THE CAUCHY PROBLEM FOR SYMMETRIC HYPERBOLIC SYSTEMS IN L_p

PHILIP BRENNER

1. Introduction.

It is well known that the initial-value problem for a symmetric hyperbolic system,

(1)
$$\begin{cases} \frac{\partial u}{\partial t} = \sum_{j=1}^{n} A_j \frac{\partial u}{\partial x_j} + Bu, & x \in \mathbb{R}^n, \\ u(0,x) = u_0(x), & 0 \le t \le T, \end{cases}$$

is well posed in L_2 . The purpose of this note is to prove that the problem (1) is well posed in L_p , $p \neq 2$, $1 \leq p \leq \infty$, if and only if the matrices A_j commute (Theorem 2). This will be proved by noticing that, a necessary and sufficient condition for (1) to be well posed in L_p is that $\exp(i\sum_{j=1}^n A_j y_j)$ is a multiplier on L_p which in turn will be proved to be the case if and only if the A_j commute (Theorem 1). This last statement follows by application of the technique developed by Hörmander in [1] (frequent references will be made to that paper) and a matrix theorem by Motzkin and Taussky [3].

The corresponding problem for the wave operator has been treated by Littman [2]; his result is included in ours.

I wish to thank Professor Vidar Thomée for suggesting the problem and for several helpful discussions.

2. Multipliers on L_p .

First some notation. If $v=(v_1,\ldots,v_N)$ and $u=(u_1,\ldots,u_N)$ are complex vectors, $\langle u,v\rangle$ will denote their scalar product and |v| the Euclidean norm,

$$\label{eq:continuous_def} \left\langle u,v\right\rangle \,=\, \sum_{j=1}^N u_j \overline{v}_j, \qquad |v| \,=\, \left(\sum_{j=1}^N |v_j|^2\right)^{\frac{1}{4}}.$$

The norm |A| of an $N \times N$ -matrix A is defined as

$$|A| = \sup\{|Av|; v = (v_1, \ldots, v_N), |v| \le 1\}.$$

If $\Omega \subset \mathbb{R}^n$ is open and $v_j \in C^{\infty}(\Omega)$ for j = 1, ..., N, then we say that $v = (v_1, ..., v_N)$ belongs to $\mathscr{C}^{\infty}(\Omega)$. If $g \in C^{\infty}(\mathbb{R}^n)$, and if

(2)
$$\sup\{|x|^m|D^kg(x)|; x \in \mathbb{R}^n\} < \infty$$

for $m = 0, 1, \ldots$ and for any multi-index $k = (k_1, \ldots, k_n)$,

$$D^k = (\partial^{k_1}/\partial x_1^{k_1}) \dots (\partial^{k_n}/\partial x_n^{k_n}),$$

then we say that g belongs to S. We give the linear space S the topology defined by the family (2) of semi-norms. We denote by $\mathscr S$ the set of functions $v=(v_1,\ldots,v_N)$ with $v_j\in S,\ j=1,\ldots,N$. The dual space S' of S is the set of tempered distributions (in the sense of Schwartz).

The convolution between a tempered distribution μ and a function $g \in S$ is denoted by $\mu *g$, and defined by $\mu(g(x-\cdot)) = \mu *g(x)$. This notion also has an obvious meaning if g, say, is replaced by a vector in \mathscr{S} . We can then also replace μ by an $N \times N$ -matrix, the elements of which are tempered distributions. The Fourier transform of a tempered distribution μ is denoted by $\hat{\mu}$, and defined by $\hat{\mu}(f) = \mu(\hat{f})$, $f \in S$, where \hat{f} is the function

$$\hat{f}(y) = \int_{Rn} \exp(2\pi i \langle x, y \rangle) f(x) dx.$$

The Fourier transform is also defined for matrices and vectors of tempered distributions by applying the transform elementwise.

By \mathcal{L}_p we means the set of functions $v = (v_1, \ldots, v_N)$ with $v_j \in L_p$, $j = 1, \ldots, N$, and for $p < \infty$ we set

$$||v||_p = \left(\int_{R^n} |v(x)|^p dx\right)^{1/p}$$

and for $p = \infty$

$$||v||_{\infty}\,=\,\mathrm{ess\,sup}\,\big\{|v(x)|\,;\,x\in R^n\big\}\,.$$

Classically a multiplier on L_p is a function λ such that for each $f \in L_p$, $\lambda \hat{f}$ is the Fourier transform of a function in L_p . Following Hormander [1] we formalize this as follows: We say that λ is a multiplier on L_p , $\lambda \in M_p$, if $\lambda \in S'$ and if

$$M_n(\lambda) = \sup \{ \|\hat{\lambda} * f\|_n ; f \in S, \|f\|_n \le 1 \} < \infty.$$

We will need the following natural generalization to matrices: We define \mathcal{M}_p , the multipliers on \mathcal{L}_p , as the set of $N \times N$ -matrices μ with elements in S' satisfying

$$\mathcal{M}_{p}(\mu) = \sup\{||\hat{\mu}*v||_{p}; v \in \mathcal{S}, ||v||_{p} \leq 1\} < \infty.$$

Since the norms $||v||_p$ and $\sup_j ||v_j||_p$ are equivalent, this definition can also be expressed by saying that $\mu = (\mu_{jk}) \in \mathcal{M}_p$ if $\mu_{jk} \in \mathcal{M}_p$, $j, k = 1, \ldots, N$.

In order to get shorter statements it will be convenient to define $M_p(\lambda) = \infty$ if $\lambda \notin M_p$, and correspondingly for \mathcal{M}_p . Thus $\mu \in \mathcal{M}_p$ if and only if $\mathcal{M}_p(\mu) < \infty$.

We collect some facts about \mathcal{M}_p in the following lemma.

Lemma 1. Suppose $1 \le p \le \infty$. Then

- (i) $\mathcal{M}_p = \mathcal{M}_q$, 1/p + 1/q = 1, and $\mathcal{M}_1 \subseteq \mathcal{M}_p \subseteq \mathcal{M}_2$.
- (ii) \mathcal{M}_p is a Banach algebra under pointwise (matrix-) multiplication and addition, with the norm $\mathcal{M}_p(\cdot)$. It is non-commutative for N > 1.
- (iii) \mathcal{M}_2 is the set of essentially bounded $N \times N$ -matrices, and $\mathcal{M}_2(\cdot) = \text{ess sup} |\cdot|$. \mathcal{M}_1 is the set of $N \times N$ -matrices, the elements of which are Fourier-Stieltjes transforms of bounded measures.
- (iv) Suppose $y_0 \in \mathbb{R}^n$ and $a \in \mathbb{R} \{0\}$ and let a * f(y) = f(ay) and $f_{y_0}(y) = f(y + y_0)$. Then $\mathscr{M}_p(f) = \mathscr{M}_p(a * f) = \mathscr{M}_p(f_{y_0})$.
- (v) Let $\mathcal{M}_p(f_i) \leq C$, all $i \in I$, and suppose $f_i \to f$ in S' (e.g. uniformly on compact subsets of \mathbb{R}^n). Then $\mathcal{M}_p(f) \leq C$.
- (vi) Let $\alpha_j \in R$, $j = 0, 1, \ldots, n$, and $\alpha(y) = \alpha_0 + \sum_{j=1}^n \alpha_j y_j$. Then $M_p(\exp(i\alpha)) = 1$.
 - (vii) If $k \in S$, then $\mathscr{M}_{p}(kE) \leq ||\hat{k}||_{1}$, where E is the unite matrix.

PROOF. For the case N=1 these statements are all contained in Chapter I of [1]. Most of the generalisations to N>1 are obvious. Below we will just give references to the corresponding statements in [1] for those cases.

- (i) For N=1 this is Theorem 1.3 in [1].
- (ii) Corollary 1.4 in [1].
- (iii) Theorem 1.4 and 1.5 in [1].
- (iv) Theorem 1.13 in [1]. See also Lemma 3(iii) below.
- (v) By Hölders inequality we have (1/p+1/q=1)

$$\left| \int \left\langle \hat{f}_i * u(x), v(x) \right\rangle \, dx \, \right| \, \leq \, C \, \|u\|_p \, \|v\|_q, \qquad u, v \in \mathscr{S} \, \, .$$

Since $f_i \to f$ in S' implies that $\hat{f}_i \to \hat{f}$ in S', we see that also \hat{f} satisfies this inequality. The converse of Hölders inequality then gives

$$\|\hat{f}*u\|_p \leq C\|u\|_p, \qquad u \in \mathscr{S},$$

that is, $\mathcal{M}_{p}(f) \leq C$.

(vi) Multiplying $\hat{u} \in S$ by $\exp(i\alpha)$ corresponds to a translation of u with $(\frac{1}{2}\pi)(\alpha_1, \ldots, \alpha_n)$ followed by multiplication with $\exp(i\alpha_0)$, and hence $M_p(\exp(i\alpha)) = 1$.

(vii) This follows from the inequality

(3)
$$\|\hat{k}*u\|_p \le \|\hat{k}\|_1 \|u\|_p$$
, $k \in S$, $u \in \mathcal{S}$ (or $k \in \mathcal{S}$, $u \in S$),

which is proved just as in the scalar case.

We want to study functions which are locally multipliers on \mathscr{L}_p and so make the following definition: Let B be an open ball in R^n (the open ball with center x and radius r will be denoted B(x,r)). We say that an $N \times N$ -matrixfunction φ is an \mathscr{L}_p -multiplier on B, $\varphi \in \mathscr{M}_{p,B}$, if there is a $\mu \in \mathscr{M}_p$ such that $\varphi = \mu$ on B. If $\varphi \in \mathscr{M}_{p,B}$ and $\varphi = \mu$ on B, $\mu \in \mathscr{M}_p$, we can define

$$\mathscr{M}_{p,\,B}(\varphi) \,=\, \sup\big\{\|\hat{\mu}*\hat{u}\|_p\,;\,\, u\in\mathscr{S},\,\, u=0\,\,\, \text{outside}\,\,B,\,\,\|\hat{u}\|_p \leqq 1\big\}$$

since μu does not depend on the behavior of μ outside B. We note that $\mathscr{M}_{p,B}(\cdot)$ is an semi-norm, and that $\mathscr{M}_{p,R^n}(\cdot) = \mathscr{M}_p(\cdot)$. For N=1 we write $M_{p,B}$ and $M_{p,B}(\cdot)$.

The following well known lemma will be useful in this context.

LEMMA 2. Suppose that B is a bounded open ball in \mathbb{R}^n and ε a positive number. Then there is a function $k \in S$ such that k = 1 on B, k has compact support and $\|\hat{k}\|_1 \leq 1 + \varepsilon$.

PROOF. We can suppose that B = B(0,r). Let m(r) be the volume of B(0,r). Choose ϱ so that $m(r+\varrho)+1 \le (1+\varepsilon)^2 m(\varrho)$, and let g be the characteristic function of $B(0,\varrho)$. Further choose $h \in S$, such that h=1 on $B(0,r+\varrho)$ and h=0 outside $B(0,r+2\varrho)$ and

$$\int |h(y)|^2 dy \le m(r+\varrho) + 1 .$$

$$k(y) = (m(\varrho))^{-1} h * g(y) .$$

Set

Then $k \in C^{\infty}(\mathbb{R}^n)$, k = 1 on B(0,r) and has compact support. By Schwartz' inequality and Parsevals formula

$$\|\hat{k}\|_1 \, \leqq \, \left(m(\varrho)\right)^{-1} \, \|h\|_2 \, \left\|g\right\|_2 \, \leqq \, \left(\frac{m(r+\varrho)+1}{m(\varrho)}\right)^{\frac{1}{4}} \leqq \, 1+\varepsilon$$

and so k is the desired function.

We can now give some facts about $\mathcal{M}_{p,B}$.

LEMMA 3. Suppose $1 \le p \le \infty$. Then

- (i) if $B \subseteq B'$, then $\mathscr{M}_{p,B}(\varphi) \leq \mathscr{M}_{p,B'}(\varphi)$.
- (ii) if $a \in R \{0\}$ and $y_0 \in R^n$, then $\mathcal{M}_{p,B}(\varphi) = \mathcal{M}_{p,a^{-1}B}(a^*\varphi) = \mathcal{M}_{p,B-y_0}(\varphi_{y_0})$.

- (iii) $\mathcal{M}_{p,B}(v\varphi) \leq \mathcal{M}_{p}(v)\mathcal{M}_{p,B}(\varphi)$ and if $k \in S$, then $\mathcal{M}_{p,B}(k\varphi) \leq$ $\mathcal{M}_{p,B}(\varphi)||\hat{k}||_1.$
- (iv) if $\mathcal{M}_{n,R}(\varphi) \leq C$ for all bounded open balls in \mathbb{R}^n , then $\mathcal{M}_n(\varphi) \leq C$.

Proof. (i) Obvious.

- (ii) We note that a change of coordinates in \mathbb{R}^n only changes the \mathscr{L}_{p} -norm and the set B. Hence $\mathscr{M}_{p,B}(\cdot)$ will just change to $\mathscr{M}_{p,a^{-1}B}(\cdot)$ under the transformation $y \to ay$. If $\varphi = \mu$, on $B, \mu \in \mathcal{M}_p$, then let $\mu_1 =$ μ_{y_0} , and so $\mu_1 = \varphi_{y_0}$ on $B - y_0$. It follows that $\hat{\mu}_1 = \exp(2\pi i \langle \cdot, y_0 \rangle) \hat{\mu}$. Since multiplication with a scalar function of absolute value 1 is an isometry on \mathscr{L}_p , we see that $\mathscr{M}_{p,B}(\varphi) = \mathscr{M}_{p,B-y_0}(\varphi_{y_0})$.
- (iii) The first assertion follows from Lemma 1(ii) and the definitions. The second is an application of this, using Lemma 1(vii).
- (iv) Let $\varepsilon > 0$ be arbitrary. Choose a sequence $\{B_i\}_{i=1}^{\infty}$ of bounded open balls and functions k_j such that (a) $\bar{B}_j \subset B_{j+1}$ and $\bigcup_{j=1}^{\infty} B_j = R^n$, (b) $k_j = 1$ on B_j and $k_j = 0$ outside B_{j+1} , (c) $\|\hat{k}_j\|_1 \le 1 + \varepsilon$. This is possible by Lemma 2. Let $\varphi = \mu_i$ on B_{i+1} , $\mu_i \in \mathcal{M}_p$. Let $v_i = \mu_i k_i$. Then by (3)

$$\mathscr{M}_p(\nu_j) \, = \, \sup \big\{ \|\hat{\mu}_j * \hat{k}_j * \hat{f}\|_p \, ; \, \, f \in \mathscr{S}, \, \, \|f\|_p \leq 1 \big\} \, \leq \, \mathscr{M}_{p, \, B_{j+1}}(\varphi) \, \|\hat{k}_j\|_1 \, \leq \, (1+\varepsilon)C \, .$$

Since $\nu_j \to \varphi$ uniformly on compact subsets of \mathbb{R}^n , Lemma 1(iv) gives that $\mathcal{M}_{n}(\varphi) \leq (1+\varepsilon)C$. As $\varepsilon > 0$ was arbitrary (iv) is proved.

We will now state the main theorem of this section.

Theorem 1. Suppose $1 \le p \le \infty$ and $p \ne 2$. Let A_j be Hermitian $N \times N$ matrices $(j=1,\ldots,n)$. Then $\exp(i\sum_{i=1}^n A_i y_i)$ belongs to \mathcal{M}_p if and only if the matrices A_1, \ldots, A_n commute.

We need some lemmas for the necessity part of the proof.

LEMMA 4. Let $B = B(x_0, r)$, r > 0. If $v \in \mathcal{S}$ and $v \neq 0$ on B, then there is a constant C and a ball $B' = B(x_0, r'), 0 < r' \le r$, such that for each $g \in S$ with g=0 outside B', we have

$$||\hat{g}||_{p} \leq C ||\hat{v}*\hat{g}||_{p}.$$

PROOF. Since v is continuous, there is a k, $1 \le k \le N$, and a ball B' = $B(x_0, r')$, $0 < r' \le r$, such that $v_k \ne 0$ on \overline{B}' . Hence there is a $w_k \in S$ such that $w_k v_k = 1$ on B'. We get for any $g \in S$ with g = 0 outside B'

$$g = w_k v_k g$$

and so the inequality (3) gives

$$\|\hat{g}\|_{p} \, = \, \|\hat{w}_{k} * \hat{v}_{k} * \hat{g}\|_{p} \, \leq \, \|\hat{w}_{k}\|_{1} \, \|\hat{v}_{k} * \hat{g}\|_{p} \, \leq \, \|\hat{w}_{k}\|_{1} \, \|\hat{v} * \hat{g}\|_{p} \, = \, C \, \|\hat{v} * \hat{g}\|_{p} \, .$$

LEMMA 5. Let $p \neq 2$ and let B be an open ball in \mathbb{R}^n . Assume that

 $\lambda \in M_{p,B} \cap C^2(B)$, that $|\lambda| = 1$ on B, and that there is a constant C such that

$$M_{p,B}(\lambda^m) \leq C, \qquad m = 1,2,\ldots$$

Then there is an $x_0 \in \mathbb{R}^n$ and a complex number c with |c| = 1, such that

$$\lambda(y) = c \exp(i\langle x_0, y \rangle), \quad y \in B.$$

PROOF. If $B = \mathbb{R}^n$ this is Theorem 1.14 in [1]. We want to prove it for bounded B. Thereby we assume that it is already known that if A is a real quadratic form and $\exp(iA) \in M_p$, $p \neq 2$, then A = 0 (Lemma 1.4 in [1]).

Let $\lambda = \exp(if)$, f be real and $f \in C^2(B)$. It will be sufficient to prove that the second order derivatives of f vanish in B. Thus let y_0 be an arbitrary point in B. According to Lemma 3(ii) it is no restriction of the generality to assume that $y_0 = 0$. Let

$$f(y) = f(0) + \langle x_0, y \rangle + A(y) + o(|y|^2), \quad y \to 0$$

where A is a real quadratic form in y. Let

$$g(y) = f(y) - f(0) - \langle x_0, y \rangle$$
.

Then, by Lemma 1(vi) and Lemma 3(iii)

$$M_{n,B}(\exp(img)) \leq C, \quad m = 1,2,\ldots$$

Set $g_m(y) = mg(m^{-\frac{1}{2}}y)$. Then $g_m \to A$ uniformly on compact sets and also by Lemma 3 (ii),

$$M_{p,m^{\frac{1}{2}}B}(\exp(ig_m)) = M_{p,B}(\exp(img)) \leq C$$

By the above we can find a $\mu_m \in M_p$ such that $\mu_m = \exp(ig_m)$ on $m^{\frac{1}{2}}B$. Let B' be a bounded open ball. Using Lemma 2 we see that there is a bounded open ball B'' and a function $k \in S$ such that k = 1 on B', k is zero outside B'' and $\|\hat{k}\|_1 \leq 2$. Choose m_0 so large that $m^{\frac{1}{2}}B \supset B''$, for $m \geq m_0$. From Lemma 3(iii) we then get, $m > m_0$,

$$M_p(\mu_m k) \le M_{p, m^{\frac{1}{2}}B}(\mu_m) \|\hat{k}\|_1 \le 2M_{p, m^{\frac{1}{2}}B} (\exp(ig_m))$$

and so, from the above

$$M_p(\mu_m k) \leq 2C$$
.

Since $\mu_m k \to \exp(iA)k$ uniformly, Lemma 1(v) gives us

$$M_n(\exp(iA)k) \leq 2C$$
.

Hence

$$M_{p,B'}(\exp{(iA)}) = M_{p,B'}(\exp{(iA)}k) \le M_p(\exp{(iA)}k) \le 2C.$$

Since the ball B' was arbitrary, Lemma 3(iv) shows that $\exp(iA) \in M_p$ and so A = 0, and the lemma is proved.

LEMMA 6. Suppose that A_j are Hermitian $N \times N$ -matrices, $j = 1, \ldots, n$, such that the eigenvalues (repeated with proper multiplicities) of

$$\sum_{j=1}^{n} A_{j} y_{j}$$

for all $y = (y_1, \dots, y_n)$ in an open non-void ball B in \mathbb{R}^n are of the form

$$\sum_{j=1}^{n} \alpha_{kj} y_{j}, \qquad k=1,\ldots,N,$$

where the α_{kj} are constants. Then the matrices A_1, \ldots, A_n commute.

PROOF. When the conditions in Lemma 6 are satisfied for all complex y_j (instead of $(y_1, \ldots, y_n) \in B$) this is a theorem by Motzkin and Taussky (Theorem 2 in [3]). From the analyticity of the both members in the equality

$$\det\left(xE - \sum_{j=1}^{n} A_j y_j\right) = \prod_{k=1}^{N} \left(x - \sum_{j=1}^{n} \alpha_{kj} y_j\right), \quad y \in B,$$

we see that it is also satisfied for all complex y_j , and Lemma 6 follows from the theorem of Motzkin and Taussky.

PROOF OF THEOREM 1. Suppose $\mu(y) = \exp\left(i \sum_{j=1}^n A_j y_j\right)$ belongs to \mathcal{M}_p , $p \neq 2$. Since the elements of μ belong to $C^{\infty}(R^n)$ there is a non-void open ball B in R^n and functions $\lambda_1, \ldots, \lambda_N$ in $C^{\infty}(R^n)$ such that $\lambda_1(y), \ldots, \lambda_N(y)$ are the eigenvalues of $\mu(y)$, counted with proper multiplicities, for each $y \in B$, and such that for each $\lambda_j(y)$, $y \in B$, there is an eigenvector $v_j(y) \neq 0$, and $v_j \in \mathscr{C}^{\infty}(B)$.

Since the behavior outside B will be of no interest in the following, we can suppose that $v_j \in \mathcal{S}$ and that λ_j on B coincides with a function $f_j \in S$ (if necessary by shrinking the ball B somewhat). Let C_j be the constant associated with v_j as in Lemma 4, and we can suppose that the corresponding balls B_j are equal, to B' say. Let g be any function in S with g=0 outside B'. Lemma 4 then gives

(5)
$$\|\widehat{f_j^m} * \hat{g}\|_p \leq C \|f_j^m * \hat{v}_j * \hat{g}\|_p .$$

Since g = 0 outside B' we have

$$f_{j}^{m}v_{j}g = \lambda_{j}^{m}v_{j}g = \mu^{m}v_{j}g.$$

The inversion theorem and the inequality (3) then shows that

(6)
$$\|\widehat{f_{j}}^{m} * \widehat{v}_{j} * \widehat{g}\|_{p} = \|\widehat{\mu}^{m} * \widehat{v}_{j} * \widehat{g}\|_{p} \leq \mathscr{M}_{p}(\mu^{m}) \|\widehat{v}_{j}\|_{1} \|\widehat{g}\|_{p}.$$

Combination of (5) and (6) shows that

$$\|\widehat{f_j^m} * \widehat{g}\|_p \leq C_j \mathcal{M}_p(\mu^m) \|\widehat{v}_j\|_1 \|\widehat{g}\|_p.$$

Since $\mu^m(y) = \mu(my) = m^*\mu(y)$, Lemma 1(iv) gives that

$$\|\widehat{f_j}^m * \widehat{g}\|_p \, \leqq \, C_j \mathscr{M}_p(\mu) \, \|\widehat{v}_j\|_1 \, \|\widehat{g}\|_p \, = \, C_j{}'\|\widehat{g}\|_p \, \, .$$

As μ is unitary we have $|\lambda_j|=1$, that is, $|f_j|=1$ on B'. Since $f_j \in M_p$ (Lemma 1(vii)) we also have

$$M_{p,B'}(\lambda_j^m) = M_{p,B'}(f_j^m) \leq C_j', \qquad m=1,2,\ldots$$

It follows that the conditions in Lemma 5 are satisfied, and from Lemma 6 we conclude that A_1, \ldots, A_n commute.

To prove the converse we note that the Frobenius theorem shows that in this case A_1, \ldots, A_n have a common diagonalization. It follows that there is a constant invertible matrix P such that

$$\exp\left(i\sum_{j=1}^{n}A_{j}y_{j}\right) = P(\exp\left(i\alpha_{k}(y)\right)\delta_{kl})P^{-1}$$

where

$$\alpha_k(y) = \sum_{j=1}^n \alpha_{kj} y_j, \qquad k = 1, \dots, N; \ \alpha_{kj} \text{ real constants }.$$

By Lemma 1(vi) we have $\exp(i\alpha_k) \in M_p$ and so $\exp(i\sum_{j=1}^n A_j y_j)$ belongs to \mathcal{M}_p and the theorem is proved.

3. The initial value problem.

We now turn to the Cauchy problem. Let $A_j(j=1,\ldots,n)$ and B be $N\times N$ -matrices and let u=u(t,x) and $u_0=u_0(x)$ be N-dimensional complex vector functions. We consider the Cauchy problem

(1)
$$\begin{cases} \frac{\partial u}{\partial t} = \sum_{j=1}^{n} A_{j} \frac{\partial u}{\partial x_{j}} + Bu, & x \in \mathbb{R}^{n}, \\ u(0,x) = u_{0}(x), & 0 \leq t \leq T. \end{cases}$$

We say that the problem (1) is well posed in L_p if for each $u_0 \in \mathcal{S}$ there is a solution u = u(t, x) of (1) in \mathcal{L}_p -norm (by which we mean that

$$\frac{1}{h} \big(u(t+h,x) - u(t,x) \big) \to \sum_{j=1}^{n} A_j \frac{\partial u}{\partial x_j} + Bu$$

in \mathcal{L}_p when $h \to 0$) depending continuously (in \mathcal{L}_p) on the initial value u_0 ,

i.e. there is a constant C(T) such that

(7)
$$||u(t,\cdot)||_p \leq C(T) ||u_0||_p, \quad 0 \leq t \leq T.$$

Obviously such a solution is unique.

For $p=\infty$ this definition of well posed problems is weaker than the usual, since \mathscr{S} is not dense in \mathscr{L}_{∞} .

Our main result is Theorem 2.

THEOREM 2. Suppose $p \neq 2$, $1 \leq p \leq \infty$. Then the Cauchy problem (1), where A_i are Hermitian $N \times N$ -matrices and B is any $N \times N$ -matrix, is well posed in L_p if and only if the matrices A_1, \ldots, A_n commute.

By the remarks above this gives a necessary condition also for the usual definition of well posed problems in \mathcal{L}_{∞} .

PROOF. Assume first that (1) is well posed in L_p , $p \neq 2$. Then since $u \in \mathcal{L}_{p}$, we can take the Fourier transforms, in the distribution sense, of the elements of (1) with respect to x (t fixed) and get

$$\left\{ \begin{array}{l} \frac{\partial \hat{u}}{\partial t} \left(t, y \right) = \left(- 2\pi i \sum_{j=1}^{n} A_{j} y_{j} + B \right) \hat{u}(t, y) , & y \in \mathbb{R}^{n} , \\ \hat{u}(0, y) = \hat{u}_{0}(y) , & 0 \leq t \leq T , \end{array} \right.$$

and so, with $\varphi_t(y) = \exp(t(i \sum_{i=1}^n A_i y_i + B))$

$$\hat{u}(t,y) = \varphi_t(-2\pi y)\hat{u}_0(y) .$$

Hence by (7) and Lemma 1(iv)

$$\mathscr{M}(\varphi_t) \leq C(T), \qquad 0 \leq t \leq T.$$

On the other hand, suppose (*) is satisfied. If $\varphi_l(-2\pi y) = \hat{\mu}_l(y)$, then

$$u(t,x) = \mu_t * u_0(x)$$

and so $u(t,\cdot) \in \mathscr{C}^{\infty}(\mathbb{R}^n)$ (the elements of μ_t are in S' and differentiation is continuous in S). From

$$\frac{\partial \hat{\mu}_l(y)}{\partial t} = \left(-2\pi i \sum_{j=1}^n A_j y_j + B\right) \hat{\mu}_l(y), \qquad \bar{\mu}_0(y) = E,$$

it follows that

$$\hat{\mu}_{l+h}(y) = \hat{\mu}_{l}(y) + \left(-2\pi i \sum_{j=1}^{n} A_{j} y_{j} + B\right) h + h^{2} R_{2}(h; t; y) ,$$

where the elements in R_2 are second order polynomials in y with coefficients which are uniformly bounded in M_p , by (*) and Lemma 1(iv). Consequently there is a constant C such that

$$\left\|\frac{1}{h}(u(t+h,\cdot)-u(t,\cdot))-\left(\sum_{j=1}^{n}A_{j}\frac{\partial u}{\partial x_{j}}(t,\cdot)+Bu(t,\cdot)\right)\right\|_{p}\leq |h|C\sum_{|\alpha|\leq 2}\|D^{\alpha}u_{0}\|_{p},$$

and so u is a solution of (1) in \mathcal{L}_v -norm. By Lemma 1(iv) and (*)

$$||u(t,\cdot)||_p = ||\mu_t * u_0||_p \le C(T) ||u_0||_p.$$

Hence (1) is well posed in L_p .

By Theorem 1, the following lemma then completes the proof of Theorem 2.

LEMMA 7. Let A_i $(j=1,\ldots,n)$ and B be $N\times N$ -matrices and let

$$\varphi_l(y) = \exp\left(t\left(i\sum_{j=1}^n A_j y_j + B\right)\right).$$

Then

(8)
$$\mathscr{M}_{p}(\varphi_{t}) \leq C(T), \qquad 0 \leq t \leq T,$$

if and only if $\exp(i \sum_{j=1}^{n} A_{j} y_{j})$ belongs to \mathcal{M}_{p} .

PROOF. Suppose first that (8) holds. Then, by Lemma 1(iv), $\psi_t(y) = \exp(i \sum_{j=1}^n A_j y_j + tB)$ satisfies

$$\mathcal{M}_{n}(\psi_{t}) \leq C(T), \qquad 0 < t \leq T.$$

If we let $t \to 0$, we see that $\psi_i(y) \to \exp\left(i \sum_{j=1}^n A_j y_j\right)$ uniformly on compact subsets of R^n , and so Lemma 1(v) shows that $\exp\left(i \sum_{j=1}^n A_j y_j\right)$ belongs to \mathcal{M}_p .

On the other hand, if $\mu(y) = \exp(i \sum_{j=1}^{n} A_j y_j)$ is in \mathcal{M}_p , then by Lemma 1(iv)

$$\mathcal{M}_n((t)^*\mu) \leq \mathcal{M}_n(\mu), \qquad 0 \leq t \leq T.$$

Let D be a bounded open ball in R^n . Then $\varphi_t \in \mathcal{M}_{p,D}$, $0 \le t \le T$. The elements of φ_t and their derivatives are bounded on compact subsets of R^n , uniformly for $0 \le t \le T$. If we multiply φ_t by a function $k_D \in C^{\infty}(R^n)$ with value 1 on D and with compact support, then $k_D \varphi_t$ has elements belonging to S which, together with their derivatives, are uniformly bounded in L_1 for $0 \le t \le T$. Hence $\mathcal{M}_{p,D}(\varphi_t) \le \mathcal{M}_p(k_D \varphi_t)$ is uniformly bounded for $0 \le t \le T$.

We also note that φ_t is a solution of

$$\frac{\partial \varphi_l}{\partial t}(y) = (i \sum A_j y_j + B) \varphi_l(y), \quad \varphi_0(y) = E,$$

that is.

(9)
$$\varphi_t(y) = \mu(ty) + \int_0^t \mu((t-v)y) B \varphi_v(y) dv.$$

If we apply the $\mathcal{M}_{p,D}$ -semi-norm on the both members of (9) we get, using Lemma 3(iii), Lemma 1(iv) and the remarks above, that

$$\mathscr{M}_{p,\,D}(\varphi_t) \leq \mathscr{M}_p(\mu) + \mathscr{M}_p(\mu) \int_0^t |B| \, \mathscr{M}_{p,\,D}(\varphi_v) \, dv ,$$

and so, since the integral is bounded by the remarks about φ_t above, Gronwall's lemma applies:

$$\mathscr{M}_{p,D}(\varphi_t) \leq \mathscr{M}_p(\mu) \exp \left(\mathscr{M}_p(\mu) \int_0^t |B| \, dv \right) \leq \mathscr{M}_p(\mu) \exp \left(T|B| \mathscr{M}_p(\mu) \right), \ 0 \leq t \leq T.$$

By Lemma 3(iv) then

$$\mathscr{M}_p(\varphi_t) \, \leqq \, \mathscr{M}_p(\mu) \, \exp \big(T |B| \mathscr{M}_p(\mu) \big) \, = \, C(T), \qquad 0 \, \leqq \, t \, \leqq \, T \, \, ,$$

and Lemma 7 is proved.

REFERENCES

- 1. L. Hörmander, Estimates for translation invariant operators in L_p spaces, Acta Math. 104 (1960), 93-140.
- 2. W. Littman, The wave operator and L_p norms, J. Math. Mech. 12 (1963), 55-68.
- T. S. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73 (1952), 108-114.

DEPARTMENT OF MATHEMATICS,

CHALMERS INSTITUTE OF TECHNOLOGY AND THE UNIVERSITY OF GÖTEBORG, GÖTEBORG, SWEDEN