EXISTENCE AND PROPERTIES OF RIESZ POTENTIALS SATISFYING LIPSCHITZ CONDITIONS

HANS WALLIN

1. Introduction.

Let F be a compact set in the m-dimensional Euclidean space. According to a well-known result there exists a non-trivial, positive measure supported by F and having a bounded Riesz potential of order α , $0 < \alpha < m$ (that is, a bounded potential formed with the kernel $r^{-(m-\alpha)}$; for definitions, compare section 2), if and only if F has α -capacity larger than zero. The main purpose of this note is to investigate the corresponding problem with the bounded potential replaced by a potential of order α belonging to the Lipschitz class of a given order β , $0 < \beta < 1$. It turns out that the right condition on F is that F shall have positive Hausdorff measure of order $m+\beta-\alpha$, if $\beta<\alpha$. (See Theorem 2. The theorems are stated in section 2.) This result is obtained as a consequence of two theorems, the Theorems A and B, by Carleson and Frostman, respectively, and a new theorem, Theorem 1, which is a converse of Theorem A and gives a kind of Lipschitz condition on those measures which have a potential of a given order α in a given Lipschitz class β . The Theorems 1 and A essentially solve also the following problem (see Theorem 3): Assume that μ is a positive measure with compact support such that the Riesz potential of order α_1 of μ belongs to the Lipschitz class of order β_1 for certain given values of α_1 and β_1 . For which values of α_2 and β_2 is it then true that the Riesz potential of order α_2 of the same measure μ belongs to the Lipschitz class of order β_2 ?

To prove Theorem 1 we use some inversion formulas giving the measure μ in terms of the Riesz potential of μ . These inversion formulas are given in section 3. In section 4 we prove Theorem 1.

2. Statement of the theorems.

In the sequel μ denotes a positive measure, that is, a non-negative, completely additive set function defined at least for Borel sets. Further-

more, the support of μ , supp μ , shall be compact. If r > 0 and $x = (x_1, \ldots, x_m)$ is a point in the Euclidean space R^m , $m \ge 1$, then $\mu(r, x)$ denotes the value of μ for the closed sphere $\{y \mid |y-x| \le r\}$. Here |y-x| is the Euclidean distance between y and x in R^m .

Let α denote a number satisfying $0 < \alpha < m$. We denote by u^{μ}_{α} the Riesz potential of order α of μ , also called the α -potential of μ , defined by

$$u^{\mu}_{\alpha}(x) = \int \frac{d\mu(y)}{|x-y|^{m-\alpha}}.$$

Here and elsewhere, the integration is extended over the whole space R^m , if no limits of integration are indicated.

Let E be any set. The Hausdorff measure of order α of $E, \Lambda_{\alpha}(E)$, is

$$\varLambda_{\alpha}(E) = \lim_{\epsilon \to 0} \varLambda_{\alpha}^{(\epsilon)}(E), \qquad \epsilon > 0 ,$$

with

$$\Lambda_{\alpha}^{(e)}(E) = \inf \sum_{\mathbf{r}} r_{\mathbf{r}}^{\alpha}$$
,

where the infimum is taken over all coverings of E by denumerably many spheres with radii $r_{\bullet} \leq \varepsilon$.

For $0 \le \beta \le 1$ we denote by $\text{Lip }\beta$ the class of all functions f satisfying a $\text{Lipschitz condition of order }\beta$ in \mathbb{R}^m , that is, such that for a certain constant, the Lipschitz constant,

$$|f(x)-f(y)| \leq \text{const.} |x-y|^{\beta} \quad \text{for all } x,y \in \mathbb{R}^m.$$

We shall prove

THEOREM 1. Let α and β be any numbers such that $0 < \alpha < m$ and $0 \le \beta \le 1$. Assume that μ is a positive measure with compact support such that $u_{\alpha}^{\mu} \in \text{Lip }\beta$. Then there is a constant depending only on α , β , m and u_{α}^{μ} such that for all $x \in R^m$ and all r > 0

(2.1)
$$\mu(x,r) \leq \text{const.} r^{m+\beta-\alpha} \text{ if } \alpha > \beta,$$

(2.2)
$$\mu(x,r) \leq \text{const.} r^m \log 1/r \text{ if } \alpha = \beta,$$

(2.3)
$$\mu(x,r) \leq \text{const. } r^m \text{ if } \alpha < \beta \text{ .}$$

This theorem which will be proved in section 4, is a converse of the following result by Carleson.

THEOREM A (Carleson). Let α and β be any numbers such that $0 < \alpha < m$ and $0 < \beta < 1$. Assume that μ is a positive measure with compact support such that for some constant

$$\mu(x,r) \leq \text{const.} r^{m+\beta-\alpha} \quad \text{for all } x \in \mathbb{R}^m \text{ and all } r > 0.$$

Then $u^{\mu}_{\alpha} \in \text{Lip } \beta$ with a Lipschitz constant only depending on α , β , m and μ .

A proof of Theorem A is found in [1, pp. 15–16] for a special choice of α . The same method of proof, however, is applicable with obvious modifications for a general value of α .

The above theorems have a close connection with the problem (essentially solved by Theorem 2 below) concerning the existence of a non-trivial positive measure supported by a given compact set and having a Riesz potential of a given order belonging to a given Lipschitz class. To obtain this connection we use the following result by Frostman (see [3, pp. 87–89] or [2, pp. 5–6]).

Theorem B (Frostman). Let $0 < \gamma < m$. Let F be a compact set in R^m . Then $\Lambda_{\gamma}(F) > 0$ if and only if there exists a positive measure μ with $\text{supp } \mu \subseteq F$ and $\mu(F) > 0$ such that

$$\mu(x,r) \leq r^{\gamma}$$
 for all $x \in \mathbb{R}^m$ and all $r > 0$.

The Theorems 1, A and B immediately give the following theorem:

Theorem 2. Let α and β be any fixed numbers such that $0 < \alpha < m$, $0 < \beta < 1$ and $\alpha > \beta$. Let F be a compact set. A necessary and sufficient condition for the existence of a positive measure μ with

$$\operatorname{supp} \mu \subseteq F \quad and \quad \mu(F) > 0 \quad such that \quad u^{\mu}_{\alpha} \in \operatorname{Lip} \beta$$
,

$$\Lambda_{m+\beta-\alpha}(F) > 0.$$

As an immediate consequence of the Theorems 1 and A we clearly also obtain

THEOREM 3. Let α_i and β_i , i = 1, 2, be any numbers such that $0 < \alpha_i < m$, $0 < \beta_i < 1$, $\alpha_i > \beta_i$ for i = 1 and i = 2, and, finally,

$$\alpha_1 - \alpha_2 = \beta_1 - \beta_2.$$

Let μ be a positive measure with compact support. Then

$$u^{\mu}_{\alpha_1} \in \operatorname{Lip} \beta_1$$
 if and only if $u^{\mu}_{\alpha_2} \in \operatorname{Lip} \beta_2$.

3. Some inversion formulas.

is that

Let C_0^{∞} be the class of complex functions which are infinitely differentiable and have compact supports. μ denotes as usual a positive measure with compact support and α a number satisfying $0 < \alpha < m$. Some refer-

ences and formulas connected with the inversion formulas in this section are found in [4, pp. 74-77].

We shall use the Fourier transformation. Let $\hat{T} = \mathscr{F}T$ be the Fourier transform of a tempered distribution T normed so that

$$\hat{f}(\xi) \, = \int e^{-2\pi i \, (x,\,\xi)} \, f(x) \; dx, \qquad (x,\xi) \, = \, \sum_{1}^{m} \, x_{i} \, \xi_{i} \; , \label{eq:fitting}$$

if f is in the Lebesgue class $L^1(\mathbb{R}^m)$. Since

$$\mathscr{F}|x|^{-(m-\alpha)} = A_1(\alpha,m) |x|^{-\alpha}, \quad A_1(\alpha,m) = \frac{\pi^{\frac{1}{2}m-\alpha} \cdot \Gamma(\frac{1}{2}\alpha)}{\Gamma(\frac{1}{2}(m-\alpha))},$$

the Fourier transform of the convolution u^{μ}_{α} of $|x|^{-(m-\alpha)}$ and μ is

$$\hat{\mathcal{U}}^{\mu}_{\alpha} = A_1(\alpha, m) |x|^{-\alpha} \hat{\mu}.$$

We start by stating an inversion formula giving the measure μ in terms of the α -potential of μ , u_{α}^{μ} , in the particularly simple case when α is an even integer, $\alpha = 2h$.

If $\varphi \in C_0^{\infty}$ and h is a natural number such that 0 < 2h < m, then

(3.2)
$$\int \varphi(x) \ d\mu(x) = A_2 \cdot \int u_{2h}^{\mu}(x) \ \Delta^h \varphi(x) \ dx ,$$

where

$$A_2 = \{(-4\pi^2)^h A_1(2h,m)\}^{-1},$$

 $A_1(\alpha,m)$ is the constant in (3.1), and Δ^h is the Laplace operator iterated h times.

To prove (3.2) we use the definition of the Fourier transform of the tempered distribution u_{2h}^{μ} combined with (3.1) and the formula

$$\mathscr{F}(\Delta^h \varphi)(\xi) = (-4\pi^2)^h |\xi|^{2h} \widehat{\varphi}(\xi).$$

This gives

$$\int u^{\mu}_{2h}(x) \, \varDelta^h \overline{\varphi(x)} \; dx \, = \, (\, - \, 4\pi^2)^h \int \hat{u}^{\mu}_{2h}(\xi) \, |\xi|^{2h} \; \overline{\widehat{\varphi}(\xi)} \; d\xi \, = \, A_2^{-1} \int \hat{\mu}(\xi) \; \overline{\widehat{\varphi}(\xi)} \; d\xi \; ,$$

which proves (3.2), since

$$\int \overline{\varphi(x)} \ d\mu(x) = \int \overline{\hat{\varphi}(\xi)} \ \hat{\mu}(\xi) \ d\xi \ .$$

We obtain an analogue of (3.2) for a given Riesz potential of order α with an arbitrary α , $0 < \alpha < m$, and m > 1 if in the right member of (3.2) we replace $\Delta^h \varphi(x)$ by a certain Riesz potential generated by a measure of the form $\Delta^k \varphi(t) dt$. In fact, let

$$v(x) = \int \frac{\Delta^k \varphi(t)}{|x-t|^{\gamma}} dt ,$$

where $\varphi \in C_0^{\infty}$, k is a natural number, and $0 < \gamma < m$. Assume that $0 < \alpha < m$ and m > 1 and let k and γ be chosen so that

$$(3.4) m+\alpha = 2k+\gamma.$$

Then

(3.5)
$$\int \varphi(x) \ d\mu(x) = A_3 \int u^{\mu}_{\alpha}(x) \ v(x) \ dx ,$$

where $A_3 = \{(-4\pi^2)^k A_1(m-\gamma,m) A_1(\alpha,m)\}^{-1}$, and $A_1(\alpha,m)$ is the constant in (3.1).

We observe that as m>1 it is clearly possible for any α to choose k and γ as indicated. We also observe that the inversion formula (3.2) is only a special case of (3.5) that is, the case when $\alpha=2h$, k=h+1 and $\gamma=m-2$, because in the case $v(x)=\mathrm{const.}\,\Delta^h\varphi(x)$ which is easily proved. Now we turn to the proof of (3.5). A formal application of the Parseval relation leads to

(3.6)
$$\int w_{\alpha}^{\mu}(x) \ \overline{v(x)} \ dx = \int \widehat{w}_{\alpha}^{\mu}(\xi) \ \overline{\widehat{v}(\xi)} \ d\xi \ .$$

Using (3.1) and the analogous formula for v, that is,

$$\hat{v}(\xi) = A_4 |\xi|^{2k-m+\gamma} \, \hat{\varphi}(\xi) ,$$

where

$$A_4 = A_1(m-\gamma,m) (-4\pi^2)^k$$
,

we would get (3.5) from (3.6) and (3.4). To prove (3.6) we introduce the auxiliary function χ_{\bullet} defined by

$$\chi_{\varepsilon}(x) = \exp\{-\varepsilon|x|^2\}, \quad \varepsilon > 0$$

with Fourier transform

$$\hat{\chi}_{\varepsilon}(\xi) = (\pi/\varepsilon)^{\frac{1}{2}m} \exp(-\pi^2|\xi|^2/\varepsilon).$$

Since v is infinitely differentiable and all the derivatives of v are bounded, $v\chi_{\bullet}$ belongs to Schwartz's class of infinitely differentiable rapidly decreasing functions. In view of this, we can now use the definition of the Fourier transform of the tempered distribution u^{μ}_{μ} to conclude

(3.7)
$$\int u_{\alpha}^{\mu}(x) \ \overline{v(x)} \ \chi_{\epsilon}(x) \ dx = \int \hat{u}_{\alpha}^{\mu}(\xi) \ (\overline{\hat{v}} * \hat{\chi}_{\epsilon})(\xi) \ d\xi \ .$$

The left member of (3.7) clearly tends to the left member of (3.6) when $\varepsilon \to 0$, since $u^{\mu}_{\alpha}v$ is in the Lebesgue class $L^{1}(\mathbb{R}^{m})$ [compare the formulas (4.3) and (4.5)]. By using the facts that \hat{u}^{μ}_{α} is bounded outside every

neighborhood of the origin and locally Lebesgue integrable, and that $(\hat{v}*\hat{\chi}_{\epsilon})(\xi) \to \hat{v}(\xi)$ when $\epsilon \to 0$, it may be proved by straightforward calculations that the right member of (3.7) tends to the right member of (3.6) when $\epsilon \to 0$. We omit the details. The proof of (3.6) is complete.

Finally, we give another kind of inversion formula for μ which is valid also for m = 1.

Assume that α is not an even integer. Let h be the non-negative integer such that $2h < \alpha < 2h + 2$. If $\varphi \in C_0^{\infty}$, then

$$(3.8) \int \varphi(x) \, d\mu(x)$$

$$= A_5 \int \frac{1}{|y|^{m+\alpha-2h}} \left\{ \int \left(u_\alpha^\mu(x+y) - u_\alpha^\mu(x) \right) \left(\varDelta^h \varphi(x+y) - \varDelta^h \varphi(x) \right) \, dx \right\} dy ,$$

where A_5 is a constant depending only on m, α and h and where the outer integral in the right member of (3.8), as well as the inner integral, is absolutely convergent.

(3.8) was proved in [4, pp. 76-77] in a little different form for the case h=0. Using (3.3) the proof proceeds along the same lines for a general h including the explicit calculation of the constant A_5 .

4. Proof of Theorem 1.

We shall use the inversion formulas (3.2) and (3.5) to prove Theorem 1 when m>1. When m=1 the formula (3.8) gives the simplest proof. However, we shall sketch a proof of Theorem 1 by means of (3.8) for any m and any α which is not an even integer.

Let μ be a positive measure with compact support such that $u^{\mu}_{\alpha} \in \text{Lip }\beta$ where $0 < \alpha < m$ and $0 \le \beta \le 1$. We shall prove that the inequalities (2.1), (2.2) and (2.3), respectively, hold for x = 0 with certain constants and it will appear from the proofs that the inequalities hold with the same constants for all $x \in \mathbb{R}^m$.

Let ψ be a fixed function in C_0^{∞} such that $0 \le \psi(x) \le 1$ for all $x, \psi(x) = 1$ for $|x| \le 1$ and $\psi(x) = 0$ for $|x| \ge 2$. We define the function ψ_{δ} by $\psi_{\delta}(x) = \psi(x/\delta)$ for all $x \in R^m$ and all $\delta > 0$. Then $\psi_{\delta} \in C_0^{\infty}$ and $0 \le \psi_{\delta}(x) \le 1$ for all $x, \psi_{\delta}(x) = 1$ for $|x| \le \delta$ and $\psi_{\delta}(x) = 0$ for $|x| \ge 2\delta$. Furthermore, for any natural number s,

$$(4.1) |\Delta^{s}\psi_{\delta}(x)| \leq \text{const. } \delta^{-2s} \text{for all } x \in \mathbb{R}^{m} \text{ and all } \delta > 0 ,$$

where the constant depends only on ψ and s.

Using (3.2) we first prove Theorem 1 in the particularly simple case when $\alpha = 2h$, h a natural number, 0 < 2h < m. As $h \ge 1$ we have

$$\int \Delta^h \psi_{\delta}(x) \ dx = 0 ,$$

which is an immediate consequence for instance of Green's formula [compare also (4.6)]. If we use (3.2) with φ replaced by ψ_{δ} we get, due to the properties of ψ_{δ} and the fact that $u_{2h}^{\mu} \in \text{Lip }\beta$,

$$\begin{split} \mu(0,\delta) & \leq \int \psi_{\delta}(x) \; d\mu(x) = \; \mathrm{const.} \int u_{2h}^{\mu}(x) \; \varDelta^h \psi_{\delta}(x) \; dx \\ & = \; \mathrm{const.} \int \left(u_{2h}^{\mu}(x) - u_{2h}^{\mu}(0) \right) \; \varDelta^h \psi_{\delta}(x) \; dx \\ & \leq \; \mathrm{const.} \; \int\limits_{|x| \leq 2\delta} \delta^{\beta} \; \delta^{-2h} \; dx \; = \; \mathrm{const.} \; \delta^{m+\beta-2h} \; . \end{split}$$

This proves Theorem 1 for $\alpha = 2h$.

We now turn to the proof of Theorem 1 for a general α and the dimension m>1 using the inversion formula (3.5). Let ψ_{δ} be the same function as above and define, for fixed numbers k and γ , k a natural number, $0<\gamma< m$, v_{δ} , $\delta>0$, by

$$(4.3) v_{\delta}(x) = \int \frac{\Delta^k \psi_{\delta}(t)}{|x-t|^{\gamma}} dt, \text{where } 2k + \gamma = m + \alpha, m > 1.$$

We observe that the integration in (4.3) is an integration over $\{t \mid |t| \leq 2\delta\}$ only, since $\psi_{\delta}(t) = 0$ for $|t| \geq 2\delta$. We shall first prove the following inequalities:

$$|v_{\delta}(x)| \leq \text{const.} \, \delta^{-\alpha} \quad \text{ for } x \in R^m \text{ and } \delta > 0 \; ,$$
 and

$$(4.5) |v_{\delta}(x)| \leq \operatorname{const.} \delta^{m} |x|^{-m-\alpha} \text{for } |x| \geq 4\delta \text{ and } \delta > 0,$$

where the constants depend only on ψ , k, γ and m. (4.4) follows from the estimate

$$|v_{\delta}(x)| \leq \text{const.} \int_{0}^{2\delta} \delta^{-2k} r^{m-1-\gamma} dr$$

and the relation $\alpha = 2k + \gamma - m$. To prove (4.5) we observe that as a consequence of Green's formula we have

$$v_{\delta}(x) = \text{const.} \int_{|t| \le 2\delta} \frac{\psi_{\delta}(t)}{|x - t|^{\gamma + 2k}} dt \quad \text{for } |x| > 2\delta.$$

If we combine this formula with the inequality $|x-t| \ge \frac{1}{2}|x|$ which is valid if $|x| \ge 4\delta$ and $|t| \le 2\delta$ we get (4.5) since $m + \alpha = 2k + \gamma$.

Clearly v_{δ} is Lebesgueintegrable over the whole space R^m and since $\int v_{\delta}(x) dx = \hat{v}_{\delta}(0)$, the formula

$$\hat{v}_{\delta}(\xi) = \text{const.} |\xi|^{\alpha} \, \hat{\psi}_{\delta}(\xi)$$

proves the following analogue of (4.2):

$$\int v_{\delta}(x) dx = 0.$$

If we now use the formula (3.5) with φ and v replaced by ψ_{δ} and v_{δ} , respectively, we obtain, due to (4.6),

$$\begin{split} \mu(0,\delta) & \leq \int \psi_{\delta}(x) \; d\mu(x) \; = \; \mathrm{const.} \int u_{\alpha}^{\mu}(x) \; v_{\delta}(x) \; dx \\ & = \; \mathrm{const.} \int \left(u_{\alpha}^{\mu}(x) - u_{\alpha}^{\mu}(0) \right) \, v_{\delta}(x) \; dx \\ & = \; \int\limits_{|x| \leq 4\delta} + \; \int\limits_{|x| > 4\delta} = \; \mathrm{I} + \mathrm{II} \; . \end{split}$$

The first integral, I, is, according to (4.4) and the assumption that $u_a^{\mu} \in \text{Lip }\beta$, majorized by

const.
$$\delta^{\beta-\alpha} \int_{|x| \le 4\delta} dx = \text{const. } \delta^{m+\beta-\alpha}$$
.

The second integral, II, is estimated by means of (4.5). We consider first the case when $\alpha > \beta$ and obtain

$$|\mathrm{II}| \leq \mathrm{const.} \, \delta^m \int\limits_{|x| \geq 4\delta} |x|^{-m-\alpha+\beta} \, dx = \mathrm{const.} \, \delta^{m+\beta-\alpha}, \qquad \alpha > \beta \, \, .$$

Hence

$$\mu(0,\delta) \leq \text{const.} \, \delta^{m+\beta-\alpha} \quad \text{for } \alpha > \beta \text{ and } m > 1$$

with a constant which depends only on α , β , m and u_{α}^{μ} . We clearly get the formula (2.1) of Theorem 1 for m>1 with the same constant for a general $x \in \mathbb{R}^m$ if we repeat the calculations above with the function ψ replaced by the function ψ_x defined by $\psi_x(y) = \psi(y-x)$.

If $\alpha \leq \beta$ we have to estimate the integral II in a different manner. We split the integration in II into two parts, $1 \geq |x| \geq 4\delta$ and |x| > 1. In the first of these parts we use (4.5) and the fact that $u_{\alpha}^{\mu} \in \text{Lip }\beta$ and in the second (4.5) and the fact that u_{α}^{μ} is bounded. Straightforward calculations then prove the formulas (2.2) and (2.3) of Theorem 1.

Finally we turn to the proof of Theorem 1 — in particular for m=1 — by means of the inversion formula (3.8). Assume that α is not an even

integer. We define the functions ψ and ψ_{δ} as above and use (3.8) with φ replaced by ψ_{δ} . Hence

$$\mu(0,\delta) \leq \int \psi_{\delta}(x) \ d\mu(x) \leq \text{const.} \iint \frac{|u_{\alpha}^{\mu}(x) - u_{\alpha}^{\mu}(y)| \ |\Delta^{h}(\psi_{\delta}(x) - \psi_{\delta}(y))|}{|x - y|^{m + \alpha - 2h}} \ dx \, dy \, .$$

Denoting the last integrand by J we have, since $\sup \psi_{\delta} \subset \{x \mid |x| \leq 2\delta\}$,

$$\mu(0,\delta) \leq \text{const.} \left\{ \int_{|y| \leq 2\delta} dy \int_{|x| \leq 3\delta} J \, dx + \int_{|y| \leq 2\delta} dy \int_{|x| > 3\delta} J \, dx \right\} = I + II.$$

From the mean value theorem and (4.1) we deduce

$$|\varDelta^h(\psi_\delta(x)-\psi_\delta(y))| \leq \text{const.}\,\delta^{-(2h+1)}\,|x-y|$$
 ,

and hence

$$I \leq \text{const.} \int_{|y| \leq 2\delta} dy \int_{|x| \leq 3\delta} |x - y|^{\beta - m - \alpha + 2h + 1} \delta^{-(2h + 1)} dx$$

which gives

(4.7)
$$I \leq \text{const.} \, \delta^{m+\beta-\alpha} \quad \text{if} \quad \alpha < 2h+\beta+1.$$

To estimate II we observe that by (4.1)

$$|\Delta^h(\psi_{\delta}(x) - \psi_{\delta}(y))| \leq \text{const.} \delta^{-2h}$$
,

and so

II
$$\leq \text{const.} \int_{|y| \leq 2\delta} dy \int_{|x| > 3\delta} |x - y|^{\beta - m - \alpha + 2h} \delta^{-2h} dx$$

which gives

II
$$\leq \text{const.} \delta^{m+\beta-\alpha}$$
 if $\alpha > 2h + \beta$.

Combining the estimates of I and II we obtain (2.1) for x=0 and so for all $x \in \mathbb{R}^m$, if

$$(4.8) 2h+\beta < \alpha < 2h+\beta+1,$$

where h is the non-negative integer such that

$$(4.9) 2h < \alpha < 2h + 2.$$

This obviously proves (2.1) in particular for m=1. If m>1 and h is such that (4.9) is satisfied, (4.8) is not true for all $\alpha>\beta$. In order to prove (2.1) by means of an inversion formula of the type of (3.8) for those α which do not satisfy (4.8) we must use the analogue of (3.8) not with φ replaced by ψ_{δ} but by a potential of the form (4.3). We omit the details since they become more complicated than in the proof of (2.1) by means of (3.5).

REFERENCES

- L. Carleson, Removable singularities of continuous harmonic functions in R^m, Math. Scand. 12 (1963), 15-18.
- 2. L. Carleson, Selected problems on exceptional sets, Mimeographed, Uppsala, 1961.
- O. Frostman, Potentiel d'équilibre et capacité des ensembles, Comm. Sém. Mat. Lund 3, 1935, 1-118.
- 4. H. Wallin, Regularity properties of the equilibrium distribution, Ann. Inst. Fourier (Grenoble) 15 (1965), 71-90.

UNIVERSITY OF UPPSALA, SWEDEN