MATH. SCAND. 19 (1966), 59—76

ON THE L? ESTIMATES
FOR ELLIPTIC BOUNDARY PROBLEMS

LEIF ARKERYD
0. Introduction.

Let « be a multi-index, i.e. a sequence «,,. . .,«, of indices 4, an index

being an integer between 1 and n. Let |x| be the number » of indices
in . Write

D, =47 0 _8_
* ox, Oz,
We denote by
4 =A@ D)= 3 ax)D,
laj=2m

and
Bj = B,(.’L‘,.D) = z bja(x)Da, j'—-—-l,...,m,
lelsmy
differential operators in R", with coefficients submitted to suitable reg-
ularity conditions. Suppose 4 is properly elliptic and the B; satisfy cer-

tain ‘“‘complementary’’ conditions with respect to 4. We consider the
boundary problem

Au =fin R? = {#,>0}, Bu =g¢; on B*! = {,=0}.

The following inequality is fundamental in the theory of elliptic boundary
problems

©O1) iy % O (1AL g+ 3 Btdymgossp 0l )
2

for u e Hy,,. Concerning the definition of the spaces Hy,, and their
norms, cf. Section 1.

For s integer 22m, the most important case, inequality (0.1) was
proved by Agmon-Douglis-Nirenberg [1], Browder [2] and Slobodeskij
[20]. By complex interpolation this result was extended to non-integer
8>2m by Lions-Magenes [9] and Schechter [17]. (Real interpolation
leads to similar results in /4 p cf. Section 1, instead of H, p- We shall
not consider that case here.) The case of general s (no lower bound) is
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treated by Schechter [17]. For a survey and more complete references,
see e.g. Geymonat-Grisvard [4].

Because of the great importance of (0.1) and the not very good con-
nections between the relevant papers, a new and rather independent
proof might be motivated. We follow an idea of Peetre [13], [16] for the
deduction of (0.1) in the special case of Dirichlet’s problem. It is based
on a simple, explicit solution in the case of homogeneous boundary
conditions. After this case has been treated, the extension to inhomogene-
ous boundary conditions is rather easy to do using well-known results on
the “trace”. We then pass to variable coefficients by the usual Korn’s
argument. Finally it is possible to treat other problems than Dirichlet’s,
cf. Theorem 4.1, our main result.

Properly elliptic systems (cf. [1, Part II]), however, create certain dif-
ficulties, when approached by this method. We have not treated them
here.

Instead of the Calderon-Zygmund theorem on n-dimensional Hilbert
transforms in LP-space, which is most often used in similar cases, we
shall use Mihlin’s theorem on Fourier multipliers. Then the proof becomes
as transparent as in the L?-case. Moreover our assumptions on the co-
efficients are rather weak. For instance, it is sufficient that the coeffi-
cients of 4 belong to Lip,,, (cf. Campanato [3]). This cannot be done by
interpolation. Our method has a greater range of applicability than the
case treated in this article. We hope to return to the subject in a forth-
coming paper and then to give similar results for the so-called quasi-
elliptic operators, including thus the elliptic (treated here) and the para-
bolic cases.

I want to take this opportunity to express my gratitude to professor
Jaak Peetre, who suggested the subject. He has given much constructive
criticism and shown kind interest in my work.

1. Preliminaries concerning H,, p-Spaces.

We denote by L?, 1 < p < oo, the space of equivalence classes of Lebesgue
measurable functions in R with integrable pth power, and write

lul, = ( [lutei d2)*,  weLs.

Let S be the space of infinitely differentiable functions » such that

sup |z, D,u(x)| < oo
zeR"

for all « and p, and with the topology defined by these seminorms. The
dual space S’ is the space of tempered distributions. (See Schwartz [18]).
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The Fourier transform of an element f in § or §’ is denoted by Ff, the
inverse Fourier transform by Ff, FFf=f. We take formally

Ff = fexp( —x) f(z) dx
We use the notation
K(D)f = FKFf
where K(£) is a function on R*. We shall often employ

K(&) = A(&) = 6&, +1(1+6%|&'|2)F
and

K(&) = 4,(8) = (1+%|&'PY,  6>0.

Here & =(&,,...,§,). The dependence on ¢ will not be explicitely in-
dicated. Constants are denoted by C or K. Different constants sometimes

get the same symbol in different expressions, when this does not lead to
confusion.

We shall often use the following well-known theorem by Mihlin [10],
[11].

TarEOREM 1.1. If
ID.f(&) £ C, 187,
for |x| £n, then f is a Fourier multiplier on LP, that is,
T -~ FfFT

defines a continuous linear mapping of LP into LP, 1 <p < co.

For a proof, see Hormander [7, Theorem 2.5, p. 120].
We now introduce the space

HS;p ={f; fed, FA”FfEL”}
normed by

“f”s;p = “FAst“p .

Theorem 1.1. gives that the definition of the space is independent of
0> 0, and that the corresponding norms are equivalent. Further

”f”s;;p é Cnf”s,;pa When 31§32 .

The é-dependent norms were used by Hormander [8]. For 1<p<oo,
H,, , is a reflexive Banach space with dual space H_,; ., where p' is
defined by p-'+p'-1=1. We also notice that H,, ,=L?. For further
properties of the H,, ,-spaces, cf. e.g. [9, Part III].
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Let (H,,,)- be the subspace of H,,, of elements in H,,,, whose sup-
ports are contained in the half-space :1:1 T 0. Let Hj,, be the correspond-

ing quotient space H I(H, )
9 3 D 8;p/ -

and |-];,, the quotient norm

If13;p = infllfilo; 5 »

where inf is taken over all fin H s; p» Whose restriction to x, >0 is f. We
shall sometimes need a somewhat more general space than H,, ,, viz.

Hs,r;p = {f’ fES” Alr(D)feHe;p}
and the corresponding norm
”f”s, D = ||FA1rAst”p .

The quotient space Hj ,., is defined analogously to Hy,, above.
We now give a few theorems on H,, ,-spaces, which will be needed
later on.

TaEOREM 1.2. If 0<s<1, the norm ||fll,,, i equivalent to

Flath)—f@) .
o f e IO ahaw | + 151,

»

and the norm ||f|73, , is equwalent to
+
(z+h)—f(x) ,

6’f K |h|s+nf dhy db') + 1115 »

P

where [%, denotes the n—1 times repeated tntegral. The equivalence con-
stants are independent of §> 0.

ProoF. The theorem follows essentially from Theorem 1.1. and the
observation
p (=@, expllE TEh)—1

e+ IES

Ff.

This is essentially a theorem by Stein [21] and Peetre (unpublished).

For 820, set

M, = {zp; D, ¢pelL,, 0=|x|=[s], and in adaition, if ¢ not an integer ,

F T ID.on—D dh, db’'
ff I1Dan lhli"[’ﬂfn <o, for lalé[sl},
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where @,(x)=¢(x+h). In particular M, >Lip,,, ¢>0. Here Lip,,,
denotes the space of bounded Lipschitz continuous functions. Define
M, for s<0 by M,=M_,. The elements in M, take H, , into H,,,,.
We have

TeEorEM 1.3. If fe H,, , and o€ M, then of e H,, ,, and
leflls;p = (Kl@llo+o(1)lIfly;, as 6> +0.
K is here independent of @ and & e (0,1] and o(1) depends on ¢.
Analogously we have,
Treorem 1.3". If fe H,, and g€ M,, then of € H}, , and
leflisp = (Kllplle+o(W)IfI5;, as 6> +0,
where K 1is independent of ¢ and 6 € (0,1], and o(1) depends on ¢.

Proor or THEOREM 1.3. We first consider the case 0 <s <1, the case
8=0 being evident. Then, according to Theorem 1.2.,

L+ llef Ilp}

‘r“¢w+Mﬂw+m—¢wvw)

loflls;p = K ld‘ i dh, dh’
0

< K {as (f (@) f I ”Jl’h’TLf dh, dk’ pdx)p— +
00 oo h p-l
+as( | f(x+h)_(__w(x)dhldh' d) +I|f!|,,|l<p||w]
0 —c0

llo ‘P”co
éK{Iltplloo Iflls; o + If1lp 6° l’;z(”” ’*}

< K (lpll + o [l an) 11,

|h|s+n
Thus
leflle;p £ (Kliplle+0(1)lIf ly;, 88 8> +0.

For a general s20 put s=g+7 with 0=n<1 and ¢ an integer. By
Theorem 1.1 the norms

Ifly;p and 3 8D, fll,;
lolsg

are equivalent. Hence we obtain
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”‘Pf”s;p 0 z 6“”Datpf”,”p

lel=g

lo|=q B+y=a

< K{ S 3 (6¥Dpl, + o(1) 87D, fll,.
lalsg pty=a

< (Klplo+o(W)Ifly;p 88 8> +0.

IA

IIA

For s<0 we get the inequality by duality.
Proor or THEOREM 1.3". Hj,, is a quotient space of H,, ,.

TueoreMm 1.4. If fe H,, ,, and

_|f if x>0,
I=10 if 2,<0,

then ge H,,, for —p'-1<s<p~l. Further
l9lls; » = Kllflls;p
with K independent of 6> 0.
This theorem is by Shamir [19] to whom we refer for a proof.

To treat inhomogeneous boundary problems we need another type of
spaces beside the H,, , ones. For 0<6<1 let W,,, be the space of func-
tions u € L? such that

n ¥ »7
lulg = ° 3 (f t“’”(f lu(. .., 2;+t¢,...)—u(x)? dx)t-l dt) < o0
Rn

=1\
normed by
<u>0;p = Ilu”p+ lulo .

The space of functions w such that Dsue L?, 0<|8|<m, Dgue Wy, p,
|Bl=m, 0<6<1, normed by

<u>m+0;p = z 6w”Dpu”p+ z 6m<Dﬂu'>0;p
[Bl<m [Bl=m

is denoted by W,.e,,, and W, ,=(W_,.,) for s<0. An introduction
to these spaces and a bibliography is found in e.g. [9].

We need in W,,, a theorem of the same type as Theorem 1.3. For
8>0, 8 not integer, set
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(o]
n
K, ,=19; DgeL_|x|<[s], > Z (f {—pls—lsh,
lel<lol i=1 \y

p-1
-{[Datp(...,'+t,...)—Da<p||’°’°t'1dt) < 00}

and for s<0set K, ,=K_;. . Then we have

TrrEorEM 1.5. If fe W, , and p e K, , then ¢of € W, , and there is a
constant K independent of ¢ and 6 € (0,1] such that

(P eip £ (Klgpllo+0(1){fs; »
as 6 - +0, with o(1) depending on ¢.

The proof is quite similar to the proof of Theorem 1.3. and will there-
for be omitted.

Let s>k+p~t, s+p~ mod1l, be given. For w € Hy, ,(R") it is possible

to define D;*u(0,.’). The properties of the trace are described by the
following

TaeoreM 1.6. [5], [21]: The mapping
w — 6% D*u(0,.")
from Hy, (R™) to W, 4,1, , (R*Y) is continuous, and
84407 (D Fu(0,.")), 4y p S Cllullf

where C does not depend on 6> 0. Conversely there is a linear, continuous
mapping
(‘Po:- . "‘Pk) U

Sfrom 1'[}‘_0 W, jpm1,p to a set Ve, p<H,,, such that

Dyu(0,.") = ¢

[ullf;p S C 3 &7 (DU, Vpjpi;pr WE Vg
Here C does not depend on 6> 0.

2. Dirichlet’s problem in the constant coefficient case.

Let
° AD)= 3 a.D,

|&|=2m

be a homogeneous properly elliptic differential operator with constant
coefficients, i.e.

Math. Scand. 19 — 6
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(i) for every &€ R», £+0, we have A(£)+0,
(ii) for every & € R, &' %0, A(&,,&') has exactly m roots with positive
imaginary part as a polynomial in &,.

As well known (i) implies (ii) for n> 2.
ReMaRk. It follows that there is a C'>0, such that for every & € R
C1éPm = A§) = ClgP™.
Moreover (cf. e.g. [4]), for all roots g(&’) of A(&,,&)=0, it holds
lel = K,[¢'] and [Img| 2 K,l¢],
for some K, and K,>0.

We let a; _,=1, which is no restriction. Let o,¥=p,®(&) be the
roots of A(£,,&')=0 with positive (negative) imaginary part and set
m

A(:&:) = H (51—95&)) .

-1
Set ’
M = {f;, feS, Ff =0 for |§'| < 671}.

Lemma 2.1. In #nH,,,.,
o4, Af
s a norm equivalent to ||f|ly-+e; p-
Lemma 2.1'. In #NH_,,,,,
8- |(A-) A,
8 a norm, equivalent to ||fl_p+s; p-

Proor. The proofs are analogous in the two cases, so we prove only
Lemma 2.1. Take a function ¢,(f) € C*(RL), such that @,(t)=0 for
t<}, pi(t)=1 for t=1. Let ¢(&)=¢,(0]¢|’). Because of Theorem 1.1, we
get

ompA
o 4l = | TE 4y

L§ 0”f“m+c;p ’

where C does not depend on 6> 0, and

Iflmse; o = NA™fllp =

pA™
7 A*

L§ Com 4., Al

where C does not depend on &> 0.
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We shall consider the following form of Dirichlet’s problem (with
homogeneous boundary conditions) for the half-space z;>0 when
—p'l<e<pl:

given fe H_,, ..., find we H,,,,., such that

(2.1) =0 forx<0, Au=f forx;>0.
Condition (2.1) is clearly equivalent to

(2.2) suppu < {£,20}, supp(du—f) < {x;<0}.
Let

(2.3) Ff(¢) =0 for |&] < 6-1.

By the Paley—Wiener theorem (as (4 .,(£))! is analytic in &, for Imé&; <0
and ¢ fixed, and as (A_(E))“1 is analytic in &, for Im¢&; >0 and & fixed,
|€'| = 6-1), we obtain from (2.2)

Au=0 for z,;<0,
(2.4) (4,)w =0 for z,<0,
A= (4)Yf for 2,>0.
Let Y, be the characteristic function of the half-space x; 20. Then ac-

cording to Theorem 1.4, for —p'-!<s<p~! we have: if ge H,,,, then
Y,ge H,, ,. So evidently

YgeH,  ,n# if geH,,nA.
Then
(4)7F(Y.9)(¢) =0 for [&] < 671,

Moreover from (2.4) we get

supp(4,)tY.g < {x,20}

and

Ay =Y, (4)7f.
Thus
(2.5) u=(4,)1Y (4.)7f

is the unique solution of (2.1) submitted to the restriction (2.3).
The solution (2.5) will now be used to obtain & priori estimates for
elliptic boundary problems. Let

weH,, nM#ukx)=0 for x<0, —p'l<e<p?.
Because of Theorem 1.4 we immediately obtain
I|A+u”¢;p =—<‘ C inf“(A—)—.lf”s;p ’

where inf is taken over all fe H_,,,,, such that the restriction of f to
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t20 coincides with Au for x,>0. According to Lemma 2.1 and 2.1,

we also have
(2.6) [wlits;p = CO™™ || Aullt,,, ..

for these u. Here C is independent of §>0. More generally we shall
prove

Lemma 2.2. Ifue H,, ,n M, Di}u=0 for ,=0, 0sj<m—1, then
el S €O AUl gy
where C does not depend on 6>0, s=p~ modl, s>m—p'-L
For the proof we need the following
Lemma 2.3 If ue H, ,,,, then
”’IL”:;,.;p = C(azm”Au”:—%z,r;p + ”u”:-—l, r+1;p) ’
where C does not depend on 6> 0.

Proor. Noting that

2m
o = 3 (1) @D (i)t
j=0

we obtain

(@) [l rip = 14Ul g, i S CIODY™ U, i+ [, ;) -
But

(2'8) 62m”D12mu“:—2m,r;p § 627"”‘4'““:—2"1,7';}) + 0’ “u”:-—l,r+1;p
S (™| Aull_om, r;p + I1lls_, r41;0) -
From (2.7) and (2.8) follows

(2°9) ”u”::r;p é 0(62"‘“‘4“”:—201,1';13“"|]u]]:-1,r+l;p) ’
where C does not depend on d> 0.

Proor or Lemma 2.2. If ue H, ,,,, then A;"ue H, .

From
Au=f for 2,>0, wu=0 for z,<0

it follows by partial Fourier transformation that

AAyru = Ayf  for 2;>0, A,”u =0 for ,<0.
We get
FA uE) =0 for |&<d?,
if
Fu(f) =0 for |§'| < 61,
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and by (2.6) that
(2.10)

e rsp = 141 Ulse;p S COmAA U2y, = C 8™ Aull s,
if —p'-l<e<p~l. Suppose that

”u”:—l,r;p é Cézm”Au”:—l—zm,r;p

TP

for every real . Then by Lemma 2.3

062’"(||Au”;"_2m,,;p + ”A“”:—l—zm,rﬂ;p)
0'52'””.4%”:_2,”’,”, .

lllls, »;

IA 1A

From this inequality and (2.10) the lemma follows.

We shall now extend the & priori estimates given by Lemma 2.2 by
dropping the restriction (2.3) and the homogeneity. Thus we consider
the boundary problem

(2.11) Au = f for 2,>0, DJu = 0 for ;=0,05jsm—-1,
where
AD) = > a,D,=AD)+ > a,D,.

|la|<2m la|<2m

4, is homogeneous and a, are constants.

THEOREM 2.1. Let s+ p-tmodl,s>m—p'-L. If uis a solution of (2.11),
then

iy, S O [ amsp+ Il ) »
where C does not depend on 6 € (0,1].
Proor. Choose a function ¢, € Cy*(R!) so that
@) =1 for 0<¢1, @(t) = 0 for £22,
and take @(&)=g¢,(6|£'|). Set w=wu,+u,, where

Fuy(§) = @) Fu(§),  Fuy($) = Fu(é) (1-9(&)) .

Then (e.g. by Theorem 1.1) it follows that u,€ H,,,, %, € Hy, ,nA if
uweH, ,. By Lemma 2.2 and Theorem 1.1,

||u1||;';p = Cazm”Al)ul”:—ZM;p = C,ézm“AOu”:—Zm;p
and

+ +

ApAu
4,

But according to Lemma 2.3

Asu
4,

£C
P

= Cllull,
P

hugll,p = -
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lully —1;p = C (™™ AU} _gm, —1; p+ IWllis; ) -
lluolls; p = C(8*™ | Agulls_om, 1; p + [Wll31; ) -
We have now shown -
lully;p = C(*™ | Agullom; p+ llliy; ) -
For A(D) we then get
lulG;p = C(O*™ Al _om; p+ lells—y; )
S O (P 1AU W40 3 10 1D )
< O/(™ | Aully_gm; p+ Iullis; p) -

The proof is complete.

Hence

Next we give an estimate of the corresponding inhomogeneous problem
(2.12) Au=f for 2,>0, Dju=¢; forz,=0, 05j<m—-1.
If wue H,,,, then by Theorem 1.6 there exists a function v satisfying

D,u(0,.") = D#(0,.")
and such that, if s>m—p'-1, s+p~1modl

m—1 _ ,
”'v”:;p é O(.zoaj‘ﬂ’ 1<_D1j'v(0,. »a—a’—-p“l;p) .
j-
Then

s p = =2l + 0l
2 O (8| A(u =)l gm; p + 1w = 2lls=s; o+ 0115 5)
= 0"(52’”||Au"a-2m;p + ”v”a;p + ”u’”a—l;p>

m—1
S 0 (™1l g+ Il + S 50D, Do)
J-
and we have proved

TaEorEM 2.2. If we€ Hj,p, s+p~t modl, s>m—p'-1, then
m—1 .
"u":;p (62"' ”Aul 8—2m ; p + "u":-l;p + .206“—:’ <D1ju(0’ . ’)>a-j—1"’1; P) *
. =

3. General boundary problems in the constant coefficient case.
Let
A= A'(D) S a, D

|| =2m
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and let
Bj = Bj(D) = z bjatDa ’
|| =mj
of order y; in Dy, j=1,...,m, be homogeneous partial differential opera-
tors with constant coefficients. We consider the boundary value problem

(3.1) Au = f, Bju = gj .

Denote by F(&')=(F;(&')) the corresponding characteristic matrix

(cf. e.g. [6]). The elements F;(£') are infinitely differentiable for &' 0
and
m—1
_ZoFij(S')Dlju(O,é') = By(D,,&)(0,¢")
]-
if Au=0, ¢=1,...,m. Further
|Fy4(8)12 S O(L+ &R,

and F;;(¢’) is homogeneous.
We say that (3.1) satisfies (&) if

(I) A(D) is properly elliptic (cf. p. 67)
(IT) det(F (&) %0 for & with [&'|=2L>0.

From (II) follows

3 (Ll

t=]

3 F@
j=1

12 03 (14|48
j=1

for every 4 € C™. Instead of (II) we can use formally simpler conditions.
See e.g. [1]. See also [12] and [13].
We take L =1 which is no essential restriction and take in this section

8 > 8 = max(m—p Ly +pL,. .., u,+p71).

From II follows the existence of F-1. Let coF(&)=(c0F;(£')) be the
matrix of cofactors in (F(£'))=F'=the transpose of F. That gives
coF.F=detF-I and with, for the moment, =1

coF (&) Byu(0,&)
det F(&')
if ue€ H;, ,nA and Au=0. Thus, noting that
coF“ Al"’i“"
det F
is a Fourier multiplier (cf. [6, Lemma 2.2]), we get

Dltu(o’ 5') = z
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m—1 m-1/mcof, . Bu(0,.")
(D0, ity = —@iF
'go 1 8—4—p 1 P ‘go i1 det F J-—'l."—'P-l; P

coF“
Bu(O,.')>
g detF 7 ip=1;p

C 3 (Ba0,.") gy pmi;p -
J

IA

I\

By homogeneity this gives for an arbitrary 6>0 if we H;, ,n.# and
Au=0

m—1 z
3 6 KDIUO, Wy sy S O3 8B, Dy,
J=

Jj=0

To treat an arbitrary element in Hj,, we make the same decomposi-
tion % =uy+ u, as in the proof of Theorem 2.1. Set f=Awu,;. Then

feHy yp., N M.
Define v=F(A-1Ff). Then
veH,,n# and Av = Au, =fif ,>0.
Setting w=wu,—v we have

weH} n# and Aw=0if 2,>0.
Then

m—1 m~1
2 6i+p—!<D11u1(0, . ’)>a—j—p—1;p < .z()éj+p—1<Dljw(O’")>a—j-p—1;p +
0 J=

m—1 _2
+ z 6j+p <D15'U(0, . ')>c—j—p‘1; P
=0
m
<c ( S 8™ B0, ")) pmype; p Hv”i;p)
Jm=1
o 1
o ( 2, O™ Byuy(0,.")) gomyp1;p +
j=1

m
+j21 6mi+p-1< B(0,. ')>a-m,—p~1; pt Ilollz, ,,)

IIA

m
o ( 2 5mj+P’l<Bjul(0, . ’)>,_mj_p—l;p + “")”:;p)
J=1

A

m
c (62'"l|Au1!|,+_2m; ot _zla"wr‘ (Byus(0,.")smyp-1; ,,) )
J-

We thus have
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m—1

(3.2) X &MPTUDIuy(0,. o jp;p
0

m

sC ( zl O Biuy(0,.")Ygmypmt; p + 62 | Ay n:_zm;p) .
j=

Moreover

(3'3) ”uo”a p = (62m”Au”a—2m p+”u”a—1 p)
according to the proof of Theorem 2.1 and
(3.4)
”ulna p = (62m||Au1”a—2m p+”u1”8—1 p+z 6j+p_l<D jul > )>a—_7-4p—1 p)

according to Theorem 2.2. By (3.2), (3.3) and (3.4) follows
(3.8)  lull;p = lually, o+ lluolly
< 0 (0 Aulgn,p + nuu:_l;,,+§1 G B0, ey
Next we consider (3.1), when 4 and B; are inhomogeneous. Thus

A(D) = 4y(D)+ 3 a,(D,)

la|<2m

Bf(-D) = BjO(D)+ z bfaDu

|al<mj

and

are differential operators with constant coefficients.

We say that (3.1) satisfies (%) if

(i) 4, and By, satisfy (E,), and

(ii) the order of D, in B, equals the order of D, in Bj, (equals u;).
We notice that

(3-6) 52ml[A0ull:_2m;p 62m“AuHa—2m p+ z 62m[a ‘ ”D u”a—-2m P

= 0(62'"”/1%”,_2",.?’}'“u”,_l P)
In the same way
(3.7 6m]+p—1<Bjo ’e ')>a—mf-p‘1 P
< OB O, . )yt p + 2 8™ byl D0, "V smyp-1; p

am,'

= 0(6"‘7+p—1<Bju(0,. >c-m,'—p’1;p + ||'Il/||,,__1;p)
=C (62"‘]|Au||:'_2m;p + ||?LH:_1;p + 6'"7""’_1(3,%(0

the last inequality by Lemma 2.3. By (3.5), (3.6) and (3.7) we conclude
for A(D) and By(D) satisfying (E)

5e ')>a-mj—p"1; p) ’
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TaroreM 3.1. If u € HY, ,, s+p~t modl, s>s, (p. 71) then

m
||“H':, P é C (62m ”Au”:—ZM;p +j§16mj+p_l<Bju(0’ . ')>c—-m;—p—l; P + l]utlj—l; p) ’
where C does not depend on ¢ € (0,1].

REMARK. The restriction s+p-mod1l is not essential and can be
removed by complex interpolation (cf. e.g. [9, Part III]).

4. General boundary problems in the variable coefficient case.
Let A@D)= S a,D,
|la]<2m
be a differential operator with M,_,,,-coefficients and
Bj(x D z bja
|“l§mj
be differential operators with K, —mj—p-1; p-c0efficients, such that at every
point z° with z,°=0, condition (%) of Section 3 is satisfied for A(z°, D),
By(x°, D) and such that at every point z° with ,°> 0, 4(2°, D) is properly
elliptic.
We can extend the inequality of Theorem 3.1 to such operators for

functions u with compact support (cf. [15]). To do so, it is sufficient to
treat operators A(z,D) such that

a’a(x) = a/az(o) +C“(x), ca(x) € Ms—zm ’
and operators By(x,D) such that

bja(x) = bja(0)+d]a(x), (x) eK —p"l,p
and with m
¢ = 2 suple,(®)| + X 3 sup|d;,(x)] < &,
lo]s2m = J=1|x|sm; =

& being a number specified below. For those we show

THEOREM 4.1. If 8> 8y, s&p~-t mod 1, then there is a number &> 0 and
a number §y=0y(¢) >0 such that

m
Il  © (S84l g+ 1+ 3 0% B0 Vimyts5)
. J=1

for every e<eq, 8<8y and u'e Hy,,.

" REmark. The é-dependent ||.|}, -norms .are essential for this’ proof
and can be found in Hérmander [8] See also [14]. For constant coeffi-
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cients we only need =1. From such estimates, the §-dependent norms

and inequalities can be obtained alternatively by homogeneity considera-
tions.

Proor or THEOREM 4.1. According to Theorem 3.1
@1) |y, < 0(62M||A(0,D>uu:_2m;,,+nun:_l;,, +

+ Y 0™*P(B,(0,D)u(0,. ')>,_m,-p—1;p)
J=1
and by Theorem 1.3’

(4'2) 621"”‘4(0’1))“”:—21»;17
= ézm”A(x’D)u”:—Zm;p'*'azml z ”ca(x)Dau”-:—Zm;P

a|<2m

S MA@ Dl gyt K (3 supe o) D21 amsp
& m

S A D)l g p+ K (3 suple.l +o()) ul;,

|ajs2m
for 6 € (0,1]. By Theorem 1.5

(4.3) O™ PTB(0, DYy p1; p

= 6"'i+”—1(B,(x,D)u),_mj_p.1;p + o™ity -11 ém <djaDau>a—m;-p—1;p
. *|=my

< "t By(w, DYy 15 +
+ 6mj+P_l Z K(Sup Idjal + 0(1))<Dau>a—m;—p—1; P
[«l=m;
< 6"‘1+p~—1<Bf(x,D)u>,_m7_p_1;p +l IES: K (sup|d;,| +o(1)) [lull; , -
& m,

The last inequality followed from Theorem 1.6 and the following obser-
vation: If DueW,,,, then ue W, ., p25a,Sn,15v= o] (cf. [10]).
By (4.1), (4.2) and (4.3), choosing first ¢ and then & small .enough, the
desired inequality follows.
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