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A GENERALIZATION OF A THEOREM OF WIENHOLTZ
CONCERNING ESSENTIAL SELFADJOINTNESS
OF SINGULAR ELLIPTIC OPERATORS

HENRIK STETKZAR-HANSEN

In [4] Wienholtz studied differential expressions of the form

‘ (a,j,c (x) ) +2¢ 2 bs(x) -——+1, Z ——b,(x)u+q(x) }

k(x) k—l j=1 0z ,7==1

x=(xy,...,x,) € GcR" We shall always assume that a; =a;; and that

the coefficients ay;, b;, ¢ and k are real and measurable and k(x)>0 a.e.
If the coefficients are sufficiently regular, we can define an operator

8, in the Hilbert space H = L*R*,kdz) in the following way:

D(8,) = CP(R") = the infinitely often differentiable
functions with compact support;
Sou = Su for ueD(S,).

Obviously, §, is a symmetric operator.
We ask for conditions on the coefficients to ensure that S, is essentially
selfadjoint. Wienholtz proved the following theorem (Satz 1, p. 59 in [4]):

TrEOREM (Wienholtz). If the coefficients ay, and b; are three times
continuously differentiable, if q is continuous, if k=1, if there exists a con-
stant Cy € R such that

n n
0 < 3 apl) &8 = Co 3 14
J» k=1 J=1
for every E=(&,,...,&,) e C", ££0, and every x € R™, and if, furthermore,
the operator S, s bounded below, then S, is essentially selfadjoint.
Wienholtz also has a result for annular domains (Satz. 4, S. 65 in [4]).

The essential content of the present paper is the observation that the
proof of Wienholtz’ theorem can be generalized to arbitrary domains &
under suitable assumptions on the principal part of 8. Furthermore, we
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weaken the regularity assumptions on the coefficients, and finally we
allow a weightfunction k.

Before we state the regularity assumptions, we define H,(G) as the
completion of C(G) with respect to the Dirichlet norm

e ={ 3 ) Ll 12}l
ully = + Sl + fue!,
2 J k=1 ax‘taxk je=1 axi ]

and let H, ,,,(G) denote the set of all locally H,(Q) functions. In what
follows all differentiations are made in the sense of distributions.

The assumptions on regularity of the coefficients are most adequately
formulated as follows:

(i) aj, and da,;[ox; are locally essentially bounded;
(ii) b; and (0b,[0x;) € Li,o(G);
(iii) the map u — Su is continuous from H,(K) into H when K is
(A) a compact subset of G;
(iv) if Sy* is the adjoint operator to S, in H, then

D(8y*) = {ue HNH, ,o(G) | Su e H}
and

So*u = Su for wueD(Sy*).
These conditions are for instance satisfied if

(i) a; € C¥@), b, e CH@F) and q € @, 100(F);
(A’) { (ii") the matrix {a,(x)} is strictly positively definit for every z € @;
(iii’y & and k! are locally essentially bounded.

The space @, 1,.(@) is defined on p. 8 in Jorgens [2]. Theorem 2, p. 80,
in Tkebe-Kato [1] shows that, in addition to all the continuous functions
Q,,100(G) contains functions with such singularities as for instance the
Coulomb potential. That (A’) implies (A) is shown in [1] and [2] except
for the fact that these authors have k=1; but this does not change the
proof apart from trivialities.

Wienholtz’ condition on boundedness of the largest eigenvalue of the
matrix {a;(z)} is replaced by the following condition, partly due to
Jorgens ([2, p. 7]):

There exists a real valued function g, defined in @, such that

(1) o(x)2 0 and p(x) - oo as |z| — oo or as ¥ - 0G =boundary of G;
(2) o satisfies a uniform Lipschitz condition in every compact
(B) ; .
subdomain of G;

(3) Z a,k(x) — < k(z) a.e. in G.
k=1 k
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Note that (2) implies that the derivatives 0p/ox; exist a.e. so that (3)
makes sense (cf. Rademacher [3]).

The condition (B) may be split up into conditions (B’) on the coeffi-
cients ay, in a neighbourhood of infinity and conditions (B”’) near the
boundary of G:

There exists a real-valued function g, defined in @, such that

(1) o(x)=0 and p(x) - oo as |x| > oo;

(2') o satisfies a uniform Lipschitz-condition in every compact
subdomain of G;

®) (3') there exists a continuous function y: [0, o[ — ]0, o[ such that

% 9 .
04(%) — — = v¥(o(x))k(z) a.e. in G,
ME_I 1k o, 0, v (e())

f dit[y(t) = oo for every k> 0.
k

There exists a real-valued function o, defined in G, such that

(1") o(x)>0 and o(z) > 0 as x > 0G;

(2”) o satisfies a uniform Lipschitz-condition in every compact
subdomain of G;

(8"") there exists a continuous function ¢: ]0, [ — ]0, oo such

do oo .
Zk az() T B < ¢¥(o(z)) k(z) a.e. in G,
I j 9%k

(B”)

J- dt/p(t)= oo for every £>0.
0

The condition (B) and the union of conditions (B’), (B"’) are equivalent.
To prove that (B’), (B”') imply (B), define

o(x) %
@ =1 [ dlvt) + 1 [ o),
0 o(x)

where o,=maxa(z).
Then (B) holds with ¢’ in place of p.

It is easily seen that these conditions are weaker than Wienholtz’,
both in the case of R and in the case of annular domains. Consider for
example the case @=R", k=1, and choose g(z)=|z|. It is seen that the
largest eigenvalue of {a;(z)} is allowed to grow as y(|z|)?, where
JZp(t)-1dt=oo, in particular, it may grow as [z|%.
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THEOREM. If (A) and (B) are satisfied and S, is bounded below, then S,
18 essentially selfadjoint.

ExampLE. If the operator S, defined by the differential expression
Su = —Adu+q(x)u, zeR", qe@, 100(R"),
is bounded below, then it is essentially selfadjoint.

Proor or THE THEOREM. We may and do assume that S, is bounded
below by 1. By a well-known theorem it is then enough to show that
R(S,) is dense in H. Let h € H be orthogonal to R(S,). We shall show
that #=0. We find in the same way as Wienholtz in his proof of Satz 1,
p- 59, in [4] that

ou
f A2 z a,,,—- 5—dx > f h2ku? de
QG

for all real-valued u € C7(G).
By regularization this inequality holds for every real-valued function «
which has compact support in G and which satisfies a uniform Lipschitz-.

condition in @. Especially it is valid for all » of the form u(z)=f(o(x)),
where

f: [0, 00[ — [0, 00f

is a continuous function with a piecewise contmuous derivative. It fol-
lows from (B (3)) that

[ ek e@)Ede 2 [ b kif(e@)e ds -
aq q

We choose f=fp, where

1 for t= R
fr®) =30 for t2R+1
linear for R<t<R+1,

and the inequality yields

2k do 2 f B2 k dz .
{ze@ | Rso(x)s R+1} {ze@|e(x)S R+1}

The left hand side converges to 0 as R — co and the right hand side to
IA||2, and therefore A=0. This proves the theorem.

If, in particular, the dimension n =1, this gives the following, appar-
ently unknown result for Sturm-Liouville operators. Let us consider
the differential expression
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= ) —(p@)w') +q(x)u} for zel,
where I is an open interval on the real line, and let us for simplicity
assume that the coefficients satisfy the conditions:

p, q and k are real-valued measurable functions.
p is locally Lizschitzian and p(x)>0, Vz € 1.

q € L ().

ke C(I) and k(x)> 0 for every xz € 1.

The minimal Sturm-Liouville operator L, in the Hilbert space
H=L%1,kdx) is defined by

D(Ly) = C3(I) and Lgu = Lu for ue D(L,).
We then have the following

CoroLLARY. If L, 18 bounded below as an operator in H and the integral
of (k[p)t diverges at both endpoinis of the interval, then L is essentially
selfadjoint, i.e. there 18 limit point case in both endpoints.

In particular: If the operator L,, defined by the differential expres-
sion
Lu = —u"” +q(x)u, =zeR, gelLi(R),

is bounded below, then there is limit point case in + .
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