,}, be a tract for oo. For every n there is a point
z, € W, such that |z,| >1—n"1, since CnoW,+0. Let y, be a Jordan
arc in W, joining 2, and z,,,. We define y=U, y,. Clearly lim, f(z) = oo,
and so y is a boundary path. Thus y is an asymptotic path for oo, and
the very construction of y shows that it belongs to the tract.

Prorosrtion 3. If m(A*(f,U)nC)=0 for some component U of U,, then
U contains an asymptotic path for oo.

Proor. Evidently m(4#(f,U)nC)=0 for every f>«, and a fortior:
m(AF(f,W)nC) = 0

for every f>«, where W is a component of U, a<y<f, contained
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in U. Hence it follows from Prop. 1 that f is unbounded on every com-
‘ponent W, of U, contained in U, for n>«. Consequently we may in-
ductively build a tract {W,},., for o, all sets W, being contained in U.
Hence the announced result follows from Proposition 2.

Let 4 be a subarc of C. A Koebe sequence of arcs relative to 4 is a
sequence {4,}, of Jordan arcs in D satisfying the following conditions:

1) For every £¢>0, 4,<{z : |2|>1—¢} for all but finitely many »;

2) For {;,¢, € 4, a subarc 6,, of 4, lies in the sector bounded by the rays
from the origin to {; and {, and the subarc of 4 whose end points
are {, and {,, the end points of §, lying on each of the rays.

(For this definition, see [2, p. 9]).

Let ¢ be a constant (finite or infinite). We shall say that 4 is a Koebe
arc for the value c if there is a Koebe sequence {4,}, relative to 4 such
that for every >0, |f(2)—c|<e¢ (|f(2)| >¢&! for c=o0) for all z€ 4, and
all but finitely many n. Clearly a subarc of a Koebe arc for ¢ is a Koebe
arc for ¢. A non-constant mormal holomorphic function admits no
Koebe arc for any value (cf. [3, p. 10]).

Lemma 2. Let y be an asymptotic path for the value c. If v is not an
asymptotic arc, then every subarc of the end of y is a Koebe arc for the value c.

~ Proor, Let {; and ¢, belong to the interior of Cnoy, and let y, and y,
denote the rays from the origin to ¢, and {,. Clearly y intersects y, and
y, an infinite number of times. Hence one easily sees that there is a
sequence of subarcs of y, which is a Koebe sequence relative to the
arc4 <Cnoy between {; and {,. Clearly f tends to ¢ along this sequence,
which means that 4 is a Koebe arc for c.

Lemma 3. Let I' be a subarc of C, and let {z,}, be a sequence in D, all
cluster points of which are contained in a closed subarc y of I'. Further let
W, be a component of U, containing z,. Then either there i3 an ny such
that CnoW,<1I for n=mn,, or I' contains a Koebe arc for oo.

Proor. The assumption of no %, such that CnoW,<I" for n=mn,,
implies the existence of a sequence {z,},, ,, € W,,, all cluster points of
which are contained in C—I'. Let y; be a Jordan arc in W, joining z,,
and z,, and let y; be a point in y, such that |y,|=inf{jz| : z€y,}. Here
ly;| = 1, since |f(y,;)| >n,. Hence {y,}, contains a Koebe sequence relative
to some arcA4, where A- is contained in one of the arcs of which I'—y
is composed. Thus the existence of a Koebe subarc of I' for oo is estab-
lished.
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We now give a generalization of Theorem 2 of [7]. (The essence of
[7, Th. 2] is implicitely contained in [2]).

THEOREM 1. Let f be holomorphic in D, and let I be a subarc of C such
that m(I'n A*(f)) =0 for some finite x. Then I contains either a Fatou arc,
or a Koebe arc for oo, or a point of A®(f).

Proor. If f is bounded in a neighbourhood of a point ¢ € I', then a
subare 4 of I' is contained in a Jordan curve with rectifiable boundary,
in whose interior region f is bounded. It follows that A is a Fatou arc
(cf. e.g. [9, p. 129]). Thus if I" contains no Fatou arc, then there exists
a sequence {z,},, where |f(z,)|>n, such that 2z, > for some eI
Let W, be that component of U, which contains z,. Assume that there
is an ny such that CnoW,<I for n=n, Then there is an m >« such
that CnoW,,<I. Now

AMf, W) nC = A™f)n I < I'n A%(f) .

From Prop. 3 then follows that W, contains an asymptotic path for oo,
whose end is contained in I". Thus in this case application of Lemma 2
gives the announced result.

If there is no such n,, then the existence of a Koebe arc for co in I"
immediately follows from Lemma 3.

From Theorem 1 we deduce the following corollary, which contains
one of the main results of [2] ([2, Th. 3]).

CorOLLARY 1. Let I" be a subarc of C. If m(I'nA°(f))=0, then I con-
tains esther an asymptotic point for oo or a Koebe arc for c. If f is normal
and m(I'nF(f))=0, then I" contains a Fatou point for co.

Proor. If m(I'nA°(f))=0, then I' certainly contains no Fatou arc,
and the Corollary follows immediately from Theorem 1. If f is normal,
then — as mentioned above — Fatou points and asymptotic points
coincide ([5, p. 63]), and f admits no Koebe arc ([2, p. 10]).

4.

In the proofs of the next results the concept of a cross-path will be
useful. A cross-path is a simple, continuous curve y in D, described by
2(t), t € (0,1) such that

[2(8)] > 1 as t > 1, |2(6)] > 1 as t > 0.

Evidently y is the union of two boundary paths, and the end of y is
defined to be the union of the ends of two constituting boundary paths

Math. Scand. 19 — 12
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(this clearly is independent of the decomposition of y in boundary paths).
If y has only two end points {, and ¢, (i.e. if yU{{,}U{(,} is a Jordan arc),
then y is a cross-cut (cf. e.g. [4, p. 5]). (If in particular {,=(,=¢, then
yU{l} is a Jordan curve.)

We first give an auxiliary result for later use (cf. [7, Prop. 8]).

Lemma 4. Let H be a component of U,, K a component of Us, >,
and suppose that there is an arc I'cCnoHNOK. Further suppose that if
the end of a boundary path in DNoH meets I, then it consists of a single
point. Then K<H.

Proor. K is contained in some component of U,, since Ug=U,.
According to Lemma 1, all components of U, except H are contained in
D—H*, Thus if K¢ H, then K is contained in some component of
D—H*. Now let G be a component of D — H*. Then there is a cross-path
y<DnoH* such that @ is one of the components of D—y (it is easily
verified that D —y consists of exactly two components, cf. [7, Lemma, 1]).
If the end of y is contained in C—1I, then clearly @ is that component
whose boundary is disjoint from the arc C—1I" (cf. [7, Lemma 1]), which
means that I'noG=¢. If y has an end point { € I', then our assumptions
combined with the fact that CnoH*>1I" imply that yu{(} is a Jordan
curve. Thus in both cases CnoG D I, and a fortiors Cno K I, contrary
to assumption. Hence we conclude that K< H.

We proceed to prove a lemma which is crucial for the development
of our main results. (This lemma is closely related to [7, Prop. 5].)

LemMA 5. Let f be bounded in a domain G <D such that |f(z)|=« for
every z€ DnoG, and let CNoG contain the arc A. Then either for some
BZ« there is a component W of U such that CnoW is contained in A
and contains at most one accessible boundary point for W, or f is bounded
in a Jordan domain H with rectifiable boundary containing a subarc of 4,
or A contains a Koebe arc for oo.

Proor. Let I" and y be subarcs of 4 with y—<I', I'-<=A4, and let y;
and y, (resp. I'; and I',) denote the rays from the origin to the end points
of y (resp. I). The domain H bounded by yUy,Uy, and the domain K
bounded by I'ul';ul’, are Jordan domains with rectifiable boundaries.

Assume that f is unbounded in H. Then there is a sequence {z,}, of
points in H, all cluster points of which are contained in y~ and such that
If(z,)|>n. Let W, denote that component of U, which contains z,.
Further let M be a number greater than « such that |f(z)| < M for z € G-

Now two possibilities arise. Either CnoW, ¢ I for all n> M. In this
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case the existence of a Koebe arc for c contained in I"< A follows from
Lemma 3. Or there is an m > M such that CnoW,,<I". Clearly W, <
D—G@G. Let é be a cross-path in D — @, such that W, is contained in one
of the components F of D—4¢ (cf. [7, Lemma 1]). @ then is contained in
the other component. Certainly 0FNC contains a point of A. Since
CnoG >4, this is possible only if CnoF <A and CnoF contains at most
one accessible boundary point for ¥. Since W, <F, the announced re-
sult immediately follows.

A simple consequence of Lemma 5 is the following proposition (which
is a strengthening of [7, Prop. 6]).

ProposiTION 4. Let f be bounded in a domain G <D, where |f(z)| =« for
every z € DNoG, and let CNoG contain the arc A. Then A either contains
a Fatou arc, or a Koebe arc for co, or an asymptotic point for oo,

Proor. If for some fz« there is a component W of U, such that
CnoW is contained in 4 and contains at most one accessible boundary
point for W, then clearly m(4nAP(f,W))=0. Hence the announced re-
sult follows from Prop. 3 and Lemma 2.

If f is bounded in a Jordan domain H with rectifiable boundary oH,
then almost every point of 0H is a Fatou point for f (cf. [9, p. 129]).
Thus if 0H contains a subarc of 4, then this subarc is a Fatou arc.

If neither of the above-mentioned situations occur, then the existence
of a Koebe subarc of 4 for o follows from Lemma 5.

5.

We now introduce the following classification of the points of C in
terms of the behaviour of the sets U, and V, in the vicinity of the points.
We shall term ¢ an upper ordinary point if there are arbitrarily great «
such that ¢ € U~ for some component U of U,. If { € U-, then clearly
{ € W~ for some component W of U, for every f <«. Thus an equivalent
definition is to require that { € U~ for some component U of U, for
every o.

Similarily ¢ is a lower ordinary point if there are arbitrarily great x such
that { € V- for some component ¥ of V,. Clearly it is equivalent to re-
quire this condition to be satisfied for some « only.

Similarily ¢ is a critical point if for some «, { is not a closure point for
any component of U, or V, for any > «.

We shall denote the sets of upper ordinary, lower ordinary, and critical
points by 2, 2, and 2 (or 2y (f), 2.(f), Lc(f)). Obviously

C=.QUU.QLU.QC and (.QUU.QL)n.QC=0,
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while 2,n2; may be non-empty. The following result is almost
evident.

ProposiTION 5. If { 18 an end point for an asymptotic path y for the
value oo, then { is an upper ordinary point. If ¢ is an end point for a bound-
ary path 6 on which f is bounded, then ¢ is a lower ordinary point.

Proor. In the former case, for arbitrary « there is a connected subset
of y contained in U,, and so { € U~ for some component U of U,. In
the latter case, for some f, V,; contains 4, and so  is a closure point for
some component of V.

Let %, denote the set whose elements are the components of U,, and
let ¥, denote the set whose elements are the components of V,. Clearly
%, and ¥, are countable, since the components are open, non-empty
and disjoint. We observe that we may write

1) Q. =Uz,U{Cnav:ve¥)},
(2) Qp=N2,U{0ndU:Ue2,}.
We now proceed to prove our main results.

TarEOREM 2. Let f be holomorphic in D, and let I' be a subarc of C. If
the set Q2.(f) of lower ordinary poinis is of the second category in I, then I"
either contains a Fatou arc, or a Koebe arc for o, or an asympiotic point
for oo,

Proor. Since ¥, is countable, it follows from (1) that for some com-
ponent V of some V,, CnoV is not nowhere dense in I. But CnoV is
closed, and hence contains an arc 4. It follows that application of Prop.
4 leads to the announced result.

RemMARK. According to Theorem 1, Theorem 2 is trivially true with-
out any hypothesis on Q,(f) if m(ynA4°(f))=0 for some subarc y of I
If there is no such subarc y, then certainly A°(f), and hence 2.(f), is
dense in I'. We have not been able to show that this condition (denseness
of Q,(f)), is sufficient for the conclusion of Theorem 2 to hold. Our
condition is (as stated above) that 2,(f) is of the second category.

' Taking into account the facts that for normal functions, asymptotic
points and Fatou points coincide and Koebe arcs for oo do not occur,
we immediately get the following corollary of Theorem 2.

CoROLLARY 2. Let f be a normal holomorphic function in D, and let I'
be a subarc of C. If the set R, is of the second category in I', then I either
contains a Fatou arc or a Fatou point for .

We define the set B(f) as follows:
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B(f) = {€C : there is a Jordan arc ending
- at ¢ on which f is bounded |°

Clearly A%f)<B(f), and B(f)<Q2.(f) (Prop. 5).

CoroLLARY 3. Let f be holomorphic in D, and let I" be a subarc of C.
If the set B(f) is of the second category in every subarc of I' (in particular
tf B(f) 8 a residual set in I'), then I either contains a Fatou arc or an
asymptolic point for co.

Proor. Q;(f) is of the second category, hence Theorem 2 may be
applied. Since B(f) is of the second category in every subarc of I, it is

dense in I'. This excludes the possibility of I" containing a Koebe arc
for oo.

TaEOREM 3. Let f be holomorphic in D, and let I' be a subarc of C. If
the set Qu(f) of upper ordinary points is residual in I', then I' contains
either a Fatou arc, or a Koebe arc for oo, or an asymptotic point for oo,

Proor. From (2) it follows that for every n, U{CnoU : Ue #,} is
a residual set. Hence there is a component W, of U, for which I'noW,
is not nowhere dense. But I'n9W, is closed, and hence contains an arc I',.
Further U{C'ndU : U € %,} is a residual set in I';, and hence there is a
component W, of U, such that I';n0W, contains an arc I',. Thus we
may inductively construct sequences {W,},, {I',},, where W, is a com-
ponent of U,, and I',<I,_noW,,.

Suppose that DnoW, for some n contains a boundary path y such
that I',_;noy contains an arc4. Then for some m >n, y is contained in
a component G of V,,. Consequently 4<=CnoG. Application of Prop. 4
then leads to the announced result.

If there is no such boundary path y for any =, then it follows from
Lemma 4 that W, ,<W,, since

CnoW, noW, 2 Lonlpy =104y

Hence {W,}, is a tract for o. Clearly we may choose a sequence of
points {z,},, 2, € W,, all cluster points of which are contained in some
closed subarc of I. Then according to Lemma 3, I" either contains a
Koebe arc for o, or CnoW, <I for some n. In the latter case, the end
of an asymptotic path belonging to the tract {W,}, is contained in I
Hence in this case the announced result follows from Lemma 2.

The following corollary is immediate:

CoRrOLLARY 4. Let f be a normal holomorphic function in D, and let I’
be a subarc of C. If the set 2y is residual in I, then I' either contains a
Fatou arc, or a Fatou point for oc.
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By combining Theorems 2 and 3 we get the following result (which is
related to [7, Th. 4]).

TraEOREM 4. Let f be holomorphic in D, and let I" be a subarc of C. If
the set Qo(f) of critical points is of the first category in I', then I' either
contains a Fatou arc, or a Koebe arc for oo, or an asymptotic point for co.

Proor. The set 2,08 is residual. Hence, either £2; is of the second
category, in which case the result follows from Theorem 2, or 2 is a
residual set, in which case the result follows from Theorem 3.

The counterpart of Theorem 4 for normal functions is the following
corollary.

CorOLLARY 5. Let f be a normal holomorphic function in D and let I be
a subarc of C. If L is of the first category in I, then I" contains either a
Fatou arc or a Fatou point for .
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