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EXISTENCE AND
PROPERTIES OF RIESZ POTENTIALS SATISFYING
LIPSCHITZ CONDITIONS

HANS WALLIN
1. Introduction.

Let F be a compact set in the m-dimensional Euclidean space. Ac-
cording to a well-known result there exists a non-trivial, positive measure
supported by F and having a bounded Riesz potential of order «,
O0<x<m (that is, a bounded potential formed with the kernel r—™;
for definitions, compare section 2), if and only if F' has x-capacity larger
than zero. The main purpose of this note is to investigate the corre-
sponding problem with the bounded potential replaced by a potential
of order « belonging to the Lipschitz class of a given order 8, 0<f<1.
It turns out that the right condition on F is that F' shall have positive
Hausdorff measure of order m+f—«, if f<«. (See Theorem 2. The
theorems are stated in section 2.) This result is obtained as a conse-
quence of two theorems, the Theorems A and B, by Carleson and Frost-
man, respectively, and a new theorem, Theorem 1, which is a converse of
Theorem A and gives a kind of Lipschitz condition on those measures
which have a potential of a given order « in a given Lipschitz class f.
The Theorems 1 and A essentially solve also the following problem (see
Theorem 3): Assume that u is a positive measure with compact support
such that the Riesz potential of order «, of u belongs to the Lipschitz
class of order g, for certain given values of «, and #,. For which values
of x, and B, is it then true that the Riesz potential of order «, of the
same measure u belongs to the Lipschitz class of order f8,?

To prove Theorem 1 we use some inversion formulas giving the measure
4 in terms of the Riesz potential of u. These inversion formulas are given
in section 3. In section 4 we prove Theorem 1.

2. Statement of the theorems.

In the sequel u denotes a positive measure, that is, a non-negative,
completely additive set function defined at least for Borel sets. Further-
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more, the support of u, suppy, shall be compact. If >0 and z=
(®4,...,%,) is & point in the Euclidean space E™, m>1, then u(r,x)
denotes the value of u for the closed sphere {y | |y —z|<r}. Here |y—z|
is the Euclidean distance between y and x in R™.

Let « denote a number satisfying 0<ax<m. We denote by u” the
Riesz potential of order « of u, also called the x-potential of u, defined by

du(y)

u{:(z) =l
lz—y™™

Here and elsewhere, the integration is extended over the whole space
Rm, if no limits of integration are indicated.
Let E be any set. The Hausdorff measure of order « of E,A (E), is

A(E) = imA9E), >0,
&e—>0

with
A®(E) = inf 3 r2,

where the infimum is taken over all coverings of £ by denumerably many
spheres with radii 7, <e.

For 0=8=<1 we denote by Lipg the class of all functions f satisfying
a Lipschitz condition of order § in R™, that is, such that for a certain con-
stant, the Lipschitz constant,

|f(x)—f(y)| < const.|x—y|f  for all z,y e R™.
We shall prove

THEOREM 1. Let « and B be any mumbers such that 0<a<m and
0<pB=<1. Assume that u is a positive measure with compact support such
that w € LipB. Then there is a constant depending only on «, 8, m and v,
such that for all x € R™ and all r>0

(2.1) u(x,r) < const.r™F* if x>8,
(2.2) wu(z,r) < const.rmloglfr if =8,
(2.3) u(x,r) < const.r™ if a<f.

This theorem which will be proved in section 4, is a converse of the
following result by Carleson.

THEOREM A (Carleson). Let & and B be any numbers such that 0 <x <m
and 0<fB<1. Assume that u is a positive measure with compact support
such that for some constant
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u(z,r) £ const.r™?*  forallze R™ and all r>0.
Then u’; € Lip 8 with a Lipschitz constant only depending on «, B, m and u.

A proof of Theorem A is found in [1, pp. 15-16] for a special choice
of x. The same method of proof, however, is applicable with obvious
modifications for a general value of «.

The above theorems have a close connection with the problem (essen-
tially solved by Theorem 2 below) concerning the existence of a non-
trivial positive measure supported by a given compact set and having
a Riesz potential of a given order belonging to a given Lipschitz class.
To obtain this connection we use the following result by Frostman
(see [3, pp. 87-89] or [2, pp. 5-6]).

THEOREM B (Frostman). Let 0<y<m. Let F be a compact set in R™.
Then A(F)>0 if and only if there exists a positive measure u with
suppu<F and u(F)>0 such that

ulz,r) =" forall xze R™ and all r>0.
The Theorems 1, A and B immediately give the following theorem:

THEOREM 2. Let « and B be any fized numbers such that 0<ox<m,
0<pB<1l and x>p. Let F be a compact set. A mecessary and sufficient
condition for the existence of a positive measure u with

suppu < F  and u(F) > 0 suchthat /e Lipf,
is that

Apiga(F) > 0.

As an immediate consequence of the Theorems 1 and A we clearly
also obtain

TuEOREM 3. Let «; and B;, i=1,2, be any numbers such that 0 <x;,<m,
0<B;<1, a;> B, for i=1 and 1 =2, and, finally,
Ky =0y = f1—Ps.
Let p be a positive measure with compact support. Then

w4 eLipp, ifand onlyif  uf, €LipB,.

3. Some inversion formulas.

Let C be the class of complex functions which are infinitely differen-
tiable and have compact supports. u denotes as usual a positive measure
with compact support and x a number satisfying 0 <&« <m.. Some refer-
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ences and formulas connected with the inversion formulas in this section
are found in [4, pp. 74-77].

We shall use the Fourier transformation. Let 7'=%7T be the Fourier
transform of a tempered distribution 7' normed so that

fo = [emeo @ dn @ = Sus,

if f is in the Lebesgue class L1(R™). Since

tm—o,
Flam = Awm) o, Ayam) = U
I'(3(m—«x))
the Fourier transform of the convolution w* of |z|™™* and u is

(3.1) = Ay(o,m) |27 4 .

We start by stating an inversion formula giving the measure u in
terms of the «-potential of o “ in the particularly simple case when «
is an even integer, o = 2h. ‘

If ¢ € CF and b 18 a natural number such that 0 < 2h <m, then

(3.2) [ #to) du@) = 4, [ uty@) Ap(a) de,
where
= {(—4n?p 4,(2h,m)}1
A,(x,m) 18 the constant in (3. 1), and A" is the Laplace operator sterated h
times. © -
" 'To prove (3.2) we usé the definition of the Fourier transform of the
tempered distribution w4, combined with (3.1) and the formula

(3.3) F(dro)(§) = (—4m®) [€]2* §(§) -
This gives '

[ wtato) 295 d = (— anp [ aga(e) 1619 50 a = 43" [ o) B a2
which proves (3.2), since _
[ 7@ dutw) = [5@ ae) a .

We obtain an analogue of (3.2) for a given Riesz potential of ‘order o
with an arbitrary «, 0 <« <m, and m > 1 if in the right member of (3.2)
we replace Ap(x) by a certain Riesz potential generated by a measure
of the form A*p(t)dt. In fact, let
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where @ € CY, k 13 a natural number, and 0 <y <m. Assume that 0<x<m
and m > 1 and let k and y be chosen so that

(3.4) mta = oty
Then .
(3.5) [ #(@) dute) = 4, [ wi@) ola) ds,

where A;={(—4n®)k A (m—y,m) A,(«,m)} 2, and A,(x,m) is the constant
i (3.1). i

We observe that as m > 1 it is clearly possible for any « to choose k
and y as indicated. We also observe that the inversion formula (3.2) is
only a special case of (3.5) that is, the case when «=2h, k=h+1 and
y=m—2, because in the case v(x) = const.A*g(x) which is easily proved.
Now we turn to the proof of (3.5). A formal application of the Parseval
relation leads to

(3.6) [ o) o) do = [ a216) 5@ -
Using (3.1) and the analogous formula for v, that is,

D(E) = A, |E%™ §(8),
where

Ay = Ay (m—y,m) (—4n?)*,
we would get (3.5) from (3.6) and (3.4). To prove (3.6) we introduce the
auxiliary function y, defined by
%(@) = exp{—elz?}, >0,
with Fourier transform
£:(£) = (m[e)im exp (—n?|E|fe) .

Since v is infinitely differentiable and all the derivatives of v are bounded,
vy, belongs to Schwartz’s class of infinitely differentiable rapidly de-
creasing functions. In view of this, we can now use the definition of the
Fourier transform of the tempered distribution % to conclude

@1 . [ue) 3@ i) d = [ 0206) Bege) e

The left member of (3.7) clearly tends to the left member of (3.6) when
€ > 0, since u*v is in the Lebesgue class L'(R™) [compare the formulas
(4.3) and (4.5)]. By using the facts that 4% is bounded outside every
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neighborhood of the origin and locally Lebesgue integrable, and that
(D%g,)(&) - B(&) when ¢ - 0, it may be proved by straightforward calcu-
lations that the right member of (3.7) tends to the right member of
(3.6) when ¢ > 0. We omit the details. The proof of (3.6) is complete

Finally, we give another kind of inversion formula for x4 which is valid
also for m=1.

Assume that « 1s not an even integer. Let h be the non-negative integer
such that 2h < <2h+2. If ¢ € CY, then

(38) [ @) duta)
= Asf 1 {f (ul‘(x+y)—ul‘(x))(Ah¢(x+y) __Ahq)(x)) da dy ,
lylm+u—2h (3 o

where Ay is a constant depending only on m, x and h and where the outer
integral in the right member of (3.8), as well as the inner integral, is ab-
solutely convergent.

(3.8) was proved in [4, pp. 76-77] in a little different form for the case
h=0. Using (3.3) the proof proceeds along the same lines for a general &
including the explicit calculation of the constant 4.

4. Proof of Theorem 1.

We shall use the inversion formulas (3.2) and (3.5) to prove Theorem 1
when m>1. When m=1 the formula (3.8) gives the simplest proof.
However, we shall sketch a proof of Theorem 1 by means of (3.8) for any
m and any « which is not an even integer.

Let u be a positive measure with compact support such that «% € Lip§
where 0 < <m and 0<8=<1. We shall prove that the inequalities (2.1),
(2.2) and (2.3), respectively, hold for =0 with certain constants and it
will appear from the proofs that the inequalities hold with the same con-
stants for all € R™,

Let y be a fixed function in C§° such that 0 <y(x) <1 for all z,p(x)=1
for |z| =1 and y(x)=0 for |x|22. We define the function y, by y,(r)=
y(x/d) for all ze R™ and all §>0. Then y; e C3 and 0= yy(x) <1 for all
z,ys(x)=1 for |z|<6 a.nd ys(x)=0 for |x|=24. Furthermore, for any
natural number s,

(4.1) |A%y,y(x)] < const.d-2¢  for all zte R and all 6>0,

where the constant depends only on y and s.
Using (3.2) we first prove Theorem 1 in the particularly simple case
when « = 2k, h a natural number, 0 <2k <m. As h=1 we have
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(4.2) j Avpy(x) dex = 0,
which is an immediate consequence for instance of Green’s formula

[compare also (4.6)]. If we use (3.2) with ¢ replaced by y, we get, due to
the properties of y, and the fact that uf, e Lip§g,

1(0,8) = f pa(x) du(z) = const.fu‘z‘h(x) Ahpy(x) da

const. f (ubp() — ufy(0)) APyy(x) dee

IA

const. o 6-2t doz = const.d™tA2h
|| =28

This proves Theorem 1 for «=2h.

We now turn to the proof of Theorem 1 for a general « and the dimen-
sion m > 1 using the inversion formula (3.5). Let y, be the same function
as above and define, for fixed numbers 4 and y, k¥ a natural number,
O<y<m, vy 6>0, by

Akypy(t)
|z —t|”

(4.3) vy(x) = dt, where 2k+y=m+«x, m>1.

We observe that the integration in (4.3) is an integration over {t | |¢| < 24}

only, since y,(t)=0 for |t|=225. We shall first prove the following in-
equalities:

(4.4) |vg(x)| < const.6™  for ze R™ and 6>0,
and
(4.5) |vg(x)| < const.é™ |z|™™*  for |z|=4d and >0,

where the constants depend only on y, k, y and m. (4.4) follows from the
estimate

2
|vs(x)| < const. f 02 pm-1-7 gy
0

and the relation a=2k+y—m. To prove (4.5) we observe that as a
consequence of Green’s formula we have

Po(t)

vy(x) = const. m

lt|<28

dt for |z|>24.

If we combine this formula with the inequality |x—¢|= §|x| which is
valid if |x| 246 and |t| <26 we get (4.5) since m+«=2k+y.
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Clearly v, is Lebesgueintegrable over the whole space R™ and since
Jvs(x)dar =1D,(0), the formula

D5(§) = const. |£]" $,(&)
proves the following analogue of (4.2):

(4.6) o f'v,(x)dx =0.

If we now use the formula (3.5) with ¢ and v replaced by y, and v,,
respectively, we obtain, due to (4.6),

4(0,6) < f o) du(x) = const. f WA (@) vy() dz

= const. f (uh(a) — ut(0)) vy(x) dz

= f + f — I+II.
x| <40 || >48

The first integral, I, is, according to (4.4) and the assumption that
u* € Lipf, majorized by

const, 6% dx = const.é™* -
|els 48

The second integral, II, is estimated by means of (4.5). We consider
first the case when « > f and obtain

|II] £ const.dé™ f |z|"™** dx = const.6™*, «>pB.

|| =48
Hence

u(0,8) < const.é™?=  for a>f and m>1

with a constant which depends only on «, 8, m and 4. We clearly get
the formula (2.1) of Theorem 1 for m >1 with the same constant for a
general z € R™ if we repeat the calculations above with the function y
replaced by the function y, defined by vy, (y) =y(y —x).

If «<p we have to estimate the integral II in a different manner.
We split the integration in II into two parts, 12 |z| 246 and |z|>1. In
the first of these parts we use (4.5) and the fact that «% e Lipg and in
the second (4.5) and the fact that w is bounded. Straightforward cal-
culations then prove the formulas (2.2) and (2.3) of Theorem 1.

- Finally we turn to the. proof of Theorem 1 — in particular for m=1 —
by means of the .inversion formula (3.8).. Assume that « is not an even
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integer. We define the functions y and y, as above and use (3.8) with ¢
replaced by y,. Hence

£0,8) < f%(x) du(z) < const. f f [wa(@) — wa@)l 14M(wa(@) —ps@)) a.

Ix_ylm+a—2h

Denoting the last integrand by J we have, since suppy,<{z | || < 25},

H(o,a)gconst.[f dy f Jdx+ f dy f de]=1+n.
lyls2s  |x|<8s ly|sea.  |z|>80. . F -

From the mean value theorem and (4.1) we deduce

|A%(1p5(2) — p5(y))| S const.d—@r+D |g—y|
and hence
I £ const. dy | — y| et 2hil 5@t gy

lyis2s  |z/s38
which gives

(4.7) I < const.d™*= if a<2h+f+1.

To estimate II we observe that by (4.1)

|A%(ps(x) —s(y))| < const.d-2,
and so
IT < const. dy |z — y|-m—o+2h 52 gy

lyls2s  |=|>88
which gives

II < const.0™* = if «>2h+p.

Combining the estimates of I and II we obtain (2.1) for =0 and so for
all xe Rm, if

(4.8) 2h+f < o < 2h+p+1,
where & is the non-negative integer such that
(4.9) %h < & < 2h+2.

This obviously proves (2.1) in particular for m=1. If m>1 and % is
such that (4.9) is satisfied, (4.8) is not true for all « > 8. In order to prove
(2.1) by means of an inversion formula of the type of (3.8) for those «
which do not satisfy (4.8) we must use the analogue of (3.8) not with ¢
replaced by y, but by a potential of the form (4.3). We omit the details

since they become more complicated than in the proof of (2.1) by means
of (3.5).
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