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A NOTE ON THE BOREL STRUCTURE
OF A METRIZABLE CHOQUET SIMPLEX AND
OF ITS EXTREME BOUNDARY

ERIK M. ALFSEN

V. Klee was the first to study the monotone class generated by the
convex closed sets [12]. This type of construction was transferred from
convex sets to affine functions in [2]. Here it was shown that the sim-
plexes are exactly those convex compact sets for which any two mutually
singular boundary measures admit a separator from the monotone class
&/ generated by semi-continuous affine functions.

Generally & is contained in the class of all bounded affine Borel func-
tions, and the two classes need not be identical. (Cf. [2] and also Propo-
sition 1 of the present paper. The appropriate counter-example was given
by G. Choquet for a somewhat different purpose [8].)

In the present paper it is shown that the class &/ over a metrizable
simplex K corresponds biuniquely to the class of all bounded Borel func-
tions on the extreme boundary 9,K of K. Specifically, every bounded
Borel function on 9,K can be extended uniquely to a function of class &7
on K (Theorem 2). Moreover, the class &/ consists of exactly those
bounded Borel functions on K for which the ‘“‘barycenter formula” is
valid (Theorem 2, Corollary 1).

Sets of the form f-1(0) with fe &+, are said to be faces of class .
Generally, every closed face is of class &/, and every face of class &/ is
a Borel face. In a metrizable simplex K, the faces of class &/ form a
g-complete Boolean algebra under convex combination, intersection, and
passage to the complementary face (Theorem 3). In particular, K is
direct convex sum of F and F’ for every face F of class &/. (Cf. [3] for
the definition of the ‘“complementary face” F'.)

The concept of an &/-face provides a geometric criterion for absolute
continuity of representing boundary measures u, of points x of a metriz-
able simplex with respect to a given boundary measure u. Specifically,
pe<pi if and only if z is contained in every 2/-face containing the bary-
center of y (Theorem 4).
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The above results lean heavily on the fact that the class &7 over a
metrizable simplex is a (conditionally) o-complete vector lattice (Theo-
rem 1). This result is not entirely obvious, as the (generating) class of
continuous affine functions need not be a vector lattice. In this connec-
tion we recall that the linear space of continuous affine functions on a
convex set K is lattice-ordered if and only if K is a simplex with closed
extreme boundary, and that it enjoys the F. Riesz decomposition prop-
erty if and only if K is a general simplex. The first result is due to
H. Bauer [5] and the second to J. Lindenstrauss [13] and Z. Semadeni
[15]. An elegant proof of the latter result was given by D. A. Edwards
in [10].

1. Definitions and basic properties.

In the sequel K shall be a convex compact subset of a locally convex
(Hausdorff) space E over the reals. The extreme boundary of K (i.e. the
set of extreme points) is denoted by ¢,K, and for every x € K the set of
positive normalized boundary measures with barycenter z is denoted by
ME. (For the definition of a ‘“boundary measure” cf. e.g. [1, p. 98].)
Recall that K is a simplex if and only if I} has a unique member g,
for every z in K.

The linear space of all K-restrictions of (real valued) continuous affine
functions on ¥ is denoted by 5 and the linear spaces of u.s.c. and l.s.c.
affine functions on K are denoted by % and &, respectively. The smallest
class of real valued functions on K which contains # and ¢ and is closed
under pointwise limits of (pointwise bounded) monotone sequences, is
denoted by &7. The following property of o is essentially a restatement
of Proposition 2 of [2].

ProPOSITION 1. Every member f of o is a bounded affine Borel function
for which the barycenter formula is valid, i.e. for every positive normalized
measure p on K with barycenter x

Ly f@) = [fau.

Proor. Clearly f is an affine Borel function. By Proposition 2 of [2],
f is u-integrable for every positive normalized measure u, and the formula
(1.1) is valid. Assume f unbounded. Then there exists a sequence {Z,}
of points in K such that f(z,)>n"2for n=1,2,.... Let u be the measure
with point-masses n-2 at z, for n=1,2,... . Now p is a positive measure
on K with respect to which f is non-integrable, contrary to the above
statement.
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For later references we note the following “metrizable” version of a
well-known general property (cf. e.g. [9, p. 140] and [2, Prop. 1]).

ProrositioN 2. If K is a metrizable convex compact set and if f is an
u.s.c. concave function on K, then there is a sequence {h,} from H# such
that f=inf, h,,. If f is affine, i.e. if fe F, then the sequence {h,} may be
chosen to be descending. Clearly, the dual statements are valid under the dual
hypotheses.

Proor. By a standard argument (based on Hahn-Banach separation
in E x R), one may construct a family {%,},., from 5 such that inf,h, =f
(cf. e.g. [13, ch. 3]). Making use of a countable base of open sets for K,
one may render the index set 4 countable. Note that the functions A,
constructed above can be chosen as strict majorants of f, in the sense
that 2 (x) > f(x) for all x in K. Now it is known that the family of strict
majorants of class /# of some u.s.c. affine function is directed downward
(cf. e.g. [2, Prop. 1]). This yields the last part of the proposition.

CororLLARY. If K is a metrizable convex compact set, then F i3 equal
to the class 5 of all pointwise limits of descending sequences from H#,
and G is equal to the corresponding dual class 3, Moreover, o/ is the
smallest class of real valued functions which contains S and is closed under
pointwise limits of monotone sequences.

It should be noted that the barycenter formula imposes certain
regularity properties on the functions of class &/ at points off the extreme
boundary. In this connection we recall that the face generated by a
point z of K is the union of all sets

(L.2) D(x,x) = (asx—(x—1)K)n K, «xz1.
In particular, z € 9K if and only if D(z,«)={x} for all x> 1.

PrOPOSITION 3. A pointwise bounded, monotone sequence {f,} of functions
of class sZ on a simplex K converges uniformly on every set D(z,«), x € K,
a=1. Consequently, every function of class o on K has a continuous
restriction to every set D(x,x).

Proor. If y € D(x,«), then there is a point z € K such that

y=oar—(x—1)z,
and hence
My = opy— (o0 — g = oty

It follows that u, <u,, and that the Radon-Nikodym derivative %, of u,
with respect to u, satisfies [|k,|l, <.
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. -Let f be the pointwise limit of {f,}. By definition f € </, and by the
barycenter formula

3 ) -Ful) = | [ -tk due| 5 & 1l .

The right hand term of (1.3) is independent of the point y of D(z,«),
and it tends to zero as » tends to infinity, by virtue of the Monotone
Convergence Theorem. This proves the uniform convergence of {f,}
over D(z,x).

REMARE. In Proposition 3 it would be sufficient to assume con-
vergence on some boundary set B; where f € €(K), and in the metrizable
case one might choose B,=9 K (cf. e.g. [1, p. 98]).

2. Lattice properties of <.

We shall prove that the class &/ over a metrizable simplex is lattice
ordered in the natural ordering of functions. The non-metrizable case
remains open.

THEOREM 1. If f and g are functions of class o/ over a simplex K, then
Jor every xe K :

@) [ fvgdu, = sup{3f(9) +(1-2)g(e) | o=y+(1—-Nz, 05151},

22) [ fagdu, = inf (@) +(1-Dg(e) | 2=dy+(1-2)z 05AS1},

and the “sup” and “inf” values are effectively attained by appropriate
convex combinations on K. If K is metrizable, then o s a (conditionally)
o-complete vector lattice tn the natural ordering of functions, and the lattice
operations are given by the formulas

(2.3 ¢V oE = [Fvodu,
(2.4 (A Q@) = [frgdu,.

Proor. 1) Consider first an arbitrary convex combination on K:

z = Ay+(1-12)z, 0<21=1.
Now :
By = }.,u,”+(l——).)y,,

and so by Proposition 1
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@8 [¢vordm =2[¢vodu,+ -1 [(vo dn,

2 3 [fdu, + 11 [gdp,
= i) + 1-2g(2) -

To prove that the equality sign of (2.5) subsists for some convex combina-
tion on K, we define

={y|fWz9@)} B=1{y|fy)<9®)}-

If p(A)=0 or pu,(B)=0, then we may use the trivial convex combina-
tion x=y ==z to yield equality with the right hand term of (2.5) equal to

g(x) and f(x), respectively. If u,(4)+0 and u,(B)+0, then we write
Uo(A)=2 and define

= AN (uz) 4 e =(1-2)"uz)zp -
Denoting the barycenters of = and ¢ by y and z, respectively, we may

write
ffvyd.ua: = ffd”z+ fgd:“z
A B

= }.ffdn+(1—-1)fgdg

= Ay + (1-2)g() .
The dual verification is similar.
2) Next assume K metrizable and define the functions f¥ g and fAg

by the formulas (2.3), (2.4) for any two members f,g of </. For every
f e o define

(2.6) N(f)=1{9|geA, fVgeAd, fAged}.

It follows by application of the Monotone Convergence Theorem that
A(f) is closed under pointwise limits of (pointwise bounded) monotone
sequences. By the symmetry of the definition (2.6)

(2.7) feN(g) <= geN(f).

Assume for a moment that f,ge#. By a known theorem (cf. e.g.
[9, p. 141]), the envelopes of fvg and fag are given by

@8  Uvow = [fvodu. Fao@ = [fagdp,.

The functions fvg, ng are affine since K is a simplex (cf. e.g. [9 p:
145]). Hence fVge *F and fAge %. It follows that ‘
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(2.9) H < N (f) for all fesf.

At this point we invoke the metrizability of K, by which we may
apply the Corollary of Proposition 2 together with the closure properties
of #°(f) to yield the relation

o = N (f) for all fe .

By (2.7), this may be transformed to
H < AN(g) forallges,

and by the same argument as above,
& < N(g) for all ge /.

Thus we have proved that .7 is closed under operations f,g ~ fV¥ g and
fig~fAg.

Clearly fV g is the least upper bound of f and g within o7, for if k € &/
and k=f, k=g, then by Proposition 1

kw) = [kdu, 2 [fvgdu. = (Fv o)a)

for all z € K. Similarly it can be seen that fAg is the greatest lower
bound of f and ¢ within .&/. Hence & is a lattice in the natural ordering,
with the prescribed lattice operations. Clearly ./ is a linear space;
hence it is a vector lattice, and &7 is (conditionally) o-complete by defini-
tion.

REMARK. Assume for a moment that K is located on a hyperplane not
passing through the origin of E, and that E = C — C where C is the convex
cone generated by K. By a well-known theorem of Choquet ([7], cf.
also [9, p. 145]), K is a simplex if and only if C defines a lattice ordering
in E. It is seen from the formulas (2.1), (2.2) that the lattice operations
on & are those inherited from the vector lattice of order bounded (or
“relatively bounded”) linear functionals on E (cf. e.g. [6, ch. II]).

3. Boundary values for functions of class 7.

Every bounded Borel function f on the extreme boundary ¢,K of a
metrizable simplex K can be extended to an affine function f on K by
the formula

(3.1) 7@ = [fau,.

ProrosITION 4. If f 18 @ bounded u.s.c. function on the extreme boundary
9K of a metrizable simplex K, then the extended function fis of class F,.
Dually if f is bounded and l.s.c., then fis of class F,.
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Proor. By a simple generalization of a theorem of M. Hervé, the
upper envelope f of a bounded u.s.c, function f satisfies the requirement
f(x)=f(z) for all z€ 3,K. (Hervé’s Theorem concerns continuous func-
tions on K. The transition to semi-continuous functions on 9,K can be
found e.g. in the Lemma of [4].)

By Proposition 2, there is a sequence {A,} from J# such that f=inf,h,.
Define g, =h;A...Ah,. Then {g,} is a descending sequence of continuous
concave functions such that g,\\f. In particular

(3.2) lim,,_, 9,(x) = f(=), € 0K .

By a known characterization of envelopes of continuous concave func-
tions (cf. e.g. [9, p. 146]), and by the Monotone Convergence Theorem

(3.3) 1y oofa(®) = Lt oo [ g ity = [F s

Hence we have proved gz,_,\f. By a known property of simplexes (cf. e.g.
[9, p. 145]), g, is Ls.c. and affine. In other words g, € ¢, and so fe %,.
The dual verification is similar,

By definition, the class of Borel sets on the topological space ¢,K
(induced topology) is the Boolean o-algebra generated by closed (or
open) sets, and it is equal to 9,KN# where # is the class of Borel sets
on K. The bounded Borel (-measurable) functions form the smallest
vector lattice of real valued functions which contains the characteristic
functions of closed (or open) sets and is closed under pointwise limits of
bounded monotone sequences.

THEOREM 2. If K is a melrizable simplex, then the restriction mapping
f—~fl2.K is a bijection of the class o onto the class of bounded Borel func-
tions on 9,K, and its inverse is the mapping f ~ f defined by (3.1).

Proor. By Proposition 1, f/9,K is a bounded Borel function for every
fe o, and every function of class &/ can be recovered from its boundary
values by the integral formula (3.1). Hence it only remains to be proved
that fe o7 for every bounded Borel function f on 9,K.

Let 4, be the class of all bounded Borel functions f on 9,K for which
Je . Clearly 4, is closed under linear operations, and by (2.3), (2.4),
it is closed under pointwise lattice operations. By the Monotone Con-
vergence Theorem %, is closed under monotone limits of bounded se-
quences. By Proposition 4, %, contains all characteristic functions of
closed subsets of 9,K. Hence %, comprizes all bounded Borel functions
on 9 K, and the theorem is proved.
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CoROLLARY 1. A4 function f on a metrizable simplex K 18 of class & if
and only if it i3 a bounded Borel fum:twn for which the barycenter formula
18 valid; i.e. if

(3.4) @) = [fau,
whenever u 18 a positive normalized measure with barycenter x.

Proor. The necessity follows from Proposition 1; and the sufficiency
follows from Theorem 4, for if f is a bounded Borel function on K for
which the barycenter formula is valid, then

f=ToKes.

CoROLLARY 2. Every affine function of the first Baire class on a metriz-
able simplex is of class <.

Proor. By a theorem of G. Choquet [8] (cf. [14, ch. 12] for a de-
tailed proof), the barycenter formula is valid for every affine function
of the first Baire class. Hence the conclusion follows from Corollary 1.

CoRrROLLARY 3. Let K be a metrizable simplex. If u and v are mutually
singular positive boundary measures on K, then there exists a function f
of class o/ such that |f|<1 and

(3.5) u(fe | fx)20}) = »({z| f(x)20}) = 0.

If p and v are positive boundary measures such that v<ou for some
positive number «, then the Radon-Nikodym derivative of v with respect to
u admits a representative of class .

Proor. Clearly there exist bounded Borel functions on 9, K with the
required properties, which will prevail after extension of these functions
to functions of class & on K.

REeMARK. The statement of the first part of Corollary 3 subsists with-
out metrizability. In fact it ckaracterizes simplexes [2]. One may obtain
the second part of Corollary 3 from the first by copying the standard
derivation of the Radon-Nikodym Theorem from the Hahn decomposi-
tion. This proof, however, invokes the (conditionally o-complete) lattice
structure of &7, and so it depends on the metrizability of K.

4. Faces of class &.

If £ is a positive affine function on a compact convex set K, then f~(0)
is seen to be a face. Faces of the form f-1(0) with f e o7+ are said to be
of class of.
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THEOREM 3. The faces of class o/ of a metrizable simplex K form a
o-complete Boolean algebra under the “join”> F,G —~ conv(FuG@), the
“meet” F,G ~ FNnG and the “‘complementation’ F ~ F’, where F' denotes
the complementary face as defined in [3]. Moreover, the mapping
F ~ Fno K is a bijection of the class of o/-faces onto the class of all Borel
subsets of 9,K, and for every Borel subset A of 0,K with characteristic func-
tton x4 on 0K, the corresponding o -face s the set (1—%4)~(0).

Proor. 1) We first prove the second half of the theorem.

If F is an o/-face, then F is a fortior:i a Borel subset of K, and so
9,KnF is a Borel subset of 9,K. '

Conversely, let A be a Borel subset of 9,K. By the definition (3.1),
0=%4=1, and by Theorem 2, 1 -, € &*. In particular F=(1-%,)~1(0)
is an &7/-face. Since y¥, is an extension of y,, we shall have

(1-%)@®) =0 on ¢KnA

and
(I1—%)@) =1 on ¢K\4.

It follows that 0, KnF=A.
Next we assume that there are two .7/-faces meeting 9 K in 4, or
equivalently that there are two functions f,,f, € &/+ such that

fi(0)n 3K = f,71(0)n oK = 4.

By the barycenter formula (1.1), and by the fact that u, vanishes off
the G,-subset 9,K of K, we shall have

(1) fla) = 0 <> [fudu, = 0 < u0KNA) =0,

where 1=1,2. The right hand term of (4.1) does not depend on 3, and so
Ji71(0)=f,"(0).

Hence we have proved that (1 —5%,)~1(0) is the unique face of class .o/
which meets 9K in A.

2) Let f,g € o&/+. By Theorem 1, (fAg)(x)=0 if and only if there is a
convex combination

(4.2) @ =Ady+(1—-2z O0<ASI,

such that f(y)=g(z)=0, or equivalently if x belongs to the convex hull
of f-1(0) and g-1(0). Hence

(4.3) conv (f-1(0) U g~%(0)) = (fAg)71(0) .
Similarly, (fVvg)(x)=0 if and only if f(y)=g(2)=0 for every convex
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eombination (4:2), which in turn is possible if and only if z belongs to
the face f-1(0)ng—2(0). Hence

(4.4)  FHO)NgTH0) = (f VY 9)N0) .

Next let F be an o/-face of K. By the first part of the proof, F=
%471(1), where y, is the characteristic function of A=Fné,K on 0,K.
Clearly %,-%(0) is an «/-face disjoint from F. In particular ,-1(0)< F".

By the definition (2.4),
: (1-%d) A%qa=0.

By Theorem 1, there exists for every x € K a convex combination (4.2)
such that 3 ,(y)=1 and %,(2)=0. Thus K is the convex sum of F and
%.4~2(0), which is possible only if §,~1(0)>F’. Hence

(4.5) F = 5470).

By virtue of (4.3), (4.4), (4.5), the class of 2/-faces is a Boolean algebra,
and it is o-complete by the o-completeness of 2.

By Theorem 3, K is (direct) convex sum of F and F’ for every face F
of class &/ (cf. [3]). Note also that the mapping F ~ Fng,K is an
isomorphism of the Boolean algebra of /-faces of K onto the Boolean
algebra of Borel subsets of 9,K.

THEOREM 4. Let u be a positive normalized boundary measure on a
metrizable simplex K. The representing boundary measure u, of a point
x € K 15 absolutely continuous with respect to u if and only if x is contained
in every Z-face containing the barycenter of u.

Proor. Observe first the following equivalence which is valid for every
face F of class &7, and which follows by an argument similar to (4.1):

(4.5) zelF < u(F)=1.

Let the barycenter of x4 be denoted by z,.

‘Assume first u, <u, and let F be any «/-face containing x,. By (4.5),
u(F)=1. Hence by absolute continuity u (F)=1, and by (4.5) once more,
zeF.

Next assume z € F for every &/-face containing z,. Let B be any Borel
subset of K such that u(B)=0. By Theorem 3, there is a (unique) face
F of class &/ such that
(4.6) ' FnoK = 9,K\B.

Hence u(F)=1, and by (4.5), , € F. By assumption, z € F, and by (4.5)
once more u (F)=1. It follows that u,(B)=0. Hence u,<u, and the
proof is complete.
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