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TAUBERIAN PROBLEMS FOR THE »-DIMENSIONAL
LAPLACE TRANSFORM I

LENNART FRENNEMO

Introduction.

In this paper we shall consider a Tauberian problem for the n-dimen-
sional Laplace transform corresponding to the one announced by Gane-
lius in [5] for n=1.

Our results as formulated in Theorems 2 and 3 and specialized to n=1
will give essentially the same estimation as that stated in [5]. Thus
we can solve the original problem by using pure Fourier methods, hence
avoiding the approximation technique used earlier. Since the method
works in several dimensions we also ge results for this case.

The proof will be in two steps. In section 1 we attack a general Taube-
rian problem for the convolution transform holding for a whole class of
kernels which includes the Laplace kernel and for example also the con-
volution kernel associated with the Meijer transform. In section 2 this
general result will be applied to the Laplace transform. The method of
attacking the general problem will follow a method applied by Ganelius
([6, p. 9] and [7, p. 214]), which was also used in another formulation
by myself in [4].

We will use the following notation:

If 2= (xy,2,,...,x,) € R* and y=(y,,Ys,. - -,¥,) € B, then

n n n
x-y = zlxi'yr’ 17” = ]:Il: x’.'h, !xl = zllxrl .
By z<y (x<y) we mean that z,5y, (z,<y,), »=1,2,...,m, and by
& - +0 and x - + o we mean that z, > +0 and x, > + oo, respectively,
for v=1,2,...,n. Furthermore we let R." be all x € R* such that x>0,
and call a function H from R" to R non-decreasing if x <y implies H(x) <
H(y) and non-increasing if it implies that H(y) < H(x). We use standard
notations for convolutions

K * g(@) = f K(z—1) o(t) dt
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and for the Fourier transform
R() = fexp(—ix-t) K(t)dt,

where we always let an unspecified region of integration be R».
If « is & measure on R *, then

fexp(—s-t) doc(t)‘

g
stands for
lim '[ exp (—s-t) du(?) .
2—>+00 Oétsx
We say that

f oxp(—s-t) da(t)

Ryn

is boundedly convergent if this limit exists and there also exists a con-
stant C, which may depend on s, such that

exp(—s-t)dua(t)| £ forall zeR,™.

0sts2

For convenience we use the abbreviations:

expx = (exXpz,, eXpa,,. . .,eXpP,) ,
logz = (logz,, logz,,. . .,logz,) ,
1=(11,..,1),
max (z,y) = (ma.x (%1,41), max (25,9,),. . ., Max (xn,yn)) ’

and, if ¢ is a complex vector,
Imt = (Imtl, Imtz,. . .,Imtn) .
We let C stand for positive absolute constants not necessarily the same

each time.

1. A géneral Tauberian theorem.
Let us first define the class E of kernels, which we will consider in
this section.

DEeriniTION. By E we denote the. set of all functlons K € L(R™) which
satisfy the following three conditions:

1° R(t)40 for all te R
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2° The function g defined by
git) = R(t)~
can be analytically continued in a region Im¢'> —p, with ¢> 0.
3° This function g satisfies the inequality

(1.1) lg(®)| = C exp(m|z|+y-log(1+y))
for some m >0 and all t=z+1y with y=Im¢>max(—1, —p).

If now H is a continuous function from R, to R which is étrictly pbsitivé
and non-decreasing and such that H(x) > +oc when z — + oo, then we
introduce H, by putting

H,y(x) = H(q(x)),
where ¢ is the inverse of the transformation 7', defined by
T(x) = zH(x) .

Although it does not follow from this construction that g is non-decreasing
in the several-dimensional case, it is easy to see that H, is non-increasing
and also satisfies

(1.2) H,(x) £ rHy(rz) for rzl.
To show this we see that if g=(¢;,4,,- - .,g,) then
H(g(x)) = =,(g,(x))"t forallw such that 2,>0.

i 4

If now z < 2', then either g,(x) S g,(z') for all v=1,2,...,n or ¢,(z’) <¢,(x)
for some v. In the first case it is clear that

H(g(x)) £ H(g(z")
and in the second case we also see that
H(g(x)) = z,(¢,() £ x/(q,()) = H(g="),

which proves that H, is non-increasing.
If r2 1, then either g,(rz) 2 g,(x) for some » or H(q(rx))=H(q(x)), since
H, is non-increasing. Thus in both cases whenever x,> 0 for some »

H(q(rx)) = ra,(g,(rz)) < ra(g,(=))! = rH(g(),
which implies (1.2).
We can now formulate our general result.

TaroreM 1. If Ke Eand pisa bounded and measurable function from
R* to R, then o ’

(L3) -~ . K=xg)= O(exp(——_-H(expw))), x -+ too, -



44 LENNART FRENNEMO

and

(1.4) inf ((t)—@(x)) = O(H,(expz)), x> +oo,
zstsz+1 Hy(exp )

tmplies

@(x) = O(H(expx)), x> +o.

Proor. The proof will depend on the following property: there exists
a constant C such that if u € L(R") then

(15)  suplu@) < Of —inf (u)-u@)+ | m(snde]
zeR™ zstsz+h Vi<V

for all V=(Vy,V,...,V,) and h=(hy,h,,...,h,) with b=V, 1, y=

v
1,2,...,n. This inequality can be proved in a way analogous to the

variant in one dimension earlier used by myself in [4, p. 78].
If now ye R," and w € R, are arbitrary with w>n then we apply
(1.5) to the function «, where

u(z) = exp(~ Hz—y)*e?) p(@) .
It is easy to derive that
w8 . 8@ = exp(—ity) [ 9ly—2) Q@) da,

where

p(z) = K * p()
and

(1.7) Q(x) = (2n)-in j w~"exp(iz-v—}(v— §)2w-2)‘g(v) dv .

The arguments are similar to those used in one dimension (cf. [4, p. 81]).
In (1.7) we make the substitution v=¢+ &+ is with s>max(—1, —p)
and thus after a translation of the region of integration we obtain

1Q()| < Cexp(—s-z+}stw?) f w " exp(— 3ar?) gt + & +is) dt .

Here and in the following C' denotes some constant independent of y
and o. By use of (1.1) and after an estimation of the remaining integral
we have

(1.8) Q)] S Cexp(—s-x+}s?w=2+5-log(l+38)+im*nw+mlé]).
Here s may be chosen suitably e.g. according to the following: if

& = (81,8,...,8,), & = (Ty%gy...s%,)s 0@ = (01,030« ++0n)
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and z=(2,2,,...,2,), where z will be fuither specified later but always
satisfies 0 <z <y, we let for each »

-4y, for x,<0

8, = 3y, for 0=z,<z,
s,(x,) for 2z <=,

with y,= hnin(l,g,) and where s,(,) is defined by the relation
s, +w?log(l+s,) = o, .
By this choice of s, we see that
—8,2,+3s20t+s,log(l+s,) = —3s2w2 when x,2z .
If y is large enough then by (1.3) we may choose z such that
lp(x)] = Cexp(—H(expz)) for z2y—=z.

Since ¢ is bounded we see that also ¢ is bounded and hence by (1.8)
we have

2(8)] 3 0{ [ 1@ wy-=lde + [ Q@) dx] = O +1,}.
D

R"-D

If here D={x: x € R® and z <2z} then by use of (1.3) and (1.8) with ¢
specified as above we see that

I, = Cexp(im*nw?+m|¢|— H(exp(y—2))) .
When estimating I, we first observe that
s(x,) = 4z, for «z,22
and that certainly
s,(x,) 2 dr,0 for z,240%.

Now we see that

Ls3l [ Keie+r [ @@l

y=1
<zy<do? 22402
i Z?R” xeR®

where the first integral vanishes for all » such that 4w?<z, and hence

yml

n
Iexp(—jminow-m|E) < C} 3 exp(—ts.(z.)zw-”+2logw)+exp(—2w4)} w1,
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Thus it is true that
(1.9) [4(&)] exp (— m2*nw?—m|é|)

=C { exp(— H(exp (y——z))) + ﬁ exp(—1s,(2,)2w %+ 2 logw) + exp(— 2w?) }
’ vml

Here we choose w and z depending on each other and y according to
(1.10) B H(exp(y—2)) = A’w?
and L .
(1.11) 8,(2,) = Aw? for v=1,2,...,n with A2zZm?n+3.
Hence we see that
(112) [ 1@l s CoxpimiVi-tar).
-Vsesv

When estimating the first term of the right hand member in (1.5) we
write
u(t) —wu(x) = exp(— 3z —y)*w?) (p(t) — p(x)) +
+ ¢(t) {exp( - $(t —y)*0?®) — exp(—}(z—y)*w?)}
and then using estimations corresponding to those in [7, p. 216], it fol-
lows that if 0 <A <1 then

(1.13) inf  (u(t) —u(z))
zstsa+h n "
> —int (p(t)—p()—Cexp(— 1) — Co sup |g(t) Sh—C3h,.
zstsxth -15it-yst y=1 ya=1
—-1sz-ys1

We are now ready to apply (1.5). Since
lp(¥)] = |u(y)] 'S sup|u(2)]

zeRn

we obtain from (1.12) and (1.13) with
mnV = }w?l = (hy"LhyL,. ..k, 1)
that, if y is large enough, then
lpy)l = €1 —inf (p(t)—@(z))+w? sup [p(t)+o?

astsz+h ~-1s{t-y=s1
~15z-ys1

By (1.10) and (1.11) we see that
expy = exp(y—z+2) £ Cexp(y—z) H(exp(y—2)),
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and hence using this inequality combined with (1.10) and (1.2) we have
w~? £ CH(exp(y—2))™* = C‘Hl(exp(y—z) H(exp(y—-z))) < CH,(expy) .

Now this last inequality and the Tauberian condition (1.4) together with
(1.2) give us

lo@)] = O{Hl(e:tpywﬂl(expy)* sup |<p<t)|}
—-15$¢y)s1 :

for large values of y. Iterating this inequality we see that
¢(y) = O(Hy(expy)), y—>o,

which was to be proved.

Remark. It is not necessary that ¢ should be bounded in the fheorem.
It still remains true if for example there exists a u € R, " such that
lp)] < C(1+exp(—p-a)), |p@)| S C(1+exp(—u-a)),
both holding for all z € R™.

From the beginning we suppose that w is large. A difference in argu-
ment comes in first when considering (1.9) where we now have to multiply
the right hand member with exp(4w?|u|). The inequality (1.12) is still
true if 1 is chosen sufficiently large, e.g. such that

22 2 mPn+3+8ul.
Checking (1.13) we see that this inequality still holds and hence the

theorem is true even under these weaker conditions.

2. Results for the n-dimensional Laplace transform.

Let H, be a continuous function from R_" to R which is strictly positive,
non-increasing and such that Hy(s) - + oo when s - +0. We define

H(sy,8,...,8,) = Hy(s;74,8,7%,...,8,71).

Thus H is of the same type as in section 1 and we can introduce H, in
the same way as in Theorem 1. We also introduce regions 2, , defined by

Q,,={t: teR," and t<2} — {t: te R,» and t<s}.

Finally let & be a measure on R,” and let u € R,*; then we may state
our main result.

THEOREM 2. If
(2.1) F(s) = fexp(—s-t) da(t) = O(s* exp(—Hy(®)), &- +0,

Ryn
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where the integral is boundedly convergent for all s >0, and

(2.2) |[F(s)] = C(1+s*) forall s>0,

and also

(2.3) inf ( f doc(t)) = O((1+8*)H,(s)), |8| > +o0(s20),
ssxss exp Hi(s) Oaz

then

f da(t) = O(s*Hy(s)), §— +oo.
osts<s ’

Proor. First observe that, if § is defined by

0ssst

f dx(s) whenit>0,
B(t) =
0 otherwise ,

then B is of bounded variation both in sense of Vitali and Hardy—Krause
(cf. [1, p. 825]) in any region of form 0<t<a, a>0. We also see that

F) = [ exp(-s-t) dp),

Ryn

where we still have bounded convergence.
Now we make a partial integration in the last integral and obtain

(2.4) F(s) = & f exp(—s-t) B(t) dt ,

Ryn

where the right hand member is absolutely convergent (cf. [2, p. 469
and p. 474]). In (2.4) we make the substitutions

8 =exp(—z) and ¢ = expv
and thus obtain

K * g(x) = O(exp(—H(expz))), - +oo,
with
K(x) = exp(—|exp(—2)|— (1 +u) )
and
p(x) = exp(—pu-x) f(expx),

which is equivalent to (2.1).
We want to apply Theorem 1 and have to prove that the conditions of
this theorem are satisfied.



TAUBERIAN PROBLEMS FOR THE n-DIMENSIONAL ... 49

First we prove that K € E. We see that K € L(R") and that

R(t) = TI T (1 +p,+it,)
v=1
if
b= (ty,lg. . -sty) and po= (P s o -5 fhy) -

Since I'(-)~! is analytic in the whole complex plane, by Stirlings formula
and the well-known formula

I'(1—-2)"1 = g-Ygin(nz) I'(z)
we see that

|P(1+p,+142,)7Y| < Cexp(m|z,|+y,log(1+y,)

if z,=z,+1y, with y,=2 —% and m=1+xn. The conclusion that K € &
follows from this.

To prove that the Tauberian condition (1.4) is satisfied we observe
that

¢(t) —p(x) = exp(—p-t)(B(expt) — flexpz)) +

+ oxp(—p+a) flexpa) (exp( - - (1—2))— 1)
and hence (1.4) follows from (2.3) if for example
(2.5) 1Bs)] £ C(1+s*) for seR,™.

If we can prove (2.5), then Theorem 2 follows from the remark to Theo-
rem 1.
To prove (2.5) we let 0 <s=<x=<2s and write

p(x)—B(s) E (B(s®) — B(s*1)) ,

where all s® lie on the line segment from s to #, with

§=80<sW< ... <sm =g
and chosen so that

k-1 < @ < k=D exp H,(2s) .

Thus by (2.3), (1.2) and the fact that g is locally bounded we can con-
clude that

B(x)—p(s) 2 —C(1+s*) forallsand 2, 0Ss<x=<2s.

Using a simple variant of a method, which was introduced by Kara-
mata [9] and also used by Delange [3], it is now easy to see that (2.5)
follows.

Math, Scand. 19 — 4
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If 0<ssz<§s and

Fo(81,82,...,8,) = F(s;74,8,7%,...,8,7),
then
Fo(3x) — Fy(28) = f exp(—u-1) (f(3zyu,,3%5u,,. . ., 30, u,) —
Ryn

—B(28,uy, 285 u,,. . .,28,u,)) du = I, +1,,

where 7, is the integral evaluated over the region 31w <11, and I, is
the integral evaluated over the rest of R,». Now

B(3xyuy, 3xauy,. . ., 3T, u,) — B(28, 4y, 28Uy, . . ., 28,u,)
= (B(3zyuy, 3xouy, . . ., 3%, u,) — B(28, Uy, 285Uy, . . ., 28, u,))(1 + 8 w*)~1 (1 + s u*)
2 —C0(1+8*)(1+u*)

and hence
Iz g —0(1 +8“) N
and by (2.2)
Il = Fo(3x) "Fo(28) —'Ia § C(l +8")
Since
B(3xyuq, Bxauy, . . ., 3T, %,) — B(281 Uy, 285Uy, . . ., 28, U,)
= B(3x %y, 3ToUy,. . ., 3T, u,) — f(x) + B(8) — B(28, Uy, 285Uy, . . ., 28, %,) +

+B(x) — B(s)
2 —C(1+8*)+B(z)— fls)
if 31su<41, we see that
CI, 2 —C(1+s*)+f(x)—p(s)
and hence
Bx)—pB(8) = C(1+s&).
Now we can easily derive that
|B(x)—ps)| < C(1+s*) forallsandz, 0Sssz<S2s.
This inequality implies that, if >0 then
1B(t181, g8 - -, U 8,) = B(8)] S C(L+8*)(1+u#)(1+[logul) .

To see this write
m

B(1181,8, - - . ,8,) = B(8) =k21(ﬂ(u1(k)81:32: coes8p) = B(uy*D8y, 8, . . ,85))

with 4,9=1<u,M< ... <u,""=u, and chosen so that

u*-D g u® g w02, k=1,2,...,m.
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We conclude that
1B(1181,85,. . .,8,) —B(8)] = C(1+u"1s)m,

where m can be chosen so that m =2+ 2 logu,, and, because of the sym-
metry, we also see that

|B(%181,895 - « +58,) —P(8)] £ C(1+8*)(1+|logu,|), when O<u,<l.

Thus the required inequality follows from similar arguments for the other
coordinates.

Finally, since

Fo(s)‘ﬂ(s) = f eXP(—u’ l) (ﬁ(ulsl’uzsz" . "un'gn)—ﬂ('s)) du
Byn

and thus
[Fo(s)—B(s)| = C(1+¢4),
(2.5) follows from (2.2). Hence we have proved Theorem 2.

We also state the following slightly different result.

THEOREM 3. Let &, u, H and H, be defined as above, and suppose that
H(s) - + oo when |s| - +oo. If for se R,™

*ot
(2.6) Fys) = f exp(—z s—’)dcx(t) = O(1+s*)exp(—H(s)), 8|~ +oo,
R+" y=]1 9
where the integral is boundedly convergent for all s>0, and
(2.7) inf ( J. da(t)) = O((1+8*)Hy(s)), |s| > +o0,
ssz<e exp(H1(s) . '
then

f do(t) = O((1+8*)Hy(s)), |s| > +oo (s20).
0siss

Proor. Theorem 1 can be modified to prove this theorem if, instead
of (1.3), we have

K x g(z) = O((1+exp(—p-2)) exp(—H(expz))), = +oo,

and, instead of (1.4), we have

inf  (p(t)—g(@)) = O((1+exp(—u-2)Hy(expz)), z->oo,

i< + 1 Hy(expz)

and where - + oo means that |expz| - + . I leave the details to the
reader.
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Remark 1. Condition (2.2) is not necessary in the one-dimensional
case, since it is only used to prove (2.5), which then follows from (2.1)
and (2.3).

REMARK 2. Bounded convergence follows if we know that |f(z)| =
Cexp(mz) for all m>0. (Cf. [2, p. 469].) It also follows if we add the
following condition: for each »=1,2,. ..,n there exists an ¢, > 0 such that

By, %, . .2,y . ) — B(Xy, 2y, . . 3,50 2,) 2 —C(1+2%)

for all z=(2,,%,,...,7,) € B, such that O <z, <z, <¢, (cf. [3, p. 80]).
When « is the measure associated with a Dirichlet series this is trivially
true. It also may be noted that bounded convergence are the same as

ordinary convergence in the one-dimensional case.

REemark 3. It is no restriction to suppose that in (2.1) H(s)=1 when
8,21 for some », and hence that in (2.3) we have H,(s)=1 when s,<1
for some ». Sometimes this can be useful.

3. Some examples and comments.

To show how the construction of H, from H in Theorem 2 works, we
shall give some examples.

If
(3.1) Hys) = —1-logs
then
Hy(s) = O((1-logs)™), 8-> +oo,
and if
(3.2) H(3,,8,. . .,8,) = (Zs,-l) , &>0,
pm]

then

Hys) = |s|~0%.
If furthermore
(3.3) Hys) = [8]™%, &>0,

then we have
)a/(l+a)

) = (3o

p=1

More generally we can see that, for all H,, such that the function R defined
by .
R(z) = H(expz) = Hy(exp(—2))

is sub-additive, that is

R(x+y) < Rx)+R(y) forall xe€R" and y e R*;
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then we have
H\(s) = O(H(s)™), 8-> +o.

For all such H, the result is in fact best possible (cf. [8]). This case
includes (3.1).

It is also known that in case (3.2) and (3.3) the result is best possible
in one dimension (cf. e.g. [10]). By a combination of this fact and for-
mula (30) on p. 165 in [11], which can be generalized to higher dimen-
sions, it can be seen that in case (3.3) the result is essentially best possible.

It also may be noted that, according to known results (cf. e.g. [10]),
in one dimension

Lim sH(s) = +o0
8—>+0
implies
f da(t) = 0.

0<si<s

In a forthcoming paper I intend to continue my studies on Tauberian
problems for the n-dimensional Laplace transform.
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