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MEASURE THEORY FOR C* ALGEBRAS

GERT KJZRGARD PEDERSEN

Introduction.

In measure theory two slightly different attitudes to the material can
be found. Either one is interested in the measure of sets in the space,
or one looks for the functions which can be integrated. The second
attitude has certain technical advantages when the space X is locally
compact Hausdorff, since we can then by the Riesz representation theo-
rem reduce the study of regular Borel measures on X to the study of
positive linear functionals on K(X), the space of continuous functions
with compact supports (throughout the paper we shall use “measure”
synonymous with “positive measure”).

Now, as is well known, a commutative C* algebra has the form C(X)
with X compact Hausdorff if the algebra has an identity and the form
Co(X), with X locally compact Hausdorff otherwise. Thus C* algebras
are the non-commutative analogues of function algebras, and we should
expect to find a non-commutative analogue of measure theory in the
Bourbaki sense by studying positive functionals on a C* algebra 4 or on
a suitable subset of A.

If 1 € 4, the algebra resembles a C(X) and consequently any operator
should be integrable. Since a positive functional on all of 4 is neces-
sarily bounded, measure theory for 4 is the study of continuous,
positive functionals on 4. As is well known, this theory exists and is
vitally important for the study of the algebra.

If 1 ¢ A, the algebra resembles a Cy(X). It is the aim of the present
paper to show that in this case there is a reasonable non-commutative
analogue of the notion of unbounded measure. In section 1 we find and
discuss a two-sided dense ideal K in 4 which is the non-commutative
analogue of K(X) in Cy(X). In section 2 we show that most of the rela-
tions between bounded positive functionals and representations carry
over even when the functional is allowed to take on infinite values. In
section 3 we study positive functionals on K which satisfy a certain
condition which compensates for the non-commutativity of 4. Such a
functional, which we call a C* integral, can be written as a sum of
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bounded positive functionals and therefore has a unique lower semi-
continuous extension to all positive operators in 4, a normal extension
to the positive part of the enveloping von Neumann algebra, and a rep-
resentation as a regular Borel measure on the weak* closure of the pure
states. Finally we determine the set of C* integrals on the compact
operators of a Hilbert space H as isomorphic to the set of all positive
bounded operators on H.

I wish to express my gratitude to Professor R. V. Kadison for guiding
my research in this subject, and to Lektor E. Kehlet for correcting
several errors in an earlier version of the paper.

The notation and terminology is more or less that of [2]. Throughout
the paper, 4 is our fixed C* algebra. It is assumed that 1 ¢ 4 unless
the contrary is explicitly stated. The C* algebra obtained by adjoining
an identity to 4 is denoted 4. If L and M are subsets of 4 we denote
by L* the set of positive elements in L, by L* the set of adjoints of ele-
ments in L and by LM the (complex) linear span of all products ab
with ae L, be M.

1. Operators with majorized supports.

A *subalgebra B of A4 is called order-related if B+ is an order ideal in
A+ and B is the linear span of B+,

An order ideal J of A+ is called invariant if a*Ja<J for all a € 4 or
equivalently if w*Ju=J for all unitary operators u € 4.

Lemwma 1.1, If J is an order ideal in A+, define I, as the linear span of
elements from J, and I,={ac A |a*aeJ}. Then

I, is an order-related *algebra with I,+=J,
I, 13 a left ideal ,
L*I, = I, and T;*n1, = 1,
where I denotes the uniform closure of I.
Moreover if J is invariant, then I, is a two-sided ideal in A.

Proor. The inequalities

(@+b)*(a+b) < 2(a*a+b*d)
and
(bay*(ba) < (Bl a*a

show that I, is a left ideal. The equality
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3
4b*a = 3 i"(a+i"b)*(a+1"b)
n=0
shows that I,* I, < I;, and since the reverse inclusion is obvious, I,*I,=
I,. Trivially I.*=1I, and I,+=J and since

LI = (I*L)(I*1,) = I,*(I,1,*1,) < I,*1, = I,,

we conclude that I, is an order-related *algebra.

Since the involution is continuous, I,*nT,= (I,)* T, is a C* subalgebra
of A containing I,. Therefore, if a € (I,;*n1,)*, then at € (I,*n1,)* and
there exists b € I, such that b is near at and therefore b*d is near a,
that is, a € T,.

Now suppose J invariant. For any a e J and b e 4 we have

3
4b*a = Y i"(at +1i"atb)* (at +imatb)

N=0

3
= Y ir(1+imb)*a(1+imb) € I,

ne=0

and hence I, is a two-sided ideal.

CoroLLARY 1.2. There is a one-to-one correspondence between order ideals
wm A+ and order-related *subalgebras of A. The invariant order ideals
correspond to the order-related two-sided ideals.

We think of the elements of 4 as operators on its universal Hilbert space
and denote by A’ the weak closure of 4. (See [2, § 12].) A projection
pe€ A” is called majorized (relative A) if there exists b€ A+ such that
p=b. We let [a] denote the range projection of any operator a on a Hil-
bert space and define

Kyt = {ae A+ |3be 4+, [a] b},
K+ = {aeA+|3a,e K+, i=1,2,...,n,a<3a;}.

K,* is the set of operators in A+ with majorized supports, and K+ is the
smallest order ideal containing K,*.

The definition of Ky* may be rephrased without reference to 4" as
follows: a € K,* if there exists b € 4+ such that for all functions ¢, con-
tinuous on the spectrum of a, 0S¢ =<1, we have @(a)<b. Since we can
choose a sequence {p,} of such functions such that {p,(a)} converges
strongly to [a], and since the set of positive operators on a Hilbert space
is strongly closed, the two definitions are equivalent.

If K denotes the linear span of K+ we have
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TaEOREM 1.3. K 18 a two-sided, dense, order-related ideal in A, minimal
among all such.

Proor. Using the second definition of K,*+ and the fact that *auto-
morphisms of 4 preserve spectral theory, we have in particular u* K *u=
K,* for all unitary w e 4. It follows that also K+ is unitarily invariant
and hence an invariant order ideal, such that lemma 1.1 applies and K
is a two-sided order-related ideal in A.

Let ¢, be the real function defined by

0 for t=n!,
Pa(t) = 12(t—n"1) for n-l<t<2n-1,
¢ for t>2n-1.

For any ae 4+
lla—@n(@)l £ n' and [g,(a)] = na

go that ¢,(a) € Ko+ and ¢,(a) approaches a from below as n tends to
infinity. It follows that K is dense in A4.
If a € Ky* and [a] £b, we have for any ¢ € 4 with ¢=c*, |ic[| <},

ta 2 at(1+c)at £ at([a]+c)at < at(b+c)at.

If I is a dense order-related two-sided ideal in A, it contains elements
arbitrarily near b, and therefore there exists ¢ as above so that b+c e I.
As I is an ideal, at(b+c)at € I+, and since I+ is an order ideal, }a € I+.
It follows that K<1I.

THEOREM 1.4. If @ is a *homomorphism from A onto the C* algebra B,
then O(K 4)=Kp.

Proor. Since @ preserves spectral theory, ®(K )< Kz. On the other
hand, &(K ,) is a two-sided dense order-related ideal in B and hence, by
theorem 1.3, contains K.

If A is commutative, it is of the form Cy(X) and K = K(X) the set of
continuous functions with compact supports.

If A=By(H), the set of compact operators on the Hilbert space H,
then K is the set of operators on H with finite rank.

In these two examples K,+=K+, but this need not be true in general.
If @ is a compact operator on the infinite dimensional Hilbert space
H, 0=a=1 and [a]=1, define two projections on HPH by the matrices

”=((afa*)* (al_;a:)}) and ¢ = (8 (1))
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Let 4 be the C* algebra generated by p and q. By definition p and ¢
belong to Ky+. If we had K +=K+, then also (1—¢)p(1 —q) € K,*. But

(1-9p(-9) = (5 o) hence [1-g)p(1-0)] = (00):

Since any polynomial in p and ¢ will have a compact operator in the
upper left corner of its matrix, we conclude that no element in 4 will
majorize [(1 —q)p(1—gq)], and we have a contradiction.

The next theorem shows however that for a C* algebra with continu-
ous trace (see [2, 4.5] for definition) we do have K +=K+.

THEOREM 1.5. If A has continuous trace, let I+ denote the set of opera-
tors a € A+ such that

sup {dim=(a) |w € A} < o

and such that the function m — tr(n(a)) is continuous and vanishes outside a
compact set of the structure space A. Then I+=K,*.

Proor. If a e Ko+ and [a]<b, then the set C={ze 4 | |n(b)|21} is
compact ([2, 3.3.7]) and = ¢ C implies

(@)l = [=®)l < 1

and hence n(a)=0. For any ¢ € 4 with ¢c=c*, |c|| =}, we have as in the
proof of theorem 1.3

1[a] = [a}(b+c)[a] .

Since the linear combinations of elements d € A+ such that the function
7 - tr(z(d)) is continuous and finite on A are dense in A4, there exist ¢
and d such that b+c=<d, and thus

tr(n([a]d[a]))
sup {tr(n(d)) | r€ O} < oo0.

$ dim#(a)

IA TIA

Hence Ky+<1I+.

If on the other hand a € I+, then n(a) vanishes outside a compact set
C in 4 and dimn(a)Sn<o. For any m,€ O, my(a) has rank <n and
since my(A) is the set of compact operators on the representation space,
there is a by e A+ such that m,(b,) is a one-dimensional projection con-
tained in an eigenspace of my(a). We now proceed as in the proof of
[2, 4.4.2]. We define b,=atbyat, and by cutting away the points of
8p(b,) near 0 we find an element b € A+ such that 0<b=<1, b<a and
7(b) a one-dimensional projection for # in a neighbourhood O(w,) of 7.
We have
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a=(1-b+b)a(l-b+b) £ 2((1-b)a(1—>b)+bab)
and for z € O(r,)

dima((1 —b)a(1 —b)) = dima((1—b)[a)(1-))

dim (n([a]) —#(d)) £ n—1.

=
=

We now repeat the process with (1—-b)a(l—b) instead of @, and in at
most n steps we find elements ¢, =b,c,,. . .,c, in A+ and a neighbourhood
Oy(7,) such that a £ 3 «;¢;, ;> 0, and {z(c;)} is a set of mutually orthog-
onal one-dimensional projections for = € O, (7,). We conclude that ¢,=
Y ¢, satisfies z([a]) < n(c,) for = € Oy(ny).

Since C is compact, a finite number of sets O,(n;) will cover C, and by
adding the respective elements ¢; we get a ¢ € 4+ such that n([a]) < n(c)
for all z € C and hence for all z € 4. We conclude that [@¢] £ ¢ and thus
Itc K t.

If 4 is a separable C* algebra, there is a countable approximate
identity {v,} such that {v,} converge strongly to 1 in 4”. It follows
that [¥2-"v,]=1 and thus K=4 if and only if 1 € 4.

On the other hand if H is a Hilbert space with uncountable dimen-
sion and 4 is the C* algebra of operators on H with countable dimensional
range projections, then 1 ¢ 4 but K =4. We thus have the same pheno-
mena as in the commutative case. )

2. Extended positive functionals.

Throughout this section f denotes an extended positive functional on A,
that is, a (not necessarily continuous) function f: 4+ — [0, oc] satisfying

floa+pb) = «f(a)+Bf(d)

for all a,b e A+ and «,8 € R+ (we agree that 0:co=0).
We define
L+ = {ac A+ | f(a)< o},
Nt = {ae4*|f(a)=0},

and let L, and N, denote the linear span of L,* and N,*, respectively.
Finally we define

L, = {ac 4| f(@*a) <o},

N, ={acd|f(a*a)=0}.

Lemma 2.1. L; and N, are *algebras, L, and N, are left ideals, and we
have Ly* Ly=L, and N,*N,=N,.
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Proor. L;+ and N,+ are obviously order ideals, so lemma 1.1. applies.

We now extend f by linearity to a linear functional on L;. We call f
trivial if L, =N,.

Lemma 2.2. |f(b*a)2<f(a*a) f(b*D) for all a,be L,.

Proor. Since b*a € L,* Ly=L,, f(b*a) is defined, and the usual proof
of the Cauchy-Schwarz inequality applies.

THEOREM 2.3. To any non-trivial extended positive functional f on A
there corresponds a mon-zero, non degenerated *representation w; of A on a
Hilbert space H,.

Proor. The difference space L,— N, is a pre-Hilbert space under the
product

(a+N2|b+N2) =f(b*a), a,bELz.
We define

m(a)(b+N,) = ab+ N,

forall a e A, b € L,. Since L, and N, are left ideals, the definition makes
sense and we have

llg(@) (b + Np)|* = f((ab)* (ab))
= |lal®f(0*b) = llal?[lb+ N,l®.

Hence m/(a) has an extension (again denoted n/(a)) as a bounded
operator on the completion H; of L,— N, A routine inspection shows
that 7, is a *representation of 4 on H,. Since f is non-trivial, H,+0.
There exists an extension of #; to a normal representation of 4", and
since 1 € 4”’, we have

that is, n; is not degenerated.

We recall that in the ordinary construction with a continuous f there
is a cyclic vector & € H, and we have f(a)=(n/(a)¢|£) for all ac 4. In
order to obtain a similar result in the unbounded case we impose restric-
tions on f.

THEOREM 2.4. If f is densely defined and there exists a set {f, |i e I}
of bounded positive functionals such that f=3 f;, then there is a set of vectors
{¢;|i e I}<H, such that

for all fla) = Z (e(@)é;] &:)
or all a e A+. :
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Proor. Since f;<f, there is a well defined extension 7';: H, > H,,
IITI£1, of the map which sends a+ N, into a+ Ny, a € L,. The image
T(H,) contains L,— N, Since f is densely defined, L, is dense in 4,
and since f; is continuous, L, — N, is dense in 4 — N,t. It follows that if
T.=U,|T,| is the polar decomposition of 7';, then U, U * is the identity
operator on H,. Now it is easy to see that T 7w, ==, T,, that is, T, is a
coupling between 7, and 7;;. Then also U; and U* are couplings. Since
f; is bounded, there is a cyclic vector #; € H,; for the representation ;.
We define &;= U;*7; € H, and have for all a € 4

(my(@)é;1&;) = (myla) Us*ng| Ug*ny)
= (7(@) U U*nslmg) = (@) mglmg) = fila)
The theorem follows.

One might have hoped that in analogy with the commutative case
a € L, if and only if |a| € L,+, but in general this is false. If 4 is the C*
algebra in the third example following theorem 1.4 and if a is chosen so
that a is trace class but at is not, then let f be the extended positive
functional on 4 whose value at a matrix is the trace of the operator in
the upper left corner. The functional f is densely defined and can be
obtained as a sum of vector states. We have f(p)=tr(a) <o and f(g)=0
so that p—q e L,. However an easy computation shows that

_a_ (20 o a*O)
w-0r = (5 o) bence Ip—al= (7 u)-

It follows that f(|p—gq|)=tr(at)=co.

We close this section with a theorem which states that any extended
positive functional can be weakly approximated by a bounded one. Let
E denote the set of all extended positive functionals on 4. We give E
the weakest topology which turns all a € 4+ into continuous functions
from E to [0,00]. The restriction of this topology to the set F of all
bounded members of E clearly gives F the usual weak* topology and
we have

THEOREM 2.5. E 18 a compact Hausdorff space with F as a dense subset.

Proor. Clearly E is a Hausdorff space. To prove compactness let
{fi |t €I} be a universal net in E. For any a € A+ the net {f;(a) |1 I}
is universal in [0,00] and hence convergent. It is easily checked that the
definition f(a)=limf,(a) gives an extended positive functional on 4, such
that f; converges to f. Since we have shown that any universal net is
convergent in E, the space is compact.
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In order to prove that F is dense in £ we must, for each fe £ and
each finite set {a,} <A+ and ¢> 0, find g € F such that

If(@n)—g(a,)l <&  for fla,)<oo,
g(a,) > et for f(a,)=o.

Let V be the finite dimensional real subspace of AZ, the self-adjoint
part of 4, spanned by the a, for which f(a,) <. The spaces V and AF
are both ordered vector spaces and so are their duals V' and A%, If @
is the injection of V in A, then the dual map @’ is order preserving and
we have @'(F)< V'+. If W is the closure of @'(F) in V', then W is a cone,
and if z € V'+\W there exists ([4, 1.3.8]) an element a € V'’ such that
a(W)< R+ but a(x) < 0. Since V is finite dimensional, V is also reflexive,
so ae V. We have

D(a)(F) = a(P'(F)) < a(W) < R+

and hence a2 0 in contradiction to z(a) <0 and xz € V'+. It follows that
the restriction of f to ¥ which is an element of V’'+ can be approximated
by a g, € F.

Setting ay=3a,, a, € V, we can find g, € F such that g,(a,) <& and
gs(a,)>¢e"1 for each a, ¢ V. Otherwise there would exist a constant «
such that for an a, ¢ V

g(a,) < xg(a,) forall gelF.

But that would imply a, < xa,, a contradiction.
As our approximating element we can now take g=g; +g,.

3. C* integrals.

At first glance the natural non-commutative generalization of a regular
Borel measure on a locally compact Hausdorff space would be any posi-
tive functional on the operators with majorized supports. However in
order to get interesting theorems we need a condition (vacuous in the
commutative case) which secures that operators which are unitarily
equivalent in the algebra have nearly the same integral. To be more
Pprecise:

A linear functional f on K is called wnitarily bounded if for all a € K

sup {|f(«*aw)| | » unitary in A} < oo.

We define a O* integral on A to be any unitarily bounded positive func-
tional on K.
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A C* integral is called ¢nvariant if it is invariant under unitary trans-
formations from A, that is, if it is the restriction of a trace on 4 to K.

In view of lemma 2.2 and the fact that any operator in 4 can be
written as a linear combination of at most four unitary operators from
4 we see that the term unitarily bounded is equivalent to the condition
that, for any a € K, |f(b*ac)| is bounded for |b||<1, |lc||=1, b,c e A.
Clearly the C* integrals on 4 form a cone in the algebraic dual of K, and
any positive functional on K majorized by a C* integral is itself a C*
integral.

THEOREM 3.1. Any C* integral f can be written as a sum of continuous
positive functionals.

Proor. For any a € A+ define
o(a) = inf{f(s)+t|se K+, te R+, s+t2a}.
Tt is easily checked that the function g: A+ — R+ has the properties:

(1) o(aa)=wxp(a) for « =0,
(2) e(a+bd)=e(a)+e(d),
(3) o(a) =e(b) for asb,
(4) e(a)=|lall,

(5) o(a)=f(a) forae K+.

Also g is the greatest function satisfying (1)-(5). Furthermore if a € 4+
and x>0, a majorization s+t2a+«, s € K+, t € R+, is possible only if
t >« in which case we have

and thus f@)+t=fO)+(¢—o)+

(6) ola+«)=¢p(a)+«.
Now suppose g(a)=0, ae K+. Then there exist s, e K+, t,€ R,
such that s, +t,2a, f(s,)<n? and {,<n-1. Define v,=(n"1+s,)1s,.

We have 0<v,<1 and v, <ns,. Since the function p(x)=(n"1+«)2«
has maximum }n for x=n-1, we have

(l_vn)a(l_vn) = (l_vn)sn(l"”n) + (l-vn)tn(l—vn)
S n¥nl+s,) %, +n! < in?
80 that
la¥(1—v,)|? < §nt.
We also have
If(@®) —f(a?v,)® = |f(aa(l—v,))? :
< f(@®) f((1—v )a*aa*(l -v,)).
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Since f is unitarily bounded we conclude that
|f(a®) = f(a*v,)? > 0.
But
If(@®v,)2 = fla*) f(v?) = f(a*) f(vy,)
nf(a!) f(s,) = n7f(a?),

IA

and thus we have
(7) o(a)=0 implies f(a?)=0 for a € K+.
We now extend g to A by the definition
g(a) = inf{o(b+c) |b,ce A+, b—c=a}.

From a=b—ce A+ it follows that a<b+¢, and thus §(a)=p(a) by (3).
It is easy to see that g satisfies

gla+b) = gla)+4(d),
g(aa) = |x|g(@) for aeR.

Thus § is a symmetric convex functional on AZ.

If f is different from zero on K, then since K t2=K,*, by (7) we can
find a € K+ such that g(a)+0. We define a linear functional g on the
subspace of A% spanned by a and 1 by

glxa+p) = xela)+p.
For <0 we have

gla+p) 2 @(a)—a(B) = ela)— Bl
=g(a+p) = gla+B—-B) -1l 2 —ela+p),
and for §=0 we have by (6)
gla+p) = e(a)+p = e(a+p) .

Thus |g(b)| <g(b) for all b in the subspace, and by the Hahn-Banach
theorem g has an extension f;, a linear functional on AE, which satisfies

If10)] < @(b) for all be AR.
Since by the definition of § and (3) and (6) we have
0(b) = (b, +b_) = e(Ib]) = [blle(l) = 1]

and since f,(1)=1, we conclude that f, is a positive functional on 4
and non-zero on 4. For any b € K+ we have by (5)

f1(d) = e(d) = f(b) .
Thus the restriction of f—f; to K is a C* integral. By a transfinite repeti-
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tion of this procedure we get a set of bounded positive functionals on 4
whose sum is f.

CoROLLARY 3.2. Any C* integral has a unique extension to a densely
defined, lower semi-continuous extended positive functional on A.

Proor. By theorem 3.1 it follows that f=3f; on K, and since the
functions f; are everywhere defined, the definition } =3 f, clearly extends
J to A+ and defines a lower semi-continuous extended positive functional.
Since for all a € A+ we can find a sequence {a,}< K,* converging to a
from below, all lower semicontinuous extensions of f coincide.

CoroLLARY 3.3. There is a one-to-one correspondence between densely
defined lower semi-continuous traces on A and invariant C* integrals on A.

Proor. If f is an invariant C* integral, then by corollary 3.2 it has a
unique extension as a densely defined lower semi-continuous trace. If
on the other hand f is such a trace, then its ideal of definition is a dense,
two-sided, order-related ideal and hence by theorem 1.3 contains K, so
that the restriction f|K is an invariant C* integral. Since f is a lower
semi-continuous extension of f| K, it is the only one and the correspond-
ence is one-to-one.

COROLLARY 3.4. Any C* integral f has an extension as a normal ex-
tended positive functional on A".

Proor. If f=3f; each f; has a normal extension f; to 4", and the net
consisting of finite sums of the functions f, clearly converges weakly to a
normal extended positive functional on 4”.

COROLLARY 3.5. Any C* integral is a sum of vector functionals associated
with its own representation.

Proor. Combine theorem 3.1 and theorem 2.4.

Let P, denote the weak* closure of the pure states of 4 minus {0}.
Then P, is a locally compact Hausdorff space and any positive functional
on 4 can be represented as a regular finite Borel measure on P ,. (For
better results see [1]).

COROLLARY 3.6. Any C* integral f can be represented as a regular Borel
measure on P ,.

Proor. A® admits an isometric linear injection in Cy(P,) and if
f=2Xf; then by the Hahn-Banach theorem each f; can be extended to f;
on Cy(P,).
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For any x € P, there exists an a € K+ such that x(a)#0 and conse-
quently {ye P, |y(a)>4}z(a)} and {ye P, |y(a)=}z(a)} are an open
and a compact neighbourhood of x, respectively. It follows that any
compact set in P, is contained in a compact set of the form

C={xeP,|z(@)21}, aecK+.
If ¢ € Co(P4)* has support in C, we have ¢ < ||¢g|la and thus
2 o) = llplifl@) < .

Consequently the functional 3f; represents a regular Borel measure U
on P, and we have

fla) = f a(x)du(x) forallaeK.
Py

Since all the pleasant properties of C* integrals are derived from
theorem 3.1, it is interesting to know that the converse of this theorem
also holds, so that we might have used the condition f=3f; as a defini-
tion of a C* integral. In fact we have a slightly sharper statement than
the converse of theorem 3.1.

THEOREM 3.7. Let f be a positive functional on K and suppose there is a
net {f; | 1 € I} of positive functionals on A converging weakly to f and such
that f,<f for all i € I. Then f is a C* integral.

Proor. To obtain a contradiction suppose that f is not unitarily
bounded at a € K+. We can then find b € 4 with arbitrary small norm
such that f(b*ab) is arbitrarily great. Assume that for all numbers i <n
we have chosen b, € 4 and f; from the net such that, with the notations

¢ =2b and & =max{|fi}|jsi},
jm1
we have
(1) bl = 2"’.“,-“_11 (for convenience x,=1),
(2) fle*ac,) z 42,
(8) filei*ac) 2 3f(c*acy).

Then since in general we have the inequality
flb+ey*ab+o) 2 ((fo*ab)}—(fle*ac)))?,

we can find b,,,, satisfying (1) such that c,,, =b,,; +c, satisfies (2).
Since the net {f; |7 e I} converges weakly to f, we can then find f,,,
satisfying (3).
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Now define c=3b,. We have c*ac e K+ but
fle*ac) 2 fule*ac) = ful(ea+c—cp)*ale, +c—c,))

2 ((uearacop=Iglt 3 (i)’

t=n+1

L) \2
= (%(f(cn*acn))}— z 2“1) 2 (In—2-m)2,

t=n+1

This is a contradiction and shows that f is indeed unitarily bounded.

We now turn our attention to the C* algebra By(H), the set of the
compact operators on H. As mentioned before K is then the set of the
operators of finite rank. Since the trace is a faithful invariant C* integral
on By(H), any other C* integral f is absolutely continuous (in fact boun-
ded) with respect to tr. We show that f admits a Radon-Nikodym deri-
vative with respect to tr which is a bounded operator on H so that we
may regard B(H) as a generalization of an L, (loc.).

THEOREM 3.8. There is a one-to-one correspondence between C* integrals
on By(H) and B(H)*. If b € B(H)*, then the corresponding C* integral f is
given by f(a)=tr(ba) for all a € K.

Proor. If &ne H, let (£Q%n) denote the operator in K such that
(EQn)y=(y|n)& for all ye H. Let f=3f, be a C* integral on By(H).
With each f; is associated a unique positive operator b; of trace class
such that f;(a)=tr(b,a) for all a € By(H). In particular f;(§®n)=(b;&|n).
For each finite set {b;} we have

IZ b4l = sup 3 (0:£1€) | € <1, & € H}

sup (3 f(§®¢) | 16l 1, & € H}

sup{f(£®¢) | [l§=1,é e H} S o« <0

because f is bounded when (£®§&) runs through the one-dimensional

projections. It follows that the net of finite sums of operators b; converges
strongly to a positive operator b € B(H). We have

fla) = 3 tr(ba) = tr(ba)
for all @ with finite rank.
Conversely if be B(H)*, the definition f(a)=tr(ba) gives a positive

functional on K and since |f(a)| < |b|| tr(|a|) for @ € K, we have f<|b| tr,
and hence f is a C* integral. '

IA

The following example shows that in order to get well behaved positive
functionals on K the condition of unitary boundedness is necessary.
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If {¢; |4 €I} is an algebraic basis for the Hilbert space H consisting
of unit vectors, then clearly the set {(£,2¢;) | 1,j e Ix I} is a set of gen-
erators for K in By(H). If H is infinite dimensional we may refine this
set of generators to a basis for K with infinitely many projections (¢;§;)
and if @ =0, then a;; > 0. If namely # is a vector orthogonal to the (finite
dimensional) space spanned by the vectors £;, j#¢, in the expression
for a, but (£]£;)+0 (all §; are independent), then

(anln) = ayl(n]E)E 2 0.

Let (£,®¢£,) be a sequence of projections in the basis and define
fl@) = Znoa,, for @ =Za;(6Q¢).

Clearly f is a linear, positive functional on the operators of finite rank,
but f is not unitarily bounded and thus is not a C* integral.

As mentioned in the introduction, this paper is an attempt to extend
measure theory to non-commutative systems in terms of integrals of
functions. There is also the interesting problem whether it is possible
to give a treatment in the set-theoretical mood. In such a treatment the
non-commutative equivalent to the measurable sets would be the pro-
jections in A", the compact sets would be the range projections of ele-
ments in 4 with majorized supports and a measure would be a positive
function on the projections, completely additive on orthogonal projec-
tions and finite and unitarily bounded on majorized projections. It
should be noted that the example following theorem 2.4 shows that a
C* integral need not be subadditive on projections.

REFERENCES

1. G. Choquet et P. A. Meyer, Existence et unicité des représentations intégrales dans les
converes compacts quelconques, Ann. Inst. Fourier (Grenoble) 13 (1963), 139-154.

2. J. Dixmier, Les C* algébres et leurs représentations, Paris, 1964.

3. P. Halmos, Measure theory, Princeton, 1950.

4. M. A. Naimark, Normed rings, Groningen, 1964.

UNIVERSITY OF AARHUS
AND
UNIVERSITY OF COPENHAGEN

Math. Scand. 19 — 10



