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A REMARK ON THE CLOSED GRAPH
THEOREM IN LOCALLY CONVEX VECTOR SPACES

ARNE PERSSON

Introduction.

Let E be a separated locally convex (real or complex) vector space and
E' its dual space. Then E is said to be polar, if a linear subspace L of £’
is weakly closed whenever LnU° is weakly closed in E’ for every neigh-
bourhood U of the origin in E. It is called weakly polar if this holds for
weakly dense subspaces of £’. (In the terminology of Ptak [5] this is B-
complete and B,-complete, respectively. The present notion, which is more
suitable for our purposes, was introduced by L. Garding in an unpub-
lished manuscript on open mapping and closed range theorems.) Weakly
polar spaces are in particular complete [5, 5.7]. In the theory of locally
convex vector spaces, one of the most general forms of the closed graph
theorem known so far is due to V. Pték [5, 4.9] and A. P. and W. Robert-
son [6] and reads as follows: )

.. .(A) Every closed linear mapping of a separated barrelled space E into a
weakly polar space F is continuous.

It is impossible to weaken tke condition on Z in proposition (A). In
fact, Mahowald [3] proved that, if the closed graph theorem holds for
mappings of a separated locally convex vector space E into any Banach
space F, then E is necessarily barrelled. As for the space F, only a
partial converse is known: If we suppose that the closed graph theorem
holds for mappings of any barrelled space ¥ into every quotient of F,
then F must be polar, provided that F itself is barrelled. This result is
contained implicitly in the investigations of Ptak [5] (cf. also [7, ch. 6
supplement]). Hence there might exist further generalizations of propo-
sition (A), and it is-the purpose of the present note to show that this is
actually the case.

In the first section we introduce a new class of spaces, the (weakly)
t-polar spaces, which are obtained by replacing, in the definition of a
(weakly) polar space, the neighbourhood U by a barrel 7. Every (weakly)
polar space is obviously (weakly) ¢-polar. On the contrary, we show by
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an example that there are ¢-polar Mackey spaces which are not polar and,
as a matter of fact, not even complete. However, for barrelled spaces
the two notions coincide.

The second section contains the main theorem, which states that (A)
still holds true if we assume that F is weakly ¢-polar instead of weakly
polar. According to the above-mentioned example this is a proper ex-
tension of (A). In the case F is ¢-polar we also establish a variant of
the main result for closed linear relations. The formulation in terms of
relations is very convenient when, for example, turning closed graph
theorems into statements about open mappings, and it was systematically
employed by L. Garding in the manuscript mentioned before.

In conclusion we discuss in which sense our results are best possible.

t-polar spaces.

We shall assume that the reader is familiar with the standard concepts
and notations in the theory of locally convex vector spaces. All such
spaces are supposed to be separated.

DEeFINITION. 4 locally convex vector space E is said to be t-polar if a
linear subspace L of E' is weakly closed whenever LNT"° i3 weakly closed
for every barrel T in E. It is called weakly t-polar if this property holds
for weakly dense subspace L of E’.

Note that a subset B of E’ is the polar set of a barrel in £ if and only
if B is absolutely convex, weakly closed and weakly bounded. Observe
also that the notion of a (weakly) ¢-polar space does not depend on the
original topology of Z but only on the dual pair (#,E"). A barrelled
and (weakly) ¢-polar space is obviously (weakly) polar. It follows also
that every (weakly) polar space is (weakly) ¢-polar. We shall prove that
the converse is not true by constructing a counter example.

Let G denote the space of all (real or complex) sequences with only a
finite number of coordinates different from zero, equipped with the norm
(a,) - sup, |a,|. Then G’ equals the space F of all absolutely summable
sequences. The latter space equipped with the weak topology o(F,Q)
will provide us with the desired counter example. In the first place, F
is t-polar. For the weakly bounded subsets of F'=G are exactly those
which are bounded in the norm of @G. Furthermore, if L is a linear sub-
space of G whose intersection with the unit sphere is weakly closed, hence
closed, then L itself is closed, and therefore also closed in the weak
topology o(G,F)=0(G,G'). This proves the assertion. On the other
hand, F is not polar. Indeed, the equicontinuous subsets of G=F"' are
all of finite dimension, and hence any linear subspace L of G satisfies the
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condition that LnU°® is weakly closed for all neighbourhoods U of the
origin in F. Since there are for example hyperplanes in @ which are not
closed for o(@,F), this proves even more than was desired, namely that
F is non-complete (cf. Ptdk [4], [5, 5.6] and Collins [2]).

It is important in this context to make the obvious remark that propo-
sition (A) still holds true if we assume merely that F is weakly polar in
its Mackey topology. Nevertheless, (A) is not applicable to the space F
constructed above; for according to Example 3 in [1, ch. IV, § 2] the weak
topology o(F,() is equal to the Mackey topology z(F,Q).

We shall need the following property of ¢-polar spaces:

LemmA 1. If H is a closed subspace of a t-polar space E, then E[H, in
its quotient topology, s t-polar.

Proor. The dual of E[H can be identified with the weakly closed
subspace H° of E’. Since in addition every polar in H° of a barrel in
E[H is of the form H°nT°, where T is a barrel in E, the lemma follows
immediately from the definition of a ¢-polar space.

The closed graph theorem.
We shall now prove the main result of the paper.

TaEOREM 1. If A is a closed linear mapping of a barrelled space E into
a weakly t-polar space F, then A is continuous.

Proor. As usual, the adjoint mapping 4’ of 4 is defined as the set of
all pairs (y’,2') € F' x E' for which

(Az,y'y = {z,2'), =x€k.

Since 4 is closed, the domain D(A4’) of A’ is weakly dense in F’, and 4’
is continuous if D(4’) is provided with the topology induced by o(F’,F)
and E’' with ¢(E’',E). We claim that the theorem follows if we can prove
that

(1) D(A")nT" is weakly closed

for every barrel 7' F. Indeed, since F is weakly ¢-polar, we then con-
clude that D(A4')=F'. Therefore, A’ maps weakly relatively compact
and in particular equicontinuous subsets of F’ into weakly relatively
compact subsets of E’. But o(Z’,E)-compact subsets of B’ are equi-
continuous, and hence it follows that, given a neighbourhood ¥V of 0 in
F, there exists a neighbourhood U of 0 in E such that A(U)<V, that
is, 4 is continuous.

To prove (1), let 3’ belong to the weak closure of D(4')n7T° and let
Y.’ be a net in D(4’)nT"° converging weakly to y’. Then, by the weak
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continuity of A4’, its image 4’y,’ is a bounded Cauchy net for o(E’, E).
But weakly bounded subsets of E’ are weakly relatively compact, and
hence 4'y,’ converges to some point 2’ € E’. Since, by its very defini-
tion, A’ is weakly closed in F' x E’, this proves that ¥’ € D(4’')nT°, and
hence (1) follows. The proof of the theorem is complete.

We shall now consider the more general case when A is a closed linear
relation from E into F, that is, 4 is a closed linear subspace of E x F.
We write

A1 = {(y,x): (w,y)e A}, Ax={y:(x,y)ed},
D) = {z: (x,y) € A for some y}, R(4) = D(A).

Furthermore, 4 is said to be continuous if A-YV)={x:AxnV +0} is
open in D(4) for each open set V< F, and 4 is said to be open, if 4!
is continuous. It is easy to check that these definitions coincide with
the usual ones in the case A4 is a function.

THEOREM 2. If A is a closed linear relation from all of a barrelled space
E into a t-polar space F, then A is continuous.

Proor. Since A4 is closed, 4(0) is a closed subspace of F. Let K be
the canonical mapping of F onto G=F[A(0). Then

(KA)x = K(4Az), =xek,

defines K4 as a linear function of E into G. One realizes easily that 4
is continuous if and only if K4 is continuous and hence, taking Lemma 1
and Theorem 1 into account, we are through if we can prove that K4
is closed. However, this follows immediately from the fact that K4 is
the image of 4 under the canonical quotient mapping of E x F' onto
ExF[{0}x A(0)=E x G. The proof is finished.

It is quite obvious that Theorem 2 has an equivalent formulation in
terms of open relations:

THEOREM 2'. If A 18 a closed linear relation from a t-polar space E
onto a barrelled space F, then A is open.

The converse of Theorem 1.

We shall finally discuss in which sense Theorem 1 and Theorem 2 are
best possible. As was remarked in the introduction it is impossible to
weaken the conditions on the space E. In the general case we have not
been able to prove (nor to disprove) that weak ¢-polarity is the weakest
possible condition on F in Theorem 1. However, we have the following
partial converse:
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THEOREM 3. Suppose F satisfies the following requirement: There is a
weakly dense subspace G of F such that

(2) B < F' is weakly bounded if and only if B is o(F’,Q)-bounded ;
(3) weakly bounded subsets of F' are relatively compact for o(F',Q) .

Then, if the closed graph theorem holds for mappings of any barrelled space
E into F, the space F is necessarily weakly t-polar.

Proor. Let L be a weakly dense subspace of F' such that LnT" is
weakly closed for every barrel 7 in F. Consider @ in the topology of
uniform convergence on sets of the form Ln7°. It follows from (2) and
(3) that @ is barrelled and G'=L. If A4 is the natural injection of G into
F, then clearly D(A')=L. Since A is continuous and hence closed in
the topologies o(@, L) and o(F,L), we conclude that 4 is closed also in
the stronger original topologies of G and F. Consequently 4 is continuous,
and in particular D(4')=F'. Hence L=1F", which completes the proof.

The reader will have no difficulty in proving the corresponding con-
verse of Theorem 2:

THEOREM 4. Suppose F satisfies (2) and (3). Then, if Theorem 2 holds

for relations from any barrelled space E into F, the space F 18 necessarily
t-polar.

In particular, if F itself is barrelled, then (2) and (8) are fulfilled with
G=F, and we get back a more convenient formulation of the partial
converse of proposition (A) mentioned in the introduction.

ADDED IN PROOF: Our example of a non-complete ¢-polar space was
also considered by T. Husain and M. Mahowald, Barrelled spaces and the
open mapping theorem, Proc. Amer. Math. Soc. 13 (1962), 423-424, in a
slightly different context.
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