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PARABOLIC DIFFERENCE OPERATORS

VIDAR THOMEE

Consider the initial-value problem (u=u(z,))

2
(1) 5%‘ — P(Dju, t>0,

(2) u(@,0) = uy(x) ,

where P(D) is a partial differential operator with respect to  with con-
stant matrix coefficients. There are a number of different definitions of
parabolic systems in the literature; for the purpose of this paper we will
say that the system (1) is parabolic if the initial-value problem (1), (2)
is correctly posed in L2 in the sense of Lax and Richtmyer (cf. [13])
that is if for any w, € L? there exists exactly one (generalized) solution
wu(z,t) = E(t)uy(x) of (1), (2) and where

sup{lE(t)|; 0S¢<T} < o0

for any 7' > 0, and if in addition for any partial differential operator Q(D)
with constant coefficients and any 7, 7', with 0 <7< T we have

sup{|QD)E®); 7<t<T} < oo.

This last condition means loosely speaking that the solution E(t)u, is
very smooth for ¢>0 even if u, is not. It will be proved that if (1), (2)
is correctly posed, then (1) is parabolic if and only if there are positive
constants C;, C,, u such that

@) ReA(§) = - Cy[é[*+Cs,s

where A(£) is any eigenvalue of P(¢) (Theorem 1.2). It will also be proved
that (1) is parabolic if and only if there is a family of positive hermitean
matrices H(£) which are bounded away from zero and infinity such that
for some positive constants C, Cy, u,

(4) Re(H(§)P(8)) = (-0, lE1F+Co)]
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(Theorem 1.3). This characterization contains at the same time the cor-
rectness of (1), (2) and the condition (3), and is related to Kreiss’ charac-
terization of correctly posed problems [11]. If x in (3) can be taken as
the order p of P(D), the system (1) is said to be parabolic in Petrowsky’s
sense; the correctness of (1), (2) is then automatic. A trivial example of
a parabolic equation which is not parabolic in Petrowsky’s sense is

ou 0% J%u

3 o
where p=3 and
ReP(£) = Re[(i£)+(i6)%] = —&2.

Consider consistent finite difference approximations v,(z,nk) to the
solution wu(z,t) of (1), (2) defined recursively by

(6) wp(x,(n+1)k) = Epvy(x,nk) = A1 Byv(x,nk), n=0,1,...,
(6) (2, 0) = up(x) ,

where 4, and B, are explicit difference operators which are polynomials
in A and where k/h? is constant. We will say that E, is parabolic if it
is stable, that is if for any 7> 0,

sup{|E%|; 0Snk<T} < o,

and if in addition for any difference operator @, consistent with a dif-
ferential operator @(D) with constant coefficients and any =, 7' with

0<t<T we have
sup {|Qs E3ll; tSnksT} < .

It will be proved that for parabolic systems (1), parabolicity of Z, is the
necessary and sufficient condition in order that the family of functions
v;, defined in (5), (6) has the property that for any ¢, consistent with a
Q(D), Quvp(x,nk) converges in L? to Q(D)E(t)u, as k - 0 and nk —1¢
(Theorem 2.2). It can further be proved that the rate of convergence is
h™ where m is the minimum of the orders of accuracy of @, and E, if
u, has m+ p derivatives in L? (Theorem 2.3).

Introducing the amplification matrix or symbol E,(¢) of the operator
E, we give a characterization of parabolic £, analogous to (3): if E, is
stable, then it is parabolic if and only if there are positive constants C,
C,, v such that :

(7) elf) S 1-CikIEr+Cok,  hig|sm,

where g,(£) is the spectral radius of E,(£) (Theorem 3.2). It will also be
proved that E, is parabolic if and only if there is a family of positive
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hermitean matrices H,(£) which are bounded away from zero and in-
finity such that for some positive constants C,, C,, ,

(8) IEn()laye S 1-C1k|E7+Cok, bl =,

where |E| is the matrix-norm defined by the vector-norm |z|g = (Hz,z)}
(Theorem 3.4). This characterization contains at the same time the
stability of Z, and condition (7), and is related to Kreiss’ stability theo-
rem [10]. The criteria (4) and (8) makes it possible to construct parabolic
difference operators K, consistent with any parabolic system (1) (Theorem
3.5).

The assumption of constant coefficients makes it possible to work
throughout with Fourier transforms; the most important tool in proving
(7) is the Seidenberg-Tarski elimination theorem.

Most of the previous work on difference methods for parabolic equa-
tions has been on second order equations (cf. e.g. [7], [1], [4], [14], and
references). A condition of the type (7) appeared for the first time in
connection with parabolic difference equations in the famous paper by
John [7]. Recently, Aronsson [2] and Widlund [15], [16] have studied
the general case of higher order systems with variable coefficients which
are parabolic in Petrowsky’s sense. Widlund thereby takes (7) with »=p
as a definition of a parabolic difference operator (he actually considers
multistep schemes) and proves the stability of such an operator (also in
the maximum-norm in [16]). An interesting application of a condition
of the form (7) to the stability of difference approximations to hyper-
bolic equations has been given by Kreiss [12].

I would like to thank Seymour Parter for stimulating discussions and
for reading the manuscript.

1. Parabolic differential equations.
Consider the initial-value problem

0
(1.1) M- PDu=3 PDw, t>0,
ot lal=p
(L2) u(,0) = w2,
where z = (z,,. . .,%;) € R, u=wu(z,t) is a complex N-vector, and P, are

constant N x N matrices, &=(xy,...,&g), |&|=3;;, and
D* = il gl [og, 2. D ,%d .

For complex N-vectors u,v we use the scalar product (u,v)=3;u;7; and
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the euclidean norm |u|=(3;|u;?)!, and for N x N matrices the corre-
sponding norm
4] = sup{ldul; [u|=1}.

We denote by L2 the set of complex N-vectors u(xz), x € R4, which are
square integrable, and let

ol = ([ e az)'

Correspondingly, if £ is a bounded linear operator on L2, we set
IB]| = sup{||Bull; [ul=1}.

We denote by & the set of infinitely differentiable N-vectors such that
for any j and «,

sup {|z|/ | D*u(z)|; x€R?} < .
We have & =L2.

We say that the initial-value problem (1.1), (1.2) is correctly posed
(in L2, in the sense of Lax and Richtmyer, cf. [13]) if there is a family
of bounded linear operators X(t), t=0, defined on a set 2<% with
9 = L2 such that for u, € 2 the problem (1.1), (1.2) has the unique solu-
tion wu(z,t) = E(t)u, € & (for fixed ¢) and

(1.8) sup{[|Ey¢)|l; 02t=T} < =

for all 7z 0. The operator E(t) is called a solution operator.

If the initial-value problem (1.1), (1.2) is correctly posed we can of
course extend the definition of E(t) to a bounded operator E(t) defined
in the whole of L? by closure. The operator E(t) is called the generalized
solution operator. When we want to emphasize the dependence of E(t)
upon P(D) we write E(t)=E(¢; P).

The operators E(t), t = 0, clearly enjoy the semi-group property

(1.4) E(s+t) = H(s) E(t), 8,t20,
E0)=1.

If (1.1), (1.2) is correctly posed it follows from (1.3) and (1.4) that there
are positive constants Cy, Cy such that

lE@| = Crexp(tCy), t20.

In the sequel C will denote a positive constant, not necessarily the same
at different occurances. When desirable for clarity, we will index the
constants locally and write C,, C,, etc.
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Defining the Fourier transform of a vector u(z) € & by
d

28) = (@4 [u(e) exp(—iCe, ) dz, (@8 = Ty,
j=1

the problem (1.1), (1.2) reduces for u(z,t) € & to the following initial-
value problem for a system of ordinary differential equations with £ as
a parameter, namely
da(&,1)
dt

A(£,0) = @y(8)

where P(§)=3,<pPaf” £"=6,"1...£5". This problem has the solu-
tion
(1.5) A(&,8) = exp(tP(£)) A(é) ,

and we have:

= P(§) ¢,1) ,

Lemma 1.1. The initial-value problem (1.1), (1.2) ¢s correctly posed if
and only if for any T >0,

(1.8) sup {lexp(tP(§))|; 0=t=<T, &real} < oo.

Proor. The Parseval relation, ||&| = |[u||, with (1.5), proves that for any
family of operators E(t), t= 0, satisfying the above definition of a cor-
rectly posed problem, we must have

|Bo(t)| = sup{lexp(¢P(§))]; & real},

which proves the necessity of (1.6). On the other hand, if (1.6) holds,
let @ be the set ;™ of Fourier transforms of infinitely differentiable
vector-functions with compact support. Then =12 and (1.5) defines
for each t=0 and u,€ 2 a function u(x,t)=E(t)u, with the required

properties.
As above, condition (1.6) can be written
(L.7) lexp(tP(£))| £ Cpexp(tCy), 20,

for some positive constants C,, C,.
For a N x N matrix 4 with eigenvalues 4;, j=1,...,N, we define

A(A4) = max;Rel; .

A necessary condition for (1.6) to hold is then that (1.1), (1.2) is correctly
posed in Petrowsky’s sense, namely

(1.8). . sup {A(P(£)); &real} < oo.

Math, Scand. 19 — 6
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This follows at once from the fact that exp (tA(P({-‘))) is the spectral
radius of exp(¢P(£)) so that

exp(tA(P(é‘))) < lexp(¢P(8))] £ Coexp(Cyt), t20.

It is also known that (1.8) is not sufficient for (1.1), (1.2) to be correctly

posed. Necessary and sufficient conditions for (1.6) or (1.7) to hold have

been given by Kreiss [11]; we will give below one such set of conditions.
For a N x N matrix 4 we define

Red = }(4+A4%).

Clearly Re 4 is a hermitean matrix. For hermitean N x N matrices, 4 < B
means (Aw,u) < (Bu,u) for all N-vectors u. The identity matrix is de-
noted by I.

We now state a modification of a well-known lemma by Kreiss [9].

Lemma 1.2. Let & denote a family of N x N matrices. Then
(1.9) sup{lexp(4t)]; A e F, 120} < o

if there is a positive constant C and for any A € F a hermitean matrix H
with
(1.10) C'I sH=CI
and
Re(HA) £ 0.

On the other hand, if (1.9) holds and 0<y <1 there is a constant C, and
for any A € F a hermitean matriz H satisfying (1.10) and

Re(HA) s yA(A)H £ 0.

Proor. With y=0 in the second part, the lemma is proved in [9].
Our modification is easily proved by reviewing the proof in [9]. A similar
modification of the discrete analogue of Lemma 1.2 was used by Widlund
[16] (cf. Lemma 3.1 below).

From this lemma we easily obtain:

THEOREM 1.1. The problem (1.1), (1.2) 18 correctly posed if there are
positive constants Cy, C, and for each real & a hermitean matriz H(&) such
that
(1.11) C,'I £ H¢) = 0,1
and

Re(H()P() s Cyl .

On the other hand, if (1.1), (1.2) is correctly posed we have (1.8) and there
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are positive constants Cy, Cy, C, and for each real & a positive definite her-
mitean matriz H(&) satisfying (1.11) and

(1.12) Re(H(£)P(£)) < [Cy+ CsA(P(E)IL .

There are many different definitions of a parabolic system of the
form (1.1) in the literature. As our definition we will take the regularity
with respect to z of the solution Z(t)u, of the initial-value problem (1.1),
(1.2) for t>0. More precisely, we say that the system (1.1), or the
generalized solution operator E(t)=E(t; P), is parabolic (in L?) if (1.1),
(1.2) is correctly posed and if for any (scalar) partial differential operator
Q(D) with respect to « and any 7,T with 0 <7 <7 we have for a corre-
sponding solution operator E(t)

(1.13) sup{|Q(D) Eq(t)l, TSIST} < oo

Clearly, we could have replaced the solution operator Ey(t) by the gener-
alized solution operator E(t) in (1.13); the generalized solution is indeed
in this case infinitely differentiable for ¢>0. Further, it is easily seen
that we would have arrived at an equivalent definition if we had as-
sumed (1.13) only for first order operators Q(D). We have

Lremma 1.3. The operator E(t; P) is parabolic if and only if (1.6) holds
for any T >0 and if for any (scalar) polynomial Q() of degree ¢ >0 and
any t,T with O<t<T

(1.14) sup {|Q(&) exp(tP(§))|; Tst<T, § real} < oo.

Proor. Follows as in the proof of Lemma 1.1 by Fourier transforms.

In the sequel we will often for convenience write conditions (1.6) and
(1.14) together in the form: if Q(&) is any polynomial of degree ¢ =0 and

7> 0, then sup{|Q(£) exp(tP(#))|; qrSt<T} < 0.

Our next aim is to give algebraic characterizations of parabolic opera-
tors. We have

THEOREM 1.2. Assume that the initial-value problem (1.1), (1.2) 48 cor-
rectly posed. Then E(t; P) is parabolic if and only if there are positive
constants C,, Cy, u such that for all real &,

(1.15) A(P(§)) £ —C1|¢"+C, .
For the proof we need some lemmas:

..Lemma 1.4. If A is a N x N matriz, we have for t20,
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N-1
lexp(t)| < exp(tA(A)) 3 (2t{4])’ .

j=0
Proor. See Gelfand-Silov [6, p. 64].

LemMA 1.5. Let A(r) =max g, A(P(£)). Then A(r) is an algebraic func-
tion of r for large r.

Proor. See Friedmann [5, p. 219]. The essential tool in the proof is
the Seidenberg—Tarski elimination theorem, which will be stated and
used in Section 3 below (Lemma 3.3).

We can now give the

Proor or THEOREM 1.2. We first prove the sufficiency of the condition
(1.15) for parabolicity. Thus assume that (1.15) holds. We then have

by Lemma 1.4, for 0<75t=<7T,
N-1

|&* exp(tP(&))| < |&% exp (tA(P(8))) X (2t|P(£)])

j=0
< C(1+TWN-1(1+ |g))H¥-DP exp (- 0, |E[*)
which is bounded and so, by Lemma 1.3, E(¢; P) is parabolic.

We shall now prove the necessity part of Theorem 1.2 and assume that
E(t;P) is parabolic. Then by Lemma 1.3,

(1+1é1) exp (¢ A(P(€))) < (1+1£)) lexp(tP(®) = C,
for 0 <t =t =T and so, by taking maximum over |£|=r and setting t=1,

(1+7) exp(il(r)) =0,
or
(1.16) A(r) £ logC—log(1+7).

By Lemma 1.5, A(r) is algebraic in r for large r and so by developing
A(r) in a Puiseux series around r = oo there is a (rational) number x and
a constant C, such that

A(r) = =20, (1 +0(1)), r—>o0.
Because of (1.16) we must have C; > 0, 4> 0 and so for sufficiently large r,

A(r) £ =Cyr*.
This clearly proves (1.15).

It follows from the proof of Theorem 1.2 that the condition (1.15) is
equivalent to the condition (1.14) with 7> 0. In the case where the matrix
P(&) is normal, in particular in the scalar case (N = 1), the condition (1.15)
is sufficient for parabolicity; it is then not necessary to explicitly assume



PARABOLIC DIFFERENCE OPERATORS 85

that the initial-value problem is correctly posed since in that case for
0=<t=T, with the C, in (1.15),
lexp(tP(&))] = exp(tA(P(¢))) S exp(TCy).

Also, the condition (1.15) with u=p is sufficient for parabolicity since
in that case by Lemma 1.4 we have for 05¢< 7,

exp(tA(P(E)))g(% |P(&)|y

C(L+(¢[£[P)N") exp(—Cytl€lP) < C'.
In this case, the operator E(¢;P) is said to be parabolic in Petrowsky’s
sense. In the general case, however, the correctness of the intial-value

problem has to be explicitly assumed. To see this we consider the ex-
ample where P(£) is the matrix

lexp (¢ P(&))|

IIA

IIA

= - & = 2 4
PE) = (T _p) = —eI+8d.
We obtain A(P(£))= — &2 so that condition (1.15) is satisfied with u=2.
However, we obtain

exp(tP(£)) = exp(—t£2) (I +&4J)
and this matrix is not bounded for 0 <¢< T for any 7'>0 (set =42 and
let |&] - oc), and thus E(¢; P) is not parabolic.

It follows from the proof of Theorem 1.2 that for a parabolic operator
E(t; P) there is a largest u for which (1.15) holds. This number we call
the order of parabolicity of E(t;P). In particular, an operator which is
parabolic in Petrowsky’s sense is an operator which is parabolic of order p.

Operators of the form E(¢;P) which satisfy (1.15) for some positive
constants C,, C,, u are called parabolic in Silov’s sense, even if the initial-
value problem is not correctly posed in the above sense (cf. [5] or [6]).
Our concept of parabolicity is thus in general more restrictive than
Silov’s.

We conclude this section by a characterization of parabolic operators
which contains at the same time the correctness of the initial-value prob-
lem and the condition (1.15).

THEOREM 1.3. The operator E(t;P) is parabolic of order at least u if
and only if there are positive constants C,, C,, C3 and for each real & a her-
mitean matriz H(&) such that
(1.17) 0,1 s H(E) < CyI
and
(1.18) Re(H(§)P(8)) £ (—Cylé1*+Cy)I .
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Proor. It follows from Theorem 1.1 that (1.17) and (1.18) imply that
the initial-value problem is correctly posed. Since for any positive
definite N x N matrix H and any N x N matrix P,

(Re(HP)u,u)

A(P) < sup- )
u+0 (Hu,w)

condition (1.18) implies (1.15) and so E(t;P) is parabolic of order at
least u.

On the other hand, if E(t;P) is parabolic of order at least u, (1.15)
holds and by Theorem 1.1 there is a hermitean matrix H(£) satisfying
(1.17) and (1.12). Together, (1.12) and (1.15) give (1.18).

2. Parabolic difference operators.

For the approximate solution of the initial-value problem (1.1), (1.2)
we consider operators of the form

(2.1) (Apv)(x) = Zgap(h) vz +ph) ,

where % is a small positive parameter, f=(8,,...,8;) with B; integer,
ay(h) are N x N matrices which are polynomials in 4, and the summation
is over a finite set of f. Such an operator is referred to as an-explicit
difference operator We introduce the symbol of the operator 4,

Ay(¢) = 25 a},(h) exp (Kﬁ h&)) ,
which is periodic with period 2z/h in &;, and notice that for v € L?, the
Fourier transform of A4,v is
P
(Ap0)(§) = An(&) (&) .

Further 4,-! exists and is a bounded operator in L? if and only if
det.4,(£)+0 for all real & We then have

14571 = sup{|4,(8)~1|; & real}.
In particular, if

(2.2)  detAu(h18) |po = det(3, as(0) exp(B,€))) + 0,  Ereal,

then detA,(¢) is bounded away from zero for sufficiently small 4, say
h<h,, and all real &, and it follows that A,-! is uniformly bounded for
h<h,.

We then replace the equation (1.1) by a finite difference equation
(2.3) L Apv(x,t+k) = Byo(x,t),
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where 4, and B, are explicit operators of the form (2.1) such that (2.2)
holds for 4, that is 4,-! exists and is uniformly bounded for & < k,, and
where k is a positive parameter tied to & by the relation k/h? == con-
stant. The relation (2.3) can be solved for v(z,t+ k) if h <k,

(2.4) v(x,t+k) = A, By(z,t) = Eyv(a,t),

and we want to use (2.4) for step-wise computation of an approximate
solution v(z,nk), n=1,2,..., of the initial-value problem (1.1), (1.2) by
setting

v(x,nk) = Ejuy(x) .

The operator E, defined by (2.4) is then supposed to be chosen so as to
approximate the solution operator E(k)= E(k;P) introduced in Section 1
if this operator exists: we say that K, is consistent with the equation (1.1),
or, by abuse of the language, with E(¢; P), if for any infinitely differenti-
able solution u(z,t) of (1.1),

(2.5) Ayu(z,t+k) = Byu(a,t)+ok), k—0.

Notice that this definition does not assume that the initial-value problem
is correctly posed, or that E(¢; P) exists, and that it only uses the solution
u(z,t) in a small neighborhood of the point (z,?).

We introduce the symbol of the operator E,,

(2.6) En(§) = Ax(8)71 By(§) = Zj e4(h) exp(i{B,hé)) ,

and obtain for the Fourier transform of Ejv if v € L?,

(2.7) (ER0)(E) = Ba(6)(2) .

Clearly, since 4,(¢) and B,(£) are polynomials in h, exp(th&;), j=1,...,d,
we have that 4,(£)-! and E,(£) are analytic in A, b < by, and &. In particu-
lar, the series (2.6) is absolutely convergent and the operator E, can
also be defined by

Eyv(x) = 34 e5(h) v(z+Bh) .

If this sum is infinite, that is if taking the inverse of A4, is not a trivial
operation, the operator E, is said to be an implicit difference operator.

It is well known that the consistency condition (2.5) can be expressed
in terms of the symbol E,(£) of the operator E,:

LeMMA 2.1. The operator Ey, is consistent with E(t; P) if and only if
Ey(h-18) = exp(kP(h-1&)+o(k+ |&[?)), k,&—>0.
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Proor. Let ay(h) and by(h) be the polynomials

%(h) p apjhj ( ) = Ej jhj

Developing both sides of (2.5) in Taylor series around the point (z,t)
we get by (1.1),

S w3, Bay) ——D"u(w 1) + AP (3, a,,o) P(D)u(z,1)
Jtlel=p
= 3 w3, ﬁ“b,,,)—D“ w(x,t) + o(h?), h—>0.

JHelsp
Since the D*u(x,t) are arbitrary we conclude that (2.5) holds if and only if
3pBrag = 3500, J+lxl<p,
25 B ag; + Al Spap P, = 25 B%bg, j+lal=
On the other hand these are the necessary and sufficient conditions that
the Maclaurin expansions of the analytic functions
Au(h2E) exp(kP(h-1£)) and By(h1§)

as functions of (k,£) have the same coefficients for h/&* when j+ |«| £ p,
that is

An(h18) exp(k P(h-1£)) = By(h~1&) + o(h?+|&[?), h,E—0.

Since 4,(&)! is umformly bounded for h=h,, & real, this proves the
lemma.

Assume that the initial-value problem (1.1), (1.2) is correctly posed so
that E(t; P) exists and is uniformly bounded in any finite interval [0,7'].
We then say that the operator E, converges to E(t)=E(;P) (when
h — 0) if for any uy € L? 20, and any pair of sequences {h;}72;, {n;};2,
with h; — 0, n;k; >t as j —> oo,

(2.8) B3 ug— E(tugl > 0, j oo

It is well known that consistency alone is not sufficient to guarantee
convergence: we say that E, is stable if for any 7'> 0,

(2.9) sup{||E}|l; 0=snk=T} < oo,

and we have the Lax equivalence theorem (cf. [13] where it is proved
in a more general framework):

THEOREM 2.1. Assume that E, is consistent with E(t)=E(t;P) and that
(1.1), (1.2) ts correctly posed Then E, converges to E(t) +f and only if B,
18 stable. -
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Proor. We first prove the necessity of stability for convergence.
Thus assume that E, converges to E(¢) and that (2.9) does not hold.
Then there are sequences {h;}32,, {n;}72; and a ¢ with 0<¢<7 such that
nk; -t when j - co and

(2.10) B > 00, §— oo

On the other hand, for any u, € L? we have by the convergence of E,

to 50) gl > 1B Eugl, § oo,

so that {||[E3/u};2, is a bounded sequence for any u, € L*. But then, by
Banach—Steinhaus’ theorem {||E3/[}iZ, is a bounded sequence. This con-
tradicts (2.10) and so £, is stable.

We now prove the sufficiency of stability for convergence. Because
of the uniform boundedness of E;‘,; and the boundedness of E(t) it is
sufficient to prove (2.8) for the dense subset 08° of L2. But by (1.5), (2.7),
and Parseval’s relation,

1B wo— E@t)uoll = |I[Br (&)™ —exp(tP(£))] (&)l
< lluoll sup {1 B (&) — exp(tP(&))]; ()0},

and the result follows at once from the following lemma:

Lemma 2.2. If E, is consistent with E(t;P), then
@11)  Ep(6 > exp(iP(), by >0, mky 1,
uniformly on compact sets in &.

Proor. We have by Lemma 2.1,

Ey(&) = exp(kP(§)+o(k)), k-0,

uniformly on compact sets in & This implies, again uniformly on com-
pact sets in £,

B, ()" = exp(n;k;P(§) +o(1)
exp(tP(§)+o(1)), hy;—>0, njk;>1,

which is (2.11).
The stability of £, can be expressed in terms of the symbol:
LeMmA 2.3. The operator E,, is stable if and only if for any T >0,
sup {|Bxp(&)*|; 0snksT, Ereal} < oo.
Proor. Follows at once from (2.9) and

B3 = sup{|Ea(é)"]; & real}.
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An immediate consequence of Lemmas 2.2 and 2.3 is:

Lemma 2.4. A necessary condition for the stability of the operator E,,
conststent with E(t; P) is that (1.1), (1.2) is correctly posed.

Beside operators of the form (2.1) approximating the solution operator
E(t) we shall also consider operators of similar form approximating dif-
ferential operators with constant coefficients in 2: we say that the oper-
ator

(2.12) @nv(x) = b1 3, qs(h) v(x+ph) ,

where the sum is finite and the scalar functions g,(k) are polynomials
in A, is consistent with the differential operator
QDw = 3 Q,D%
lal=q
of order g, if for any infinitely differentiable function v,

Qw(x) = QD) v(x)+0(1), h—>0.

We introduce in the same manner as before the symbol

Qn(§) = b2 3, q4(h) exp (1B, R&)) ,

and have:

LEMMA 2.5. The operator @, 8 cons.z'stent with Q(D) if and only if
(213)  BQuh1E) = QA1E) +o(he+[ED),  hE—>0.

ProoF. Analogous to the proof of Lemma 2.1.

The two concepts of consistency are clearly related by the fact that £,
is consistent with E(¢;P) if and only if k-1(E,—1I) is consistent with
P(D).

We now introduce the following definition: we say that the operator
E, is parabolic if for any operator @, of the form (2.12), consistent with a
differential operator.Q(D) of order ¢ and for any 7,7 with 7> 0 we have

(2.14) sup{||Q: E}l; grSnksT} < oo.

Notice that as in the continuous case by setting @,=1, (2.14) con-
tains stability. In Section 3 we will give an example which shows that
replacing g7 by 7 in (2.14) would not have given an equivalent defini-
tion. It will be convenient in the sequel to assume that if ¢=0, then @y
is always constant, independent of k.

The introduction of parabolic dlfference opera.tors is motlva.ted by the
following analogue of Theorem 2:1: C
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THEOREM 2.2. Assume that E, is consistent with the parabolic operator
Et)=E@t;P). Then E, is parabolic if and only if for any Q, consistent
with a differential operator Q(D) of order q, any u, € L2, any t 2 0 which is

>0 if ¢>0, and any pair of sequences {h;};2.,, {n;};2, with by — 0, njk; —~ 1,
as j — oo we have

(2.15) 1@s, E3itto — QD) Bty > 0, j oo

Proor. Assume first that (2.15) holds. We can then prove in the same
way as in the proof of Theorem 2.1, using Banach-Steinhaus’ theorem
that (2.14) holds so that E, is parabolic. On the other hand, if E, is

parabolic, the relation (2.15) follows as in the proof of Theorem 2.1 from
the following lemma:

Lemma 2.6. If E, 13 consistent with E(t;P) and Q) ts consistent with
Q(D), then

Qn (&) En)™ > Q(&) exp(LP(£)),  h; — 0, myky > 1,

uniformly on compact sets in &.

Proor. Follows from Lemma 2.2 since by Lemma 2.5, th(é) - Q&)
when j — oo.

Also parabolicity can be expressed in terms of symbols:

Lremma 2.7. The operator E’h 18 parabolic if and only if for any @, con-
sistent with a differential operator Q(D) of order q and any =,T with ©>0,

(2.16) sup{|@u(&) By(é)*; qrS<nk=sT, £real} < .

Proor. Analogous to the proof of Lemma 2.3.

We have the following consequence:

Lemwma 2.8. If E, is parabolic and consistent with E(t; P), then E(t;P) is
parabolic.

Proor. Follows at once from Lemmas 1.3, 2.6, and 2.7.

We want to study the rate of convergence in (2.15) and introduce the
following definitions: Let E, be consistent with E(t)=E(t;P). We say
that the order of accuracy is m if for any infinitely differentiable solu-
tion u(x,t) of (1.1),

Ayu(x,t+k) = Bu(z, t)+0(h1’+"‘) h—>0.

Also, let- @, be congistent with the differential operator @(D). We then
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say that the order of accuracy is m if for any infinitely differentiable
function u(x),

Qru(x) = QD) u(x)+O(hm), h—>0.

These conditions can also be expressed in terms of the symbols:

Lemma 2.9. Let B, and @, be consistent with E(t;P) and Q(D), respec-
tively. The order of accuracy 18 m, respectively, if (q is the order of Q(D)),
Ey(h—2&) = exp(kP(h~1&) +O(hp+m 4 |Ejp+m)) B E -0,
b Qu(h~1€) = hAQ(h~1£) + O(RT+™ + |&|1+m), h,§—>0.

Proor. Analogous to the proof of Lemma 2.1.

LeMMmaA 2.10. Assume that E, and @, are consistent with E(t;P) and
Q(D), respectively, and that both have order of accuracy m. Then if both
E(t; P) and E, are parabolic, there is for any ©,T with T>0 a constant C
such that for gv<nk <T (q is the order of Q(D)),

(2.17)  1Qu(®) Ba(&)"— Q&) exp(nkP(&))| S Ohm(1+|g[p+m) .

Proor. Since the orders of accuracy of £, and Q,, are both m, we obtain
easily by Lemma 2.9 that for k< kg, and all real &,

(2.18). . |Ey(§)—exp(kP(£))] = ChP+m(L+|E[P+m),
(2.19) Qa8 - Q)] = Ch™(1+ [gjeim)
and we also have for h<h, and ¢ real,

(2.20) @) = C(1+14]9) .

We can write

(2.21)  Qn(8) Ep()™— Q(8) exp(nk P(£))

n—1
= 3 Q&) Ba(8)' [Br(&)—exp(kP(®)] exp((n—1-)kP(E)) +
J-
+[Qn(€) — Q(§)] exp (nk P(8)) -

We want to estimate the different terms on the right in (2.21). Consider
first the terms in the sum with }n <j <n. Then Q,(&)E,(£) is bounded
since E, is parabolic and 3gqr<jk<T, exp((n—1—j)kP(£)) is bounded
since E(t;P) is uniformly bounded when 0<¢{<7, and thus by (2.18)
we have for these terms

(2:22)  |@x(8) BA(&) [Ea(E) - eKP(“’(«E))] exp((n—1-j)kP(é))|
. - S Cho+m(1 + |Ejp+m) .
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Consider now the terms in the sum with 0 <j < in. Then E,(£) is bounded
since E,, is stable and Q,(£) exp((n—1—j3)kP(£)) is bounded by (2.20) and
since E(t; P) is parabolic and 3¢t <(n—1—j)k < T for small h. Therefore,
by (2.18) the estimate (2.22) holds also for these terms. Finally, for the
last term in (2.21) we have by (2.19) since E(¢;P) is parabolic and
grsnk=T,

[@n(&) — Q(&)] exp(nkP(£))| = Chm.

Notice that if ¢g=0, we have by our conventions that @,(&)—@(&)=0.
Altogether, we get since k/h? =1 and nk< T,

n—1
|Qa(&) Bn(&)"— Q&) exp(nkP(§))| < C [}:0 h+m(1 | g[p+m) +hm]
J=

S Chm(14[§|p+m)
which proves the lemma.

To be able to state the result on the rate of convergence we introduce
the Hilbert space H, of functions u € L? such that (14 |£2)ts4(&) € L2
with the norm

Il = ([ lemeacere ae ),

where 4 is the Plancherel-Fourier transform on L2. We recall Sobolev’s
inequality: if d > }d there is a constant C such that for u € Hj,

(2.23) sup, [u(z)| < Clullz .
The result is then:

THEOREM 2.3. Assume that E, and Q, are consistent with E(t;P) and
Q(D), respectively, and that both have order of accuracy m. Then, if both
E(t;P) and E, are parabolic, there are for each t,T with v>0 constants
C,, C, such that for gt <nk 2T (q is the order of Q(D)),

(2.24) 1@n By — QD) E(nk)uoll = C1A™ |lugllp1m »
(2.25)  sup,|@, ERuo(x) — QD) E(nk)ug(x)| = Coh™lugllpsmid
for uge Hy.,,, and uy€ Hy,,,.5 (d> 1d), respectively.

Proor. Taking Fourier transforms and using Parseval’s relation (2.2,4)
follows at once from Lemma 2.10. Multiplying (2.17) by (1+|§12)*3 we
obtain in the same manner for u,€ Hp,p.a>

1@ ERue — QD) E(nk)uglly = CH™*|[wgllpim4d>
and (2.25) then follows by (2.23).
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3. Algebraic conditions for parabolicity.

We shall now discuss necessary and sufficient conditions for parabolicity
of the operator £,. It turns out that in addition to the conditions for
stability, the conditions for parabolicity can be expressed in terms of
properties of the spectral radius g,(£) of the matrix E,(&).

According to Lemma 2.3, the stability of £, is equivalent to-

‘

(3.1) sup{|E,(&)"; 0snk=T, &real} < o
for all 7> 0. It is well known that the von Neumann condition
(3.2) on(é) £ 1+Ck, éreal, hshy,

is a necessary condition for (3.1). Necessary and sufficient algebraic
conditions for (3.1) have been given by Kreiss [10] and Buchanan [3].
We will quote below one version of Kreiss’ theorem.
Let H be a positive definite N x N matrix. Then if » is a complex
N-vector,
IuIH = (Hu’u)} ’

where (u,v)=2j1"; 14;0; is the ordinary scalar product, defines a norm,
equivalent to |u|. The corresponding matrix norm is

ld|g = sup |[Aulgflulg = sup[(A*HAu uw)[(Hu,u)]t,

and if we generally let g(A4) be the spectral radius of 4, we have for
any such H,

‘ e(d) = |4y .

We then have the following discrete analogue of Lemma 1.2:
LemMa 3.1 Let F denote a family of N x N matrices. Then

(3.3) sup{|4"|; AeF, n=0,1,...} <

if there is a positive constant C and for any A € F a hermitean matriz H
with '
(3.4) C'I sH:s=CI,
and
[4lg =1

On the other hand, if (3.3) holds, then p(A) S 1 forany A e F and if 0y <1
there is a constant C, and for any A € Fa hermitean matriz H satisfying
(3.4) and :

4|z = re(A)+l—-y-



PARABOLIC DIFFERENCE OPERATORS 95

Proor. With y=0 in the second part, the lemma is proved in [10].
The above modification was discovered by Widlund [16] and is easily
proved by reviewing the proof in [10].

From Lemma 3.1 we easily obtain:

THEOREM 3.1. The operator E, is stable if there are positive constants

C,, Cy and for real & and h £ hy a hermitean matrix H,(&) such that for these
& and h,

(3.5) Cy11 £ Hy(8) = 011

and

| Ex(&)l e = 1+05k .
On the other hand if B, is stable and o,(&)=o(E},(£)) we have (3.2) and if

0=y <1 there are positive constants C,, Cy and for each real & and h<hy a
hermitean matriz H,(&) satisfying (3.5) and

(3.6) [En(E)lmye S vould)+(1—p)+Cok

An important tool in the sequel is the following lemma, which can be
considered as a discrete analogue of Lemma 1.4.

LemMA 3.2, There exists a constant C depending only on N such that
for any N x N matriz A with spectral radius ¢ we have for nZ N,

3.7) |47 £ Oy N+ [V 1+ (n|d —I)N1].

Proor. Beside the euclidean matrix norm in which the lemma is ex-
pressed we introduce the equivalent norm

N
|4l mex = maxij lal, 4 = (ayg),
-1

which corresponds to the vector norm
[Ulmax = MaXluyl, % = (uy,...,%y).
We have

lulmax “<..= Iul é N* |u|maxs
and it follows that

|[4] = N A|pax S N4
For any matrix 4 =(ay,) let 4,,=(|a;]). Then |4|nax=14aps/max-
We now turn to (3.7). By Schur’s theorem any square matrix is

unitarily equlvalent to an upper triangular matrix. We can therefore
without restricting the generality assume that A has the form

A=D+F,
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where D is a diagonal matrix and F is purely upper triangular. We have
(F&bs)N= 0 a«nd
]Flmax < |F+ D_Ilmax = |A_I[max .

Therefore, for n=2 N,
IA"[ s N*I(An)abs!max = N}’(Aabs)nlmax
<

Nt ’(QI'*'Fabs)nlmax
N-1 n .
= Nt Z ( ) Qn—jiFabstmx
J=0 J

N-1
S Nign-Na1 ¥ (n) Al Ve (A
j=o\J
N-1
< NWgn-Na'y ( ) oN-1-9|A — I
j=0\J
S Oy N[N+ (n]4 - I))V-1].
This proves the lemma.

We will also need the Seidenberg-Tarski elimination theorem:

LemMa 3.3. Let S =8(o, ) be a finite system of polynomial equations and
inequalities in o= (0y,...,0,) and T=(7y,...,7s) with real coefficients:

S(O’, T) : pk(o’ T)

=0, k=1,---,}’,
Qk(ayt) =0, k=1

yeees0

Then there exists a finite set 3, (0),. . .,3,(0) where 3,(o) is a finite system
of polynomial equations and inequalities tn o with real coefficients:

2;(0): pjulo)
Zx(0)

IA 1l

0’ k=1,---,71,
O, k=1,-..,6j,

such that for any given o, the system S(o,t) has a solution (o,7) if and
only if at least one of the systems 3;(0), j=1,...,u, 18 satisfied by a.

Proor. See e.g. [5, p. 225].
We can now state the main result in this section:

THEOREM 3.2. Assume that the operator E, s consistent with some
E(t;P). Then E, is parabolic if and only if it is stable and if there are
positive constants C,, Cy, hy, and v such that the spectral radius g(£) of
E, () satisfies
(3.8) on(§) S 1-C1k|é[+Cgk,  h|&| S, h<h,.
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Proor. We first prove the sufficiency of this condition for parabolicity.
By Lemma 2.6. we have to prove the boundedness of Q,(£)E,(&)" if @,
is consistent with a differential operator Q(D) of order ¢ and qgrSnk < 7T,
where 7>0. Since we assume stability, we only have to prove this for
g¢>0 and since Q,(£) and E,(£) are both periodic with period 2x/h we
only have to consider %|&;| <n. By Lemmas 2.1 and 2.5 the consistency
of B, with E(¢;P) and @, with @(D) implies for h < hy,

(3.9) |En(§)—1| £ Ck(1+(£7),

Q&) = C(1+1£19) .
We therefore obtain by Lemma 3.2 for 0<t<nk=<T, n= N, if we use
the uniform boundedness of g,(&) for real &,

|Qu(E)En(E)™ = C(1+1£|7) on(§) N+ [oa(E)N1+ (n|Ey(8) — 1))
< 0(1+ |5lq+(N—1)p) Qh(f)n'N“ .
By condition (3.8) we obtain for k|§;| ==,

Q&) En(£)r] < O (14 |£|9+W-1p) exp(—nkCy|&]"+nkC,)
< O(1+|[a+N-P) exp(—vCh[E+TCy) £ C,

| =
I

since »>0. This proves the sufficiency part of the theorem.
We now turn to the necessity part of the theorem. We introduce the
operators 0, , with symbols

0, 4(&) = (ih)~1(exp(thé;) — 1) = b1 [sinhé; +4(1 —coshé))],
which are consistent with 9;=14-1 0fox;, j=1,...,d. We set

On(&) = (94,n(&),- - -,04,n(8))
8o that

NG ( > 195, 4(8) |2) = b1 [2%(1—0037»5,)]*.

J=1
By the definition of parabolicity of E, we have for some constant C, and
h<hy,

(1+19(&)]) en(é)™ = exp(Cy),  mk=1,
or

on(§) < exp(Csk) exp[—k log(1+[3,(£)()] -
Since for 0 <k < ky=Ahy?,

exp(Csk Ck,

)1
exp[—k log(1+[0,(&)|)] £ 1—Cgk log(1+13,(8)l),
where

Math. Scand. 19 — 7
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C, = Cyexp(Cy), Cf = exp(— sup {klog(l+h-12d})}),
0<ksko

we get for O <k <k,

(3.10) on(§) S 14+ Cyk—Cyklog(1+[3,(8)) .

We introduce for r =0 the function

(8.11)  @(r) = sup{k[o(&)—1]; £ Teal, 0<hShq, [3(8) =1}
This function enjoys the following properties:

i) @(r)=Cy—Cylog(1+7),
ii) @(r) is an algebraic function of » for large r.

The first condition follows at once from (3.10). To prove the second,
we introduce in E,(¢) for A<h, new real variables s=(s;,...,8,),

c=(cy,..-,¢q) by
8; = 8 3(§) = h71sinkg;,

Cj = cj’h(f) = h_22(1—008h§j) >
that is we substitute in A4,(&), B} (&),

and obtain for A4,(¢) and B,(¢) polynomials A(k,s,c) and B(h,s,c). Be-
tween s; and ¢; we have the relation

(3.12) 8,2 = Cj—ihzcjz, j = 1,. . .,d >

and if we agree to use this relation to replace s, whenever possible, the
representations A(k,s,c) and B(h,s,c) become unique. We set

E(h,s,c) = A(h,s,c)"t B(h,s,c)

for h<h, and s,c satisfying (3.12). Because of the consistency we can

conclude that
E(h,s,c) = I+kP(h,s,c),

where P is analytic for the &,s,c¢ iﬁ question; we have indeed
P(0,5(h18), cp(h28)) = P(h=*8)+o(1+[A2£7), b, ~0.
If we introduce the spectral radius o(k,8,c) of E(h,s,c) and the function
y(h,s,¢) = k-l(g(h,s,c)—l) ,

then the consistency proves that y(k,s,c) can be defined to be continuous
for 0<h <h, and s,¢ satisfying (3.12), and the definition (3.11) can also
be written
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(3.13)
@(r) = sup{y(h,s,c); 0Sh<h,, 482+ h%cP=4c;, j=1,...,d, Z‘l"cj =r2},

Assume now that r20, g=¢(r). Then since the supremum in (3.13) is
over a compdct, set in the (k,s,c)-space, there are h,s,c satisfying ¢ =
y(h,s,c) and the side-conditions. By the definition of y(h,s,c) this means
that there is an eigenvalue x =2, +ix, of P(h,s,c) such that

EL(1+kx|—-1) = ¢.

Altogether this means that the following system S=.8(r,p,h,k,s,c,%;,%,)
of polynomial equations and inequalities with real coefficients is satisfied :

S: k- =0,
Redet {A(h,s,c)— (1 + k(xy +1%5)) B(h,s,¢)} = 0,
Imdet {A(h,s,c)— (1 + k(x, +ix5)) B(h,s,¢)} = 0,
20y + k(2,2 + %,2) — 20— kg2 = 0,
432 +h2cP—4c; = 0, j=1,...,d,
%"1"2 =Y
j=1
—h S0, h-hy<O.

Let Zy(r,9),...,Z,(r,) be a finite set of finite systems of polynomial
equations and inequalities in » and ¢ with real coefficients which corre-
sponds to § by the Seidenberg-Tarski theorem after elimination of
(h,k,s,¢,5;,%,). Then at least one of these systems 2 (r,p) is satisfied for
p=¢(r). At least one equation has to occur in X, for ¢ =g(r), for if this
were not the case Z, would also be satisfied by (r, D) with @ > ¢(r) and
sufficiently close to (). But then by the converse part of the Seiden-
berg-Tarski theorem we would be able to find (&, k3¢, ¥%,,%,) such that
(r,®,h,k,3,¢,%,%,) satisfies S. But then P would have an eigenvalue #%

with E(14k#-1) = & > ¢

for some h,s,c satisfying the sideconditions, and this would contradict
the definition of g(r) as the supremum in (3.13). Let F(r,¢) be the prod-
uct of all the polynomials occuring in all the 2\(r,@). Then F(r,p) is a
polynomial and F(r,g(r))=0, and we can finally conclude that ¢(r) is
algebraic for large r.

Since g(r) is an algebraic function of r for large r we have by a Puisseux
development of ¢(r) around r= oo, with Cg+0,v rational,

@(r) = —2C¢”(140(1)), r—>o0.
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Condition i) gives Cg>0, »>0, and we conclude that there is a r, such
that
p(r) £ —Cgr’, rry.
Since by i) ¢(r)—C, <0 for all 20 we have with Cy=Cgry"+C,,
p(r) £ —Cgr’ +C,, rz0.
We therefore have, using (3.11), for any real £, and 0<h < h,,

koa(§)— 11 = @(|04(€)]) = —Cl0n(&)I"+Cs,
or in view of the trivial estimate |0,(&)| 2 (2/x)|&|, with C; = (2[n) C4,
en(é) = 1-C1k|é[+Cok .
This proves (3.8) and so concludes the proof of the theorem.

It follows from the proof of Theorem 3.2 that condition (3.8) is equiv-

alent to
sup{|@x(6) Ex(&)*]; t=nk=T, £real} <

for all 7,7 with 0<v <7, and all @, consistent with a differential opera-
tor Q(D). In the case where the matrix F,(£) is normal, in particular in
the scalar case (V=1), the condition (3.8) is sufficient for parabolicity
of E,; in this case we automatically have stability since for 0<nk =T,
h |€j | é T,

[En(8)" = en(é)™ = exp[(—C,|§"+ Cy)nk] = exp(CeT).

Also, as will be proved in Lemma 3.4 below, the condition (3.8) with
y=p is sufficient for parabolicity. In the general case, however, the
stability of £, has to be explicitely assumed. To see this, we consider
an example. Let

o(§) = }(1—cosé) = sin?§¢,
ap(§) = [L+i0(é)*—o(£)*] [1-R2a(é)],

and let E, be the operator with symbol (N=2, d=1)

(3.14) Bye) = (09 Zﬂ‘,fg) = ap(h)] + o(hET .

We find .
E,(h1E) = (1—}h282+ 0] +o(h2+ £4), h,E—>O,

so that K, is consistent with the parabolic operator E(t;P) where
P(g) = (—182+ 3088, A=1, p=4, u=2.
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Clearly
en(§) = lap(hé)| = 1—-h?sin?$hé < 1-n—2ké2,  [¢h S =,
and so condition (3.8) is satisfied. On the other hand if A=n-%, and
&, = hlarccos(1l—2h?),
we have o(hé;)=ht, a,(hé,) > 1, and |a,(hé,)"| - e~ as n — oo, and so0
By = ap(héy)" I +nay(héy)"ta(héy)3T

is not bounded as n - co. Since kn=~Ah2<1, this proves that K, is not
stable. We notice for later use that &, is chosen so that h&, - 0 as
n — oo,

By the proof of Theorem 3.2, if £, is parabolic there is a largest >0
such that (3.8) holds. We call this largest » the order of parabolicity
of E,.

We say that E, is locally stable if there is a y >0 such that for any
T>0,

(3.15) sup {|E,(€)"]; h|é|<y, 0snksT} < oo.

Similarly, we say that £, is locally parabolic if there is a y >0 such that
for any ¢,T with 7> 0, and any @, consistent with a differential operator
Q(D) of order ¢=0,

(3.16) sup{|Qa(&) Ea®)"]; Bl <y, qrSnksT) < oo.

It follows as in the proof of Theorem 3.2 that E, is locally parabolic if
and only if it is locally stable and if there are positive constants C,,
C,, v, v such that

(3.17) on(é) < 1—CykIEP+Cob, ISy .

It also follows as in the proof of Theorem 3.2 that there is a largest »
for which this is possible. This largest » we then call the order of local
parabolicity. Notice that this definition does not demand that E, is
parabolic; £, does not have to be stable and (3.8) does not have to hold
for y < &b, |& k<.

The above example (3.14) proves that (3.17) is not enough for local
parabolicity; in general we have to assume explicitely local stability.
The normal case is again an exception. We also have the following:

Lemwma 3.4. If E, is consistent with E(t; P) and if for some positive con-
stants Cy, C,, y, :

(3.18) on(®) S 1-CyklElP + O,k ,
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for h|E| Sy, then E, is locally parabolic of order p. If (3.18) holds for
h\&;| S 7, then E, is parabolic of order p.

Proor. We have by Lemma 3.2, (3.9), and (3.18) for h|&| <y (h]&,l <n),
0<nk=T,
[Ep(&)"] = C[1+(nk(1+|£P))N-1] exp(—Cyink|é? +Cynk)
= C[1+(nk|§P)V] exp(—Cynk|é?) < O,
which proves the lemma.
We have the following sharpening of Lemma 2.8:

LemMma 3.5. If E, 18 locally parabolic of order v, and consistent with
E(t; P), then E(t;P) is parabolic of order at least ».

Proor. We first prove that the initial-value problem (1.1), (1.2) is
correctly posed. This follows at once from Lemma 2.2 and (3.15) since
lexp(¢P(8))| = lim |E,(&)"| = C
B

By the above definition we have for A|£| <y,
on(é) = 1-Ck|E" + Coke
and so for nk=1 if b is so small that h|{|<y,
en(@)" = (1 —Ciklé"+ Ogh)™ < exp (— 1|7+ C)y) -
It follows from Lemmas 1.3, 2.2, and 3.2, (3.9) and (3.17),
exp(A(8) S loxp(P(E)] = lim By(e)
NKw=

h—>0

s I O(L+[fPPesd)" S exp(—~CylET+C).
k=l
h—0

which concludes the proof of the lemma.

In practice, the problem of constructing a parabolic E, consistent with
a parabolic E(¢;P) is essentially solved if we have found a locally para-
bolic E,:

LemMmA 3.6. Assume that E, is consistent with E(t; P) and of order of
accuracy m, where P has order p. Assume further that E,, is locally para-
bolic of order v. Let o(£) be the trigonometric polynomial

d
~a() = 1—d-127* 3 (1—cosfy),
J=1

CE(8) = Ep(8).o(hé)e

where 2x2Zp+m. Then



PARABOLIC DIFFERENCE OPERATORS 103

where s ts a natural number defines an operator E,’ which 1s also consistent
with E(t;P) and has order or accuracy m. Further, if 8 is large enough,
E,' is parabolic of order v. Finally E,’ is explicit with E,.

Proor. Clearly £}’ is also consistent with E(¢;P) and with the same
order of accuracy as E,, since for any natural number s,
o) = 1+0(|¢]>) = 1+0(]§|P+m), £-0.
By assumption there is a y >0 such that (3.16) holds. The result then
easily follows if we choose s so large that
sup{|Ey(§)lo(hé)*; ¥ < hlE], hl&|Sm, hshe} < 1,
which is clearly possible.

We shall look a little closer at operators which are parabolic in Pe-
trowsky’s sense. We have

THEOREM 3.3. Assume that the operator E, is consistent with E(t;P)
which is parabolic of order p where p is the order of the differential operator
P(D). Then E, is locally parabolic of order p and E, is parabolic of order
p if and only if for any y > 0, there is a hy> 0 such that

(3.19) sup{g,(£); y<h|&, k|| Sm, h<he} < 1.

Proor. If E(t;P) is parabolic in Petrowsky"s sense, we have
A§) £ —C1lEP+0Cy .

Since Ej is consistent with E(f; P) we have by Lemma 2.1,

E,(h1¢) = exp(kP(h-1&)+o(k+ |£P)), k,&—>0,
and so 4

en(h71) < exp(—Cyk [P +Cyk+o(k + [€]7))

< 1-CyléPP+Cyk,  for [E|Sy, h<h,,
if y and h, are small enough. By Lemma 3.4 this proves that E, is
locally parabolic of order p. Clearly, if condition (3.19) holds we have
for any @, consistent with a differential operator Q(D) of order ¢ 20 as
in the proof of Theorem 3.2 for any 7,7, with 7>0,
sup{|Qn(&) ER(&)"|; y<h|E|, hl&|Sm, h<hy, qgrsnkST} < oo,

Since the condition (3.19) is obviously necessary for parabolicity of
order p, this completes the proof of the theorem.

If E(t;P) is parabolic of order u<p we shall see that the situation is
more complicated; we are going to give examples of explicit operators
E,, consistent with scalar parabolic operators E(t; P) and which are
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i) not stable even locally,
ii) stable but not locally parabolic,
iii) parabolic but of local order » < u.

We shall now discuss these three examples in some detail. Letd=1, N=1.
i) Take for E, the operator with symbol

E,(&) = (1+1sin%hE) (1 — A% sin?hf) .
We have
(3.20)  Ep(h18) = exp(— M+t +o(hi+EY), £ h 0,

so that E, is consistent with E(¢; P) where
0% 0%
.21 PDwu = —+1 —.
(3.21) (D = =~ +1 =
Then E(t; P) is parabolic of order 2 and
on(€) = (1+sin®h&)t (1—h2 sin?hf) .

If for some y >0,
on() £ 1+Ck,  |£|h=y,
we would have

limg,(h-1&) £ 1,  |£|<y.
h—»0

This is clearly not the case here for any y > 0.
ii) Take now
E, (&) = [1—(h sinhé —sin3hé)?] [1 —sindhé +14 sinthé] [1— (1 — coshé)] .

We have again (3.20) and so this operator is also consistent with the
parabolic operator defined by (3.21). We have for <1, 0<|£| <7,

(3.22)  on(h%)
= [1—(hsin&—sin3£)?] [1 —sin8¢ (1 —sin8&) P} [1—K(1—cosé)d] < 1,

and so the operator E, is stable. Assume that it were locally parabolic
of order », so that for some y >0 we have

(3.23) en(h18) £ 1-Ci 4|+ Cok,  |E]Sy.
Let &, =arcsinkt. By (3.23) we would then have

onh18) S 1-Caht¥,  ~hshy,
whereas by (3.22);
’ gh(h—léh) = ]. +0(h4), h -> 0 .
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This is a contradiction and so £, cannot be locally parabolic.
iii) Take this time
E,(&) = [1—sin*h&(h—sin?hé)2 — b4 sin2hé]-
-[1—sin'2h& + ¢ sin®hE] [1 — (1 — coshé&)?] .
We have here
Ey(hE) = exp(—h2&2—h2E4+ i85+ o(h8+ £8)), h,E—> O,

and so X, is consistent with E(¢; P) where

so that E(t; P) is parabolic of order 4. We have for k <h,,

(3.24)  ou(h718)
= [1—sin%&(h—sin2£)2 — bt sin?&][1 —sin!2£(1 —sin?2£) ]} [1 — (1 — cos&)Y]
S (1—h*sin?é)[1— (1 —cosé)t],
from which it readily follows that E, is parabolic, and of local order at
least 2. However, assume that E, were parabolic of local order 4. Then
we would have for some y >0,
(3.25) en(h71€) = 1-Cih2 &+ Coh°,  [§]Sy.
Set as above &, =arc sinkt. By (3.25) we would then have
enh 1) < 1= Oyt

whereas by (3.24),

Qh(h_lfh) =1 +0(h5), k -0.

This is a contradiction, and so £, cannot be of local order 4.

The following theorem gives a characterization of parabolic operators
E,, which contains at the same time the stability condition and the condi-
tion (3.8) on the spectral radius. It is a discrete analogue of Theorem 1.3.

THEOREM 3.4. The operator E,, is parabolic of order at least v if and only
if there are positive constants Cy, C,, Cs, hy, such that for each h < hy, & real,
there is a positive definite matrix H, (&) with

(3.26) C,1 £ Hy(%) £ C 1,
and
(3.27) [Bn()lmye S 1—-Cok|&"+C5k, hlg|sm.

Proor. It is clear in view of Theorem 3.1 that (3.26) and (3.27) imply
stability of £,. Also, (3.27) implies that the condition (3.8) of Theorem



106 VIDAR THOMEE

3.2 is satisfied and thus the conditions of the theorem are sufficient for
parabolicity of order at least ».

On the other hand, if £, is parabolic of order at least », then condition
(3.8) of Theorem 3.2 holds and by Theorem 3.1 there is a positive definite
matrix H,(£) satisfying (3.26) and (3.6). Together, (3.6) and (3.8) give
(3.27).

We shall use Theorem 3.4 to prove the following existence theorem:

THEOREM 3.5. If E(t;P) is parabolic of order u there exists an operator
E,, which ts consistent with E(t; P) and parabolic of order u.

Proor. Set ,
‘ sing = (sin&,,...,sin§;),
d
o(§) =1 — d12-P-1 3 (1—-cosé)?,
j=1
and let us consider the explicit operator defined by
(3.28) E, (&) = o(h&)I +kP(h-2 sinhé) .

Clearly E, is consistent with E(t; P). We shall prove that if 1=k/h? is
small enough, E, is, parabolic of order u. By Theorem 1.3, since E(t;P)
is parabolic of order u there are positive constants C;, C,, Cs, and for
each real &£ an hermitean matrix H(£) such that

C,7'1 £ H) =0y
and _
2Re(H(§)P(8)) = (—20,|¢"+Cy)H(E) .
We set
H,(¢) = H(h1sinhé),

-and obtain since } Sc(£) <1,

Ey(8)* Hy(&) Eo(£) = o(hE)2 H,(£) + 2k o(hE) Re(H (k-1 sinhg) P(h-! sinh&)) +
+ k2 P*(h-1 sinhé) H,(£) P(h-! sinhé)
< [o(h&)2— O,k [h-1 sinhé|# + Oy +
+k2C4(1+ [h~1 sinhé|?P)] Hp(£)

[a(hé') +22C,|sinh¢|?? — Co k|2 sinh&|* + Csk]1 Hy(8) »

and so if we let 4 be so small that

. 0(€)+22C, [sing*? < 1 . for 0< &)<z,

‘we obtain for h|&| <=,
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En(&)* Hy(§) Bp(8) £ (1-0Ogk|é* +Cok) Hy(8) ,

which is equivalent to
|En(E)ppey S 1—Cok|é|*+COqk, hl§l =

By Theorem 3.4 this proves that E, is parabolic of order at least u.
By Lemma 3.5 the order of K}, is at most u. This completes the proof
of the theorem. The operator defined by (3.28) was used by Kreiss [8]
to prove the existence of stable operators consistent with a correctly
posed initial-value problem.
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