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THE CAUCHY PROBLEM FOR SYMMETRIC
HYPERBOLIC SYSTEMS IN L,

PHILIP BRENNER
1. Introduction.

It is well known that the initial-value problem for a symmetric hyper-
bolic system,

ou ou
5Z=2Aja7+3u, ze R,
Jj=1 §
0=t=T,

(1)

w(0,2) = u(),

is well posed in L,. The purpose of this note is to prove that the problem
(1) is well posed in L,, p+2, 1Sp= oo, if and only if the matrices 4;
commute (Theorem 2). This will be proved by noticing that, a necessary
and sufficient condition for (1) to be well posed in L, is that
exp(i3].;4;y;) is a multiplier on L, which in turn will be proved to be
the case if and only if the 4; commute (Theorem 1). This last statement
follows by application of the technique developed by Hormander in [1]
(frequent references will be made to that paper) and a matrix theorem
by Motzkin and Taussky [3].

The corresponding problem for the wave operator has been treated by
Littman [2]; his result is included in ours.

I wish to thank Professor Vidar Thomée for suggesting the problem
and for several helpful discussions.

2. Multipliers on L,.

First some notation. If v=(vy,...,vy) and u=(u,...,uy) are complex
vectors, (u,v) will denote their scalar product and |v| the Euclidean

norm,
N N i
w,v) = Fu®y, o] = (Z l"jl“) .
J=1 J=1
The norm [A4| of an N x N-matrix A4 is defined as
|4| = sup{|dv|; v=(vy,...,vy), [V|S1}.
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28 PHILIP BRENNER

If Q<R" is open and v; € C®(Q) for j=1,...,N, then we say that
v=(vy,...,vy) belongs to €°(2). If g e C°(R"), and if

(2) sup {|z|™ | D¥g(x)|; x € R"} < o
for m=0,1,... and for any multi-index k= (k,,...,k,),
Dk = (oM[ox M) . . . (0%n[0x,Fn)

then we say that g belongs to S. We give the linear space S the topology
defined by the family (2) of semi-norms. We denote by & the set of
functions v=(v,...,vy) with v;€ 8, j=1,...,N. The dual space §’ of S
is the set of tempered distributions (in the sense of Schwartz).

The convolution between a tempered distribution x and a function
g € S is denoted by u*g, and defined by u(g(x —*))=p*g(x). This notion
also has an obvious meaning if g, say, is replaced by a vector in &.
We can then also replace 4 by an N x N-matrix, the elements of which
are tempered distributions. The Fourier transform of a tempered distri-
bution x is denoted by £, and defined by A(f)=u(f), fe S ,where fis
the function

oy = f exp (2, 9)) f (%) dw .

Rn

The Fourier transform is also defined for matrices and vectors of tem-
pered distributions by applying the transform elementwise.

By #, we means the set of functions v=(vy,...,vy) with v;€ L,
j=1,...,N, and for p<oo we set

ol = ( [P dx)””
Rn

Ivllo, = esssup {|v(z)|; = € R"}.

and for p=oo

Classically a multiplier on L, is a function 4 such that for each f € L,
Af is the Fourier transform of a function in L,. Following Hérmander [1]
we formalize this as follows: We say that 4 is a multiplier on Ly, 4 € M,
if Ae 8" and if

M,(3) = sup{|Asfl,; €8, Ifl, <1} < oo.

We will need the following natural genera,lizaf;ion to matrices: We define
A, the multipliers on %, as the set of N x N-matrices 4 with elements
in 8’ satisfying

M o (p) = sup{ldsv],; ve S, IplpS1} < <.
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Since the norms |||, and sup;|lv;|, are equivalent, this definition can
also be expressed by saying that u=(u;;,) € A4, if u;, e M,,5,k=1,...,N.
In order to get shorter statements it will be convenient to define
M,(A)=oo if A & M, and correspondingly for .#,. Thus u € .#, if and
only if . ,(u)< co.
We collect some facts about .#,, in the following lemma.

Lemma 1. Suppose 1<p=<oo. Then

(i) Mpy=AM, 1[p+1lg=1, and M, <M ,<M,.

(ii) #, is a Banach algebra under pointwise (matriz-) multiplication and
addition, with the norm M ,(-). It is non-commutative for N > 1.

(iii) A, 15 the set of essentially bounded N x N-matrices, and M o(-)=
esssup|-|. #, is the set of N x N-matrices, the elements of which are
Fourier—Stielijes transforms of bounded measures.

(iv) Suppose y, € R™ and a € R—{0} and let a*f(y)=f(ay) and f, (y) =
F+yo). Then My(f)=Mya*])=My(f,,).

(v) Let M ,(f;)<C, all i € I, and suppose f; — f in S’ (e.g. uniformly on
compact subsets of B). Then A ,(f)<C.

(vi) Let o;€ R, j=0,1,...,n, and x(y)=oao+3j_;%;Y;. Then
M (exp (ix)) =1.

(vii) If k€ 8, then M (kE) = &lly, where E is the unite matriz.

Proor. For the case N =1 these statements are all contained in
Chapter I of [1]. Most of the generalisations to N >1 are obvious.
Below we will just give references to the corresponding statements in [1]
for those cases.

(i) For N=1 this is Theorem 1.3 in [1].

(ii) Corollary 1.4 in [1].

(iii) Theorem 1.4 and 1.5 in [1].

(iv) Theorem 1.13 in [1]. See also Lemma 3(iii) below.

(v) By Holders inequality we have (1/p+1/g=1)

[ Foruta),v@)y de

Since f; — f in 8’ implies that fi —fin &', we see that also [ satisfies this
inequality. The converse of Holders inequality then gives

< Clull, Ibly,  wves.

feull, < Cllulp,  we &,
that is, #,(f)<C.
(vi) Multiplying © € S by exp(ix) corresponds to a translation of u
with (37)(y, . . . ,&,) followed by multiplication with exp (ix,), and hence
M (exp(ix))=1.
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(vii) This follows from the inequality
(3) IBsull, < Bl lulp,, k€S, ue (or ke P, uel),

which is proved just as in the scalar case.

We want to study functions which are locally multipliers on .#,, and
so make the following definition: Let B be an open ball in R* (the open
ball with center x and radius » will be denoted B(x,r)). We say that an
N x N-matrixfunction ¢ is an % -multiplier on B, ¢ € 4, p, if there is
a pu€ .M, such that p=u on B. If pe A, p and p=u on B, ue A,
we can define

M, plp) = sup{|li*t],; we &, u=0 outside B, ||fi||, <1}

since yu does not depend on the behavior of x4 outside B. We note that
M, p(-) is an semi-norm, and that #, gu(:)=#,(:). For N=1 we
write M, p and M, g(*).

The following well known lemma will be useful in this context.

LevMa 2. Suppose that B is a bounded open ball tn R* and ¢ a positive
number. Then there is a function k € 8 such that k=1 on B, k has compact
support and ||I?l|1 Sl+e.

Proor. We can suppose that B=DB(0,r). Let m(r) be the volume of
B(0,r). Choose ¢ so that m(r+pg)+1=(1+¢)*m(p), and let g be the
characteristic function of B(0,p). Further choose & € S, such that A=1
on B(0,r+¢) and A=0 outside B(0,r+ 2¢) and

flh(y)lsdy < m(r+o)+1.

k(y) = (m(e))~* hxg(y) .

Then k € C®°(R™), k=1 on B(0,r) and has compact support. By Schwartz’
inequality and Parsevals formula

Set

m(r+p)+1

*<
m(g) ) = 1te

Bl S (m(@)~ Ikl liglly < (
and so k is the desired function.

We can now give some facts about ., .

Lremma 3. Suppose 1 SpSoco. Then

(1) "f BCB” then le, B(q’) § "lp, B’(w)'

(i) f aeR—{0} and y,eR™, then M, glp)=~My —1p0*P)=
"lp. B-yo ((PW)‘
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(iii) A, gve) < M,(v)M, gl9) and if keS8, then M, pkp)S
ol
(iv) if M, ple)=C for all bounded open balls in R™, then M ,(p)=C.

Proor. (i) Obvious.

(ii) We note that a change of coordinates in R” only changes the
Z,-norm and the set B. Hence 4, p(-) will just change to .#, ,15(*)
under the transformation y - ay. If p=u, on B,uc 4, then let u,=
Yy, 8nd 80 py=g¢, on B-y, It follows that f;=exp(2mi(-,y,))d.
Since multiplication with a scalar function of absolute value 1 is an
isometry on %, we see that 4, p(p)=Ap p_(9y,)-

(iii) The first assertion follows from Lemma 1(ii) and the definitions.
The second is an application of this, using Lemma 1(vii).

(iv) Let e>0 be arbitrary. Choose a sequence {B;}?° of bounded open
balls and functions k; such that (a) B;<=B;,, and U, B;=R", (b) k;=1
on B; and k; =0 outside B;,,, (¢) chjll1 <1+e. Thisis posmble by Lemma 2.
Let p=pu; on By, u;€ M,. Let v;=pk;. Then by (3)

M o) = sup{lldgkpsflly; fe L, 1, <1} S My g @k S (1+e)C,

Since »; — ¢ uniformly on compact subsets of E", Lemma 1(iv) gives that
M (@) £(1+¢)C. As >0 was arbitrary (iv) is proved.
We will now state the main theorem of this section.

THEOREM 1 Suppose 1 < p=oco and p+2. Let A; be Hermitian N x N-

matrices (j=1,...,n). Then exp(s 37_,4,y;) belongs to M, if and only if
the matrices Al, .., A4, commute.

We need some lemmas for the necessity part of the proof.

LemmA 4. Let B=B(z,,r), r>0. If ve & and v+0 on B, then there is
a constant C and a ball B’ =B(xy,r'), 0<r’' r, such that for each g€ 8
with g=0 outside B’', we have

(4) lgll, < Clio«gll, -

Proor. Since v is continuous, there is a k, 1<k <N, and a ball B'=
B(zg,r'), 0 <7’ 7, such that v,+0 on B’. Hence there is a w; € S such
that w,v,=1 on B’. We get for any g € S with g=0 outside B’

g = W9
and so the inequality (3) gives

10l = I@30xgll, < 1@lly 110291, = 11Dl 1P#G1l, = ClIP*Gly -
LEmMMA 5. Let p+2 and let B be an open ball in B". Assume that
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Ae M, gnC¥B), that |A|=1 on B, and that there is a constant C such that
M, A =C, m=12,....
Then there is an xy € R™ and a complex number ¢ with |c|=1, such that

My) = cexp(i{xy,y)), yeB.

Proor. If B=R" this is Theorem 1.14 in [1]. We want to prove it
for bounded B. Thereby we assume that it is already known that if 4
is a real quadratic form and exp(¢4d)e M,, p+2, then 4=0 (Lemma
1.4 in [1]).

Let A=exp(if), f be real and fe C*B). It will be sufficient to prove
that the second order derivatives of f vanish in B. Thus let y, be an
arbitrary point in B. According to Lemma 3(ii) it is no restriction of
the generality to assume that y,=0. Let

f@) = fO)+<{zo )+ A(y)+0(lyl?), y—->0,

where A4 is a real quadratic form in y. Let

9 = f(¥)—£(0)— <%0,y -
Then, by Lemma 1(vi) and Lemma 3(iii)
M, plexp(img)) £ 0, m=12,....
Set ¢,,(y) =mg(m—ty). Then g,, -~ A uniformly on compact sets and also
by Lemma 3 (ii),
M, nip(exp(ign)) = M), p(exp(img)) < C

By the above we can find a u, € M, such that u,=exp(ig,,) on miB.

Let B’ be a bounded open ball. Using Lemma 2 we see that there is
a bounded open ball B” and a function k € S such that k=1 on B’, k is
zero outside B’’ and !|l?||1§2. Choose m, so large that m*B>B'", for
m 2 my. From Lemma 3(iii) we then get, m >m,,

Mo (pik) S My mip(un) Il S 2M, ni5 (exp(ig,,))

and so, from the above
M (k) = 2C.

Since u,k — exp(¢4)k uniformly, Lemma 1(v) gives us

M, (exp(zd)k) = 2C .
Hence
M, p(exp(i4)) = M, p(exp(i4)k) < M (exp(t4)k) = 2C .
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Since the ball B’ was arbitrary, Lemma 3(iv) shows that exp(id) e M,
and so 4=0, and the lemma is proved.

LemmA 6. Suppose that A; are Hermitian N x N-matrices, j=1,...,n
such that the eigenvalues (repeated with proper multiplicities) of

> A,y

J=1

2

for all y=(yy,...,y,) in an open non-void ball B in R™ are of the form

.Z(xkjy,, k=l,...,N,

j=1

where the x,; are constants. Then the matrices 4,,...,A, commute.

Proor. When the conditions in Lemma 6 are satisfied for all complex
y; (instead of (y,,...,y,) € B) this is a theorem by Motzkin and Taussky

(Theorem 2 in [3]). From the analyticity of the both members in the
equality

n N n
det (+B~ 3 4,;) =TT (2= Zos) . v B,
J=1 fe=1 j=1
we see that it is also satisfied for all complex y;, and Lemma 6 follows
from the theorem of Motzkin and Taussky.

Proor or THEOREM 1. Suppose u(y)=exp (i 37, 4;y;) belongs to 4,
p=+2. Since the elements of u belong to C®(R") there is a non-void open
ball B in R™ and functions 4,,...,4y in C®(R") such that 4,(y),...,Ax(y)
are the eigenvalues of u(y), counted with proper multiplicities, for each
y € B, and such that for each 4,(y), y € B, there is an eigenvector v,(y) +0,
and v; € €°(B).

Since the behavior outside B will be of no interest in the following,
we can suppose that v; € & and that 1; on B coincides with a function
f; €8 (if necessary by shrinking the ball B somewhat). Let C; be the
constant associated with v; as in Lemma 4, and we can suppose that the
corresponding balls B,’ are equal, to B’ say. Let g be any function in 8§
with ¢=0 outside B’. Lemma 4 then gives

AN
(5) I£m*ll, = Clf™0%8ll, -
Since g=0 outside B’ we have
fimvg = A9 = g

The inversion theorem and the inequality (3) then shows that
Math. Scand. 10 — 8
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s P
(6) IF5ms0;%0ll, = llpmsdpdll, < Ap(™) 19,111 191, -
Combination of (5) and (6) shows that

AN
Ifmxgll, = Cydl o(u™) 11911y 19, -
Since u™(y) = u(my)=m*u(y), Lemma 1(iv) gives that

IIf;’\"*ﬁllp S Gyl () 105111 18, = €510 -

As u is unitary we have |4;]=1, that is, |fj|=1 on B’. Since f;e M,
(Lemma 1(vii)) we also have

Mp,B’(ljm) = Mp,B'(fjm) = Oj,s m=1,2:- e .

It follows that the conditions in Lemma 5 are satisfied, and from Lemma, 6
we conclude that 4,,...,4, commute.

To prove the converse we note that the Frobenius theorem shows that
in this case 4,,...,4, have a common diagonalization. It follows that
there is a constant invertible matrix P such that

”
exp (i 2 Ajyj) = P(exp(io(y)) o) P
where =1

n
oY) = zlzxkjyj, k=1,...,N; o real constants .
J-

By Lemma 1(vi) we have exp (in;) € M, and so exp(i 3., 4,y;) belongs
to ., and the theorem is proved.

3. The initial value problem.
We now turn to the Cauchy problem. Let Ay j=1,...,n) and B be

N x N-matrices and let u=wu(f,z) and u,=uy(z) be N-dimensional com-

plex vector functions. We consider the Cauchy problem

ou I

— =54

5 = 241

ou
j=1 0%

— + Bu,
(1) .
u(0,2) = (),
We say that the problem (1) is well posed in L, if for each u, € & there
is a solution u =wu(t,z) of (1) in £ ;-norm (by which we mean that

! (u(t+h,z) —u(t,z)) %A ou +Bu
—_ - - PR
h | H H j-l ! a$j

in &, when h — 0) depending continuously (in .#,) on the initial value u,,
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i.e. there is a constant C(7') such that
(7) lult, N, = C(D)lwoll,, 0stsT.

Obviously such a solution is unique.

For p=oo this definition of well posed problems is weaker than the
usual, since & is not dense in 2.
Our main result is Theorem 2.

THEOREM 2. Suppose p+2, 1<p<oco. Then the Cauchy problem (1),
where A; are Hermitian N x N-matrices and B is any N x N-matriz, is
well posed in L, if and only if the matrices 4,,. .., A, commute.

By the remarks above this gives a necessary condition also for the usual
definition of well posed problems in L.

Proor. Assume first that (1) is well posed in L,, p+2. Then since
u € #,, we can take the Fourier transforms, in the distribution sense, of
the elements of (1) with respect to z (¢ fixed) and get

J=1
2(0,3) = 24(»), st=T
and so, with ¢,(y) =exp(t(¢ 3., 4,y;+ B))
at,y) = e —27y)(y) .
Hence by (7) and Lemma 1(iv)
*) M) SOT), 0st=sT.
On the other hand, suppose (*) is satisfied. If ¢(— 27y)=/,(y), then

on L&
‘ 5 BY) = (—2mzAjyj+B) 8tY)s g e,

u(t,z) = prug()

and so u(t, *) € €°(R") (the elements of y, are in §’ and differentiation is
continuous in S). From

3_/25(:/_) = (“ 2’".]%1‘41?/1'*‘3) fy),  Bly) = E,
it follows that
funl9) = fls) + (- 2nij§1A;y;+B) h+ BRyh; t;9)
where the elements in R, are second order polynomials in y with coeffi-
cients which are uniformly bounded in M,, by (*) and Lemma 1(iv).
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Consequently there is a constant C such that

§ |hI0 z ”Da’“'o“p s

r lels2

1 0
|;(u(t+h,-)—u<t,-))— (245, 60+ Bue)

J=1

and so u is a solution of (1) in #,-norm. By Lemma 1(iv) and (*)

llutt Mp = lursoll, = O(T) ol -

Hence (1) is well posed in L,
By Theorem 1, the following lemma then completes the proof of
Theorem 2.

LemMMA 7. Let A; (j=1,...,n) and B be N x N-matrices and let

@(y) = exp (t (i§A,y,+B)) )

j=1
Then
(8) My (@) = CT), 05tsT,

if and only if exp(i 37, 4,y;) belongs to M .

Proor. Suppose first that (8) holds. Then, by Lemma 1(iv), y,(y)=
exp (1 37, 4,y;+1B) satisfies

M) = CT), O0<t=sT.

If we let ¢t > 0, we see that y(y) - exp (s 3., 4;¥;) uniformly on com-
pact subsets of R”, and so Lemma 1(v) shows that exp(s Z}LIAjyj)
belongs to ..
On the other hand, if u(y) =exp(¢ 37, 4,¥;) is in .4, then by Lemma
1(iv)
M (()*p) = Mp(p), O0st<T.

Let D be a bounded open ball in R®. Then ¢, € A, p, 0=t<T. The
elements of ¢, and their derivatives are bounded on compact subsets of
R*, uniformly for 0<¢< 7. If we multiply ¢, by a function k, € C°(R")
with value 1 on D and with compact support, then kpp, has elements
belonging to S which, together with their derivatives, are uniformly
bounded in L, for 05t<7T. Hence 4, p(p) <4 (kpp,) is uniformly
bounded for 05t 7. ‘
We also note that ¢, is a solution of

0
F© = (S 45+B)ew). vy = F,
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that is,
®) wly) = ) + [ ul(t—o)y) B py(y) dv.
0

If we apply the .#, ,-semi-norm on the both members of (9) we get,
using Lemma 3(iii), Lemma 1(iv) and the remarks above, that

M, (@) S M p(pt) + Mo f B 4

and so, since the integral is bounded by the remarks. about ¢, above,
Gronwall’s lemma applies:

t
,0(2) S A () exp(M (1) [ |BIdo) S A () exp(T|BIA (), 0S¢ST
0

then

By Lemma 3(iv)
M (@) S M) exp(T|Bl M, (W) = OT), O0Si<T,

and Lemma 7 is proved.

REFERENCES

1. L. Hérmander, Estimates for translation invariant operators in Ly spaces, Acta Math.
104 (1960), 93-140.

2. W. Littman, The wave operator and Ly, norms, J. Math. Mech. 12 (1963), 55-68.

3. T. 8. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer. Math.
Soc. 73 (1952), 108-114.

DEPARTMENT OF MATHEMATICS,
CHALMERS INSTITUTE OF TECHNOLOGY AND THE UNIVERSITY OF GOTEBORG,
GOTEBORG, SWEDEN



